Appendix

A Data Acquisition

The full procedure of data collection and data preprocessing is described in detail in Ref. [25], but
are briefly described below for the reader’s convenience.

Visual scenes from the mouse’s perspective, neural activity in V1, and various behavioral variables
were simultaneously recorded from three adult mice who were freely exploring an arena with a
state-of-the-art head-mounted recording system [25]. The recording system consisted of high-density
silicon probes, two miniature cameras and an inertial measurement unit (IMU). Electrophysiology
data was acquired at 30 kHz using a 11 um x 15 um multi-shank linear silicon probe (128 channels)
implanted in the center of the left monocular V1. One wide-angled camera (around 120°) was
aimed outwards to capture the visual scene available to the right eye of the mouse at 16 ms per frame
(“worldcam"). A second camera was aimed at the right eye (illuminated by an infrared-LED) to record
a video feed of the right eye at 30 Hz. The IMU acquired three-axis gyroscope and accelerometer
data at 30 kHz. In addition, a top-down camera recorded the mouse in the arena at 60 Hz.

During experiments, mice were placed in an arena where they could move around freely for about
1 hour. The arena was approximately 48 cm long x 37 cm wide x 30 cm high. The gray floor was
covered with black-and-white Legos to provide visual contrast. One wall of the arena was a monitor
displaying a moving black-and-white spots stimulus, and the other three walls were covered with
wallpaper with static stimuli including white noise, black-and-white high-spatial-frequency gratings,
and black-and-white low-spatial-frequency gratings. In order to encourage foraging behavior during
the recording sessions, small fragments of tortilla chips were sparsely distributed across the arena.

The worldcam video was downsampled to 60 x 80 pixels. DeepLabCut [43] was used to extract
extract eye position (6, ¢) and pupil radius (o). Pitch (p) and roll (w) of the mouse’s head position
were extracted from the IMU. Locomotion speed (s) was estimated from the top-down camera feed
using DeepLabCut [43]. Electrophysiology data bandpass-filtered between 0.01 Hz and 7.5 kHz, and
spike-sorted with Kilosort 2.5 [44]. Single units were selected using Phy2 (see [45]) and inactive
units (mean firing rate < 3 Hz) were removed. This yielded 68, 32, and 49 active units for Mouse
1-3, respectively. To prepare the data for machine learning, all data streams were deinterlaced and
resampled at 20.83 Hz (48 ms per frame; Fig. 1C).
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B Vision-Only Models

B.1 Hyperparameter Tuning

We performed a grid search to find the optimal CNN kernel size (3, 5, 7, 9), number of channels (32,
64, 128, 256, 512; in various combinations), and dropout rate (0, 0.25, 0.5). While other models
often rely on kernel size 3 for their CNN, we found these small kernels to lead to worse performance,
perhaps due to the mouse’s low-resolution vision. Kernel size 7 performed best.

We repeated the grid search for CNNs with different number of convolutional layers. The resulting
3-layer CNN with 0.5 dropout rate outperformed many differently sized networks, such as a 1-layer
CNN with 1024 channels (i.e., a shallow but wide network), a 2-layer CNN, or a 4-layer CNN. Choice
of learning rates and optimizers had no notable effect on the final performance of the networks.

B.2 Autoencoder

29

We initially hypothesized that an autoencoder could provide regularization benefits over a “vanilla
CNN, because the reconstruction loss might encourage the model to learn visual features that are
useful for decoding. We used an encoder ¢ to map the original frame JF to a vector V in the latent
space, which was present at the bottleneck, while the decoder ) then mapped the vector V from the
latent space to the output.

¢o: F—V, (1)
v V= F, )
¢, = argming , || F — (¢ - ¢)F|>. 3)

After hyperparameter search, we settled on size 256 for the latent space vector, and the weight
of the reconstruction loss relative to the Poisson loss was fixed at 0.5. Both the encoder and the
decoder were 3-layer CNNSs, and their numbers of channels were symmetric. However, after testing a
number of autoencoders with different configurations (Table 4), we found that a simple 3-layer CNN
outperformed any and all of them.

Mouse 1 Mouse 2 Mouse 3
Kernel size, encoder #channels cct MSE | \ cctT MSE | cctT MSE|
3,16 x 32 x 64 539 4 .149 .0728 .389 4 .128 107 | .502 £+ .129 .0996
5,16 x 32 x 64 550 4 .147 .0728 .363 £ .116 109 | 508 £ .135 .0983
7,16 x 32 x 64 525 +.152 .0732 353 +.121 117 1509 +£.131  .0980
9,16 x 32 x 64 518 +.147 .0752 315 +.101 119 1 492 + 135 .0997
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7,32 x 64 x 128 539 £ .145 .0739

9,32 x 64 x 128 510 £ .155 .0758

3,64 x 128 x 256 541 £ .146 .0758

5,64 x 128 x 256 552 + .145 0777

7,64 x 128 x 256 553 +.134 .0688 .369 + .104 111 .530 +.136 .0992

9, 64 x 128 x 256 .37 + .146 .0811 .355 +.109 119 500 £ .128 .105
Table 4: Performance of different autoencoders. The numbers of channels in the decoder were
symmetric with those of the encoder. Best performing networks are indicated in bold. cc: cross-
correlation, mean = standard deviation across neurons (1: the higher the better), MSE: mean-squared
error (: the lower the better).
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C Visual Receptive Fields

To test whether the recovered visual receptive fields are sensitive to the choice of initial values for the
behavioral variables, we repeated our experiments by initializing the behavioral variables with noise
sampled from the uniform distribution [—1, 1). The values remained the same throughout the process
of gradient ascent.

We found that different values of behavioral variables resulted in similar visual receptive fields. A
representative example is shown in Fig. C.1. Although some of the absolute values changed, receptive
field structure stayed qualitatively the same, with identical excitatory and inhibitory subregions to the
ones reported in Fig. 4.
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Figure C.1: The maximally activating stimuli learned in CNN+GRU,, generated via gradient ascent
with a fixed and randomly initialized behavioral variable. The 32 neurons with the highest cross-
correlation (cc) from each mouse are shown, sorted by cc.
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