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FewVS: A Vision-Semantics Integration Framework for Few-Shot
Image Classification

Anonymous Author(s)

ABSTRACT
Some recent methods address few-shot image classification by ex-
tracting semantic information from class names and devising mech-
anisms for aligning vision and semantics to integrate information
from both modalities. However, class names provide only limited
information, which is insufficient to capture the visual details in
images. As a result, such vision-semantics alignment is inherently
biased, leading to suboptimal integration outcomes. In this paper,
we avoid such biased vision-semantics alignment by introducing
CLIP, a natural bridge between vision and semantics, and enforc-
ing unbiased vision-vision alignment as a proxy task. Specifically,
we align features encoded from the few-shot encoder and CLIP’s
vision encoder on the same image. This alignment is accomplished
through a linear projection layer, with a training objective formu-
lated using optimal transport-based assignment prediction. Thanks
to the inherent alignment between CLIP’s vision and text encoders,
the few-shot encoder is indirectly aligned to CLIP’s text encoder,
which serves as the foundation for better vision-semantics integra-
tion. In addition, to further improve vision-semantics integration at
the testing stage, wemine potential fine-grained semantic attributes
of class names from large language models. Correspondingly, an
online optimization module is designed to adaptively integrate the
semantic attributes and visual information extracted from images.
Extensive results on four datasets demonstrate that our method
outperforms state-of-the-art methods. The code is available in sup-
plementary materials.

CCS CONCEPTS
• Computing methodologies→ Object recognition.

KEYWORDS
Few-shot image classification; modality alignment; optimal trans-
port

1 INTRODUCTION
Few-shot image classification (FSIC) aims to recognize novel query
samples by leveraging limited support samples. The prevalent par-
adigm for addressing FSIC is to learn a representative visual pro-
totype, which is close to query samples of the same class and far
away from query samples of other classes. However, the scarcity of
support samples results in biased visual prototypes inevitably. To
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tackle this problem, existing methods [8, 26, 44, 45, 48, 50] propose
to extract semantic features from class names via a pretrained text
encoder [13, 35, 36] as prior information of novel classes, and then
design different cross-modal interaction modules to integrate the
visual and semantic features for improving the FSIC performance.
However, these methods ignore the inherent modality gap between
the visual and semantic modalities, thus only achieving modest
integration performance.

Recognizing this limitation, recent methods [8, 26, 45, 50] in-
troduce various modality alignment mechanisms to bridge this
modality gap for improved integration. Additionally, these methods
leverage the semantic branch of CLIP, a vision-language pretrained
model, as a powerful text encoder to obtain reliable semantic fea-
tures. For instance, BMI [26] explicitly aligns the few-shot encoder
with CLIP’s text encoder by minimizing the discrepancies in latent
distributions between the visual and semantic modalities, as well
as the cross-modal reconstruction errors. SemFew [50] designs a
semantic revolution module to augment class names to encode ro-
bust semantic features, achieving more accurate alignment between
vision and semantics. However, the semantic information derived
from class names is limited, which falls short of capturing the vi-
sual details of diverse images. Consequently, this leads to biased
alignment between vision and semantics, producing suboptimal
integration outcomes.

Actually, CLIP [36] can serve as a natural bridge between vision
and semantics. It is trained on a vast dataset comprising over 400
million image-caption pairs using a contrastive learning paradigm,
ensuring an inherent alignment between its vision and text en-
coders. In this paper, leveraging CLIP’s inherent alignment, we
enforce vision-vision alignment as a proxy task to avoid biased
vision-semantics alignment. To be specific, we align features en-
coded from the few-shot encoder and CLIP’s vision encoder on the
same image at the training stage, by learning a linear projection
layer with an optimal transport-based training objective. Due to
the inherently aligned nature of CLIP’s vision and text encoders,
the few-shot encoder is indirectly aligned with CLIP’s text encoder.
In this way, we can perform CLIP-like vision-semantics integration
using the few-shot encoder and CLIP’s text encoder. Notably, com-
pared with the heavy CLIP’s vision encoder, the few-shot encoder
is designed to be lightweight and can be trained from scratch using
methodologies tailored for FSIC, such as meta-learning [16], to
specifically learn and extract task-specific visual information.

