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A HADES ALGORITHM

Algorithm 1 HaDES

Require: dataset size n, environment Env
Require: number of meta steps T , pop. size P , learning rate α, std σ

1: Initialize Dϕ = {(s, a)1, . . . , (s, a)n} ▷ e.g. randomly or sampled
2: for meta step = 0, . . . , T do
3: Initialize ξ ∼ N (0, σ)
4: for i = 0, . . . , P do
5: if i is even then
6: Perturb Dϕ with noise ξi = ξ to get Di ▷ antithetic noise
7: else
8: Perturb Dϕ with noise ξi = −ξ to get Di

9: Update ξ ∼ N (0, σ)
10: end if
11: Initialize policy πθ

12: Train policy πθ on Di using BC
13: Unroll πθ and compute expected return Ji = J(πθ,Env|Di)
14: end for
15: Approximate ∇ϕJ ≈ 1

Pσ

∑
i Jiξi

16: Update Dϕ = Dϕ + α∇ϕJ
17: end for
18: Train policy πθ on final Dϕ

19: return (πθ,Dϕ)

B IMPLEMENTATION DETAILS

B.1 HYPERPARAMETERS

Parameter Value
LR 0.005
NUM ENVS 4
NUM STEPS 1024
UPDATE EPOCHS 400
MAX GRAD NORM 0.5
ACTIVATION tanh
WIDTH 512
ANNEAL LR False
GREEDY ACT False
CONST NORMALIZE OBS False
NORMALIZE OBS True
NORMALIZE REWARD True

popsize 2048
dataset size 64
rollouts per candidate 1
n generations 2000
sigma init 0.03
sigma decay 1.0
lrate init 0.05
Evo. strategy OpenES

Table 2: Hyperparameters for HaDES in Brax. Top: inner loop parameters. Bottom: Outer loop
parameters.
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Parameter Value
NET mlp
LR 0.03
NUM ENVS 8
NUM STEPS 1024
UPDATE EPOCHS 64
MAX GRAD NORM 0.5
ACTIVATION relu
WIDTH 512 or 256
ANNEAL LR True
GREEDY ACT False
CONST NORMALIZE OBS True
NORMALIZE OBS False
NORMALIZE REWARD False

popsize 2048
dataset size 16
rollouts per candidate 2
n generations 5000
sigma init 0.5
sigma limit 0.01
sigma decay 1.0
lrate init 0.05
lrate decay 1.0
Evo. strategy SNES
temperature 20.0

Table 3: Hyperparameters for HaDES in MinAtar. Top: inner loop parameters. Bottom: Outer loop
parameters.

B.2 EXPERIMENTAL DETAILS

For all RL tasks we use Brax (Freeman et al., 2021), a suite of continuous control environments, and
MinAtar (Young & Tian, 2019), a set of Atari-like environments.

For dataset distillation, we report results on two image classification tasks: MNIST (LeCun, 1998),
which is composed of handwritten digits, and FashionMNIST (Xiao et al., 2017), which features
different clothing items.

For the evolutionary algorithm, we use OpenES Salimans et al. (2017) for Brax and image classifi-
cation, and use SNES Wierstra et al. (2014) for MinAtar. In the inner loop, we minimize either the
cross-entropy loss (discrete cases) or the negative log likelihood of the synthetic actions (continuous
action cases). All of our runs use 8 Nvidia V100 GPUs and take between 1 and 17 seconds per outer
loop generation. Detailed generation times are reported in Table 4. These times include outer loop
operations (all methods), inner loop policy training (HaDES only), and inner loop policy evaluation
(all methods). HaDES-R is slightly slower than HaDES-F since it trains two policies instead of just
one. Because we train policies from scratch every generation, the times reported are strict upper
bounds to how long it takes to train a policy on the final distilled datasets.

In image classification and MinAtar, we assign labels (i.e. classes or discrete actions) uniformly,
whereas in Brax we evolve the dataset labels alongside the observations since the environments
feature continuous actions.

We implement our algorithm in JAX (Bradbury et al., 2018) using the PureJaxRL (Lu et al., 2022),
gymnax (Lange, 2022) and evosax (Lange, 2023) libraries to enable parallel training on hardware
accelerators. We also use virtual batch normalization (Salimans et al., 2016) to stabilize training,
which was previously found to be crucial in stabilizing ES (Salimans et al., 2017).
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Environment Name ES Neuroevolution HaDES-F HaDES-R
Hopper 4.0 5.6 6.3
Walker2d 3.4 7.9 8.5
Reacher 2.7 6.7 7.2
Inverted Double Pendulum 2.6 4.4 4.6
Ant 6.6 11.1 12.1
Halfcheetah 10.7 14.8 16.9
Humanoid 7.8 13.9 15.1
HumanoidStandup 8.6 14.8 16.4

SpaceInvaders-MinAtar 1.6 1.5 1.6
Breakout-MinAtar 1.3 1.6 1.8
Asterix-MinAtar 1.9 2.1 2.4
Freeway-MinAtar 2.3 2.2 2.9

Table 4: Runtime of the different neuroevolution methods in seconds/generation. Times averaged
over 3 seeds rounded to the nearest tenth of a second. Standard deviation omitted, but the difference
between the fastest and slowest runs for any setting is usually smaller than 0.2 seconds.

C ADDITIONAL RESULTS

C.1 IMPACT OF DISTILLATION BUDGET ON PERFORMANCE
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Figure 6: Final return of HaDES policies as a function of distillation budget (i.e. dataset size). ES
neuroevolution and PPO returns also plotted for reference.

In Figure 6, we investigate the impact of the distillation budget on the final performance of policies
trained with HaDES on three different environments. What we observe is that dataset sizes that are
too small degrade performance, likely because they cannot contain all the information required to
train an expert policy. This is particularly noticeable in Humanoid, where for a dataset of 4 state-
action pairs, the score drops as low as 1013. However, a score of 1000 corresponds to a humanoid
policy that keeps its balance and stays immobile, with lower scores indicating that the policy falls
and causes an early termination. This is an indication that for distillation budgets that are too low
to capture expert behaviour, HaDES does not fail to learn, and will still optimize return within the
constraints of the budget.

On the opposite end of the spectrum, we also observe return dropping for large dataset sizes (|D| =
256), despite the increased expressivity. This is possibly due to ES (and therefore HaDES) scaling
poorly to a large number of parameters. This problem can be alleviated by relying on better ES
methods, or by using a factorized approach to distillation.

C.2 DATASET GENERALIZATION ACROSS ARCHITECTURES AND HYPERPARAMETERS

Here we plot generalization plots for additional environments. As expected, HaDES-R generalizes
better than HaDES-F both to new hyperparameters and to new architectures.
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Figure 7: Dataset transfer to hopper architecture and training parameters.
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Figure 8: Dataset transfer to walker2d architecture and training parameters.
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Figure 9: Dataset transfer to reacher architecture and training parameters.
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Figure 10: Dataset transfer to inverted double pendulum architecture and training parameters.
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Figure 11: Dataset transfer to ant architecture and training parameters.
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Figure 12: Dataset transfer to halfcheetah architecture and training parameters.
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Figure 13: Dataset transfer to humanoid architecture and training parameters.
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Figure 14: Dataset transfer to humanoidstandup architecture and training parameters.
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