To further improve the vision-semantics integration at the test-
ing stage, we mine fine-grained semantic attributes for each class
name from large language models, such as GPT-3 [4]. Such semantic
attributes can describe potential visual details and provide richer
prior information for novel classes than class names. However, the
process of mining these semantic attributes is agnostic to the visual
modality, possibly introducing noisy semantic attributes that mis-
match novel classes. Therefore, drawing inspiration from [19], we
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design an online optimization module to adaptively integrate these
fine-grained semantic attributes with the visual information from
query images. This is achieved through online optimizing a learn-
able importance weight for each semantic attribute’s classification
contribution using the labels of support samples as supervision.
Through this process, we can identify the positive/negative impact
of each semantic attribute on our classification objective and then
re-weight its contribution, which guides an adaptive integration
for more effective query classification.

The main contributions of this paper are summarized as follows:

• We propose a novel Few-shot Vision-Semantics integration
framework, namely FewVS, to integrate vision and seman-
tics for improving FSIC. In FewVS, we indirectly achieve
unbiased vision-semantics alignment by introducing CLIP
and enforcing vision-vision alignment as a proxy task, with
an optimal-transport based training objective.

• To further enhance integration performance, at the testing
stage, we mine fine-grained semantic attributes for each
class by querying large language models, and design an
online optimization module to adaptively integrate vision
and semantics.

• Extensive experiments on four public benchmarks (miniIma-
geNet, tieredImageNet, CIFAR-FS, and FC100) demonstrate
that our FewVS outperforms state-of-the-art methods.

2 RELATEDWORK
Existing FSIC methods can be mainly divided into two categories,
i.e., vision-based methods and semantics-based methods.

Vision-based methods leverage support samples to extract
class-related features for classification. To achieve this, several
methods [3, 16, 38, 51] with different optimization strategies learn
an initial model that can rapidly adapt to novel tasks with a few
steps of updating. However, due to limited support samples, such
methods often suffer from overfitting. To address this issue, some
methods [9, 31, 39, 47, 53] learn a metric space where novel sam-
ples are classified utilizing a prevalent prototype-based classifier
[39]. Other methods [19, 27] focus on acquiring a robust few-shot
encoder by employing a transformer-based backbone [15] and in-
corporating techniques such as distillation [17] and self-supervised
learning [6, 18].

Semantics-based methods [8, 26, 44, 45, 48–50] extract se-
mantic information from class names and integrate visual and se-
mantic information to improve FSIC performance. Recent methods
[8, 26, 45, 50] introduce implicit or explicit modality alignment
mechanisms to bridge the gap between visual and semantic modal-
ities for improved integration performance. For example, Xu et al.
[44] introduced a conditional variational autoencoder (CVAE) to
generate visual features conditioned on semantic features, which
implicitly aligns the visual and semantic modalities in the latent
space. Li and Wang [26] enforced explicit alignment by aligning
latent distributions of the visual and semantic modalities and min-
imizing the cross-modal reconstruction errors. Zhang et al. [50]
designed a semantic revolution module to augment class names to
encode robust semantic features, achieving more accurate vision-
semantics alignment. However, information derived from class

names is insufficient to represent the visual details in diverse im-
ages. Consequently, the vision-semantics alignment in the above
methods is inherently biased, leading to suboptimal integration
outcomes.

3 PROPOSED METHOD
In this section, we first revisit the definition of FSIC and briefly
introduce the testing pipeline of CLIP. We then elaborate on the
training (Section 3.2) and testing (Section 3.3) pipelines of FewVS.

3.1 Preliminary
3.1.1 Problemdefinition. In a typical FSIC scenario, we consider
a base set D𝑏 = {(𝐼 , 𝑦), 𝑦 ∈ C𝑏 } and a novel set D𝑛 = {(𝐼 , 𝑦), 𝑦 ∈
C𝑛}. Here, 𝐼 denotes an image sample and𝑦 represents the label of 𝐼 .
C𝑏 and C𝑛 correspond to the base and novel class sets, respectively,
with the condition that they are disjoint, i.e., C𝑏 ∩ C𝑛 = ∅. To
provide semantic information, we map 𝑦 to its class name 𝑐 , such
as ‘House finch’ and ‘Jellyfish’.

Adhering to a conventional 𝑁 -way 𝐾-shot setting [16, 39], each
episode samples 𝑁 classes from C𝑛 , with 𝐾 samples per class, to
construct the support set: S = {(𝐼𝑠

𝑖
, 𝑦𝑠
𝑖
)}𝑁×𝐾
𝑖=0 . Similarly, 𝑁 × 𝑄

samples from these 𝑁 classes are sampled to form the query set:
Q = {(𝐼𝑞

𝑖
, 𝑦
𝑞

𝑖
)}𝑁×𝑄
𝑖=0 . Notably, S∩Q = ∅. The aim of FSIC is to train

a model on D𝑏 with strong generalization performance on Q by
utilizing the labeled samples from S.

3.1.2 Testing pipeline of CLIP. CLIP demonstrates remarkable
performance in zero-shot image classification which is a task simi-
lar to FSIC. At the testing stage, given a query image 𝐼𝑞 and a set of
possible class names {𝑐𝑖 }𝑁𝑖=1, CLIP firstly encodes visual and seman-
tic features from the image and class names via its vision encoder
𝐸𝑣 (·) and text encoder 𝐸𝑠 (·), respectively. It then computes the co-
sine similarity scores between 𝐼𝑞 and each 𝑐𝑖 to integrate vision and
semantics, relying on its inherent vision-semantics alignment prop-
erty. Finally, the probability that 𝐼𝑞 belongs to class 𝑖 is computed
via a softmax function:

𝑃 (𝑦 = 𝑖 |𝐼𝑞) = exp(< 𝐸𝑣 (𝐼𝑞), 𝐸𝑠 (𝑐𝑖 ) >)∑𝑁
𝑗=1 exp(< 𝐸𝑣 (𝐼𝑞), 𝐸𝑠 (𝑐 𝑗 ) >)

(1)

where < · > is the cosine similarity function. Note that CLIP’s two
encoders share the same feature dimension. Due to the alignment
nature between the vision and text encoders, CLIP can classify
images of novel classes based only on semantic information about
these novel classes.

3.2 Optimal Transport-based Alignment at the
Training Stage

The overall training pipeline of FewVS is shown in Figure 1. In
FewVS, we enforce vision-vision alignment as a proxy task to avoid
biased vision-semantics alignment. This alignment equips FewVS
with the capability to perform CLIP-like vision-semantics inte-
gration (as stated in Section 3.1.2) between a lightweight few-shot
encoder and CLIP’s text encoder. Specifically, we add a linear projec-
tion layer following the few-shot encoder to transform the features
of the few-shot encoder into those of CLIP’s vision encoder. To
ensure the alignment quality, inspired by [5, 7, 33, 43], we use an
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Figure 1: Training and testing pipelines of FewVS. In the testing stage, we demonstrate the testing pipeline of an N -way K-shot
episode. For better understanding, we illustrate the scenario with 𝑁 = 2.

optimal transport strategy to compute the assignment predictions
of the features of the few-shot encoder and CLIP’s vision encoder,
respectively, thus obtaining two kinds of assignment predictions.
Then, we train the linear projection layer by maximizing the con-
sistency between these two kinds of predictions. Next, we further
provide the details of the training pipeline.

3.2.1 Feature extraction. Given a batch containing 𝐵 images
from D𝑏 , we feed them into frozen CLIP’s vision encoder 𝐸𝑣 (·),
and extract the global pooled hidden features, denoted as Z𝑡 =

{z1, ..., z𝐵} ∈ R𝐵×𝑑
𝑡
, which serves as the alignment target. Similarly,

we feed the same images into the pretrained and frozen few-shot
encoder 𝐸𝑓 𝑒𝑤 (·). Subsequently, we transform the resulting features
X = {x1, ..., x𝐵} ∈ R𝐵×𝑑

𝑠
into the same dimension of Z𝑡 via a

learnable linear projection layer ℎ(·), yielding the image projection
denoted as Z𝑠 , which serves as the source of alignment:

Z𝑠 = {z𝑠𝑛 ∈ R𝑑
𝑡

|z𝑛 = ℎ(x𝑛), 𝑛 = 1, ..., 𝐵} (2)

3.2.2 Assignment prediction. Different from previous works
[2, 5, 33], we sample 𝐿 entities describing visual objects from a vast
corpus (namely WordNet [30]), and encode their names via CLIP’s

text encoder to construct an entity embedding set E = {e1, ..., e𝐿} ∈
R𝐿×𝑑

𝑡
which can be regarded as cluster centers. Then, we map Zt

and Z𝑠 to E to obtain the assignments Q𝑡 = {q𝑡1, ..., q
𝑡
𝐵
} ∈ R𝐵×𝐿

and Q𝑠 = {q𝑠1, ..., q
𝑠
𝐵
} ∈ R𝐵×𝐿 , respectively. Similar to [2, 5, 33],

we optimize Q𝑡 and Q𝑠 to maximize the similarity between the
features of CLIP’s vision encoder and the entity embeddings and
the similarity between the features of the few-shot encoder and the
entity embeddings, respectively. The above process can be modeled
as an optimal transport problem with the following objectives:

max
Q𝑡 ∈Q

Tr(Q𝑡⊤E⊤Z𝑡 ) + 𝜖𝐻 (Q𝑡 ) (3)

max
Q𝑠 ∈Q

Tr(Q𝑠⊤E⊤Z𝑠 ) + 𝜖𝐻 (Q𝑠 ) (4)

where 𝐻 is the entropy function, 𝐻 (Q) = −∑
𝑖 𝑗 Q𝑖 𝑗 logQ𝑖 𝑗 , and 𝜖

is a smoothness parameter of the assignment. Following [5], we im-
plement an equal partition by constraining the matrix Q to belong
to the transportation polytope:

Q = {Q ∈ R𝐿×𝐵+ |Q1𝐵 =
1
𝐿
1𝐿,Q⊤1𝐿 =

1
𝐵
1𝐵} (5)
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where 1𝐿 denotes the vector of ones in dimension 𝐿. The two con-
straints in Eq. (5) ensure that on average each entity embedding is
selected at least 𝐵

𝐿
times in a batch.

The optimized assignments Q𝑠∗ and Q𝑡∗, namely the solutions
of Prob. (3) and Prob. (4) over Q, take the form of a normalized
exponential matrix [11]:

Q𝑠∗ = Diag(u)exp( E
⊤Z𝑠

𝜖
)Diag(v) (6)

Q𝑡∗ = Diag(u)exp( E
⊤Z𝑡

𝜖
)Diag(v) (7)

where u and v are renormalization vectors in R𝐿 and R𝐵 , respec-
tively, which are computed using the iterative Sinkhorn-Knopp
algorithm [11]. More details are provided in the supplementary
material.

3.2.3 Loss function. To train the linear projection layer, follow-
ing [5], we construct a "swapped" problem to predict the assign-
ments of the features of CLIP’s vision encoder based on the features
of the few-shot encoder, and vice versa. Specifically, we predict Q𝑠
from Z𝑡 and Q𝑡 from Z𝑠 , which can be formulated as the cross-
entropy loss between the assignments and the probabilities that
the corresponding features belong to the entity embeddings. The
loss function is defined as:

L𝑎𝑙𝑖𝑔𝑛 = − 1
𝐵

𝐵∑︁
𝑏=1

𝐿∑︁
𝑙=1

[Q𝑠∗
𝑏𝑙
log p𝑡

𝑏𝑙
+ Q𝑡∗

𝑏𝑙
log p𝑠

𝑏𝑙
],

where p𝑚
𝑏𝑙

=
exp(z𝑚

𝑏
e𝑙 )∑𝐿

𝑙=1 exp(z
𝑚
𝑏
e𝑙 )

, 𝑚 ∈ {𝑠, 𝑡}
(8)

This loss function ensures that the transformed features of the
few-shot encoder contain the similar information with the features
derived from CLIP’s vision encoder, making the few-shot encoder
indirectly aligned to CLIP’s text encoder.

3.3 Vision-Semantics Integration at the Testing
Stage

In this section, we first briefly introduce the overall testing pipeline
of FewVS which is shown in Figure 1. Subsequently, we elaborate
on the fine-grained semantic attribute mining and the online vision-
semantics integrator.

3.3.1 Overall testing pipeline. In a standard 𝑁 -way 𝐾-shot
episode with a support set S = {(𝐼𝑠

𝑖
, 𝑦𝑠
𝑖
)}𝑁×𝐾
𝑖=0 and a query image

𝐼𝑞 , we first feed both S and 𝐼𝑞 into the pretrained few-shot encoder
𝐸𝑓 𝑒𝑤 (·) to obtain visual support features X𝑠 = {x𝑠1, ..., x

𝑠
𝑁 ·𝐾 } ∈

R𝑁 ·𝐾×𝑑 and visual query feature x𝑞 ∈ R𝑑 . Then, we transform
X𝑠 and x𝑞 into X̂𝑠 ∈ R𝑁 ·𝐾×𝑑 and x̂𝑞 ∈ R𝑁 ·𝐾×𝑑 via a linear pro-
jection layer ℎ(·), where 𝑑 is the feature dimension of CLIP’s text
encoder 𝐸𝑠 (·). Subsequently, we map the support labels back into
class names, and mine𝑀 fine-grained semantic attributes for each
class using GPT-3, the details of which are provided later in Sec-
tion 3.3.2. Then, we encode these semantic attributes via 𝐸𝑠 (·) and
obtain a semantic feature set A = {a1, ..., a𝑁 ·𝑀 } ∈ R𝑁 ·𝑀×𝑑 .

The final probability 𝑃 of a query sample 𝐼𝑞 belonging to class 𝑛
is computed from the weighted sum of visual logits 𝑙𝑣𝑖𝑠 ∈ R𝑁 and

House finch:
l small bird
l red, brown, or grey
l conical beak
l notched tail
l typically found feeding in 

urban or suburban areas

American robin:
l medium-sized bird
l orange or reddish breast
l gray  back and wings
l white lower belly  
l often seen on the ground 

Saluki:
l slim and graceful sighthound
l long, thin limbs
l long, feathered ears
l short, silky coat
l varying colors  

Ladybug:
l round or oval body shape
l red or orange with black spots
l black head with white patches  
l six legs
l small size

Figure 2: Example of the fine-grained semantic attributes
mined from GPT-3.

semantic logits 𝑙𝑠𝑒𝑚 ∈ R𝑁 :

𝑃 (𝑦 = 𝑛 |𝐼𝑞) = exp(𝑙𝑣𝑖𝑠𝑛 + 𝛼𝑙𝑠𝑒𝑚𝑛 )∑𝑁
𝑚=1 exp(𝑙𝑣𝑖𝑠𝑚 + 𝛼𝑙𝑠𝑒𝑚𝑚 )

(9)

where 𝛼 is a weight factor determining the balance between the
visual and semantic information.

To obtain 𝑙𝑣𝑖𝑠𝑛 , we follow [39] to extract the prototype of class 𝑛,
denoted as 𝑝 (𝑛), and compute the similarity between xq and 𝑝 (𝑛):

𝑝 (𝑛) = 1
|X𝑠𝑛 |

∑︁
x𝑠 ∈X𝑠

𝑛

x𝑠 , 𝑙𝑣𝑖𝑠𝑛 =< x𝑞, 𝑝 (𝑛) > (10)

where X𝑠𝑛 is a set of support features belonging to class 𝑛 in X𝑠 ,
and < · > denotes the cosine similarity function.

To obtain 𝑙𝑠𝑒𝑚𝑛 , a straightforward method is to compute the cross-
modal similarity like CLIP:

𝑝 (𝑛) = 1
|A𝑛 |

∑︁
a∈A𝑛

a, 𝑙𝑠𝑒𝑚𝑛 =< x̂𝑞, 𝑝 (𝑛) > (11)

where A𝑛 is a set of semantic features belonging to class 𝑛 in A,
and 𝑝 (𝑛) can be considered as the semantic prototype of class 𝑛.
However, naively computing 𝑙𝑠𝑒𝑚𝑛 is suboptimal, due to the noisy se-
mantic attributes introduced by semantic attributesmining (detailed
later in Section 3.3.2). Therefore, we design an online optimization
module to adaptively integrate visual and semantic information for
the computation of 𝑙𝑠𝑒𝑚𝑛 , the details of which are provided later in
Section 3.3.3.

3.3.2 Fine-grained semantic attribute mining. To further im-
prove vision-semantics integration performance, we propose to
mine fine-grained semantic attributes corresponding to each class
name, which describe potential visual details of this class. Similar to
[29], we automatically mine these fine-grained semantic attributes
by prompting a large language model, such as GPT-3 [4], to query
the visual details. We prompt the language model with the input:
“Q: What are the visual details for distinguishing a
[class name] in a photo? A: There are several useful
visual details of a [class name] in a photo:”, Further
implementation details can be found in the supplementary material.

As depicted in Figure 2, the fine-grained semantic attributes
describe potential visual details of a class, such as colors, shapes,
object components, and scene contexts. Nevertheless, the process of

2024-04-13 20:18. Page 4 of 1–9.
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Figure 3: Structure of the online vision-semantics integrator.

mining these semantic attributes is agnostic to the visual modality
and may introduce noisy semantic attributes that mismatch novel
classes. For instance, we prompt GPT-3 with three class names
"harvestman", "Newfoundland dog", and "bell", obtaining the cor-
responding semantic attributes. Among them, semantic attributes
"lacks venom or silk glands" associated with "harvestman", "males
typically weighing 130-150 pounds" associated with "Newfound-
land dog," and "emits sound when moved by wind" associated with
"bell" contain irrelevant noises. Obviously, semantic features en-
coded from these noisy attributes may have a negative impact on
vision-semantics integration.

3.3.3 Online vision-semantics integrator. As shown in Figure
3, the key point behind this module is to online learn an importance
weight vector𝜔 ∈ R𝑁 ·𝑀 to adjust the contribution of each semantic
attribute in A, with the support set S as supervision.

For each episode, we randomly initialize 𝜔0 = 0 ∈ R1×𝑁 ·𝑀 , and
infer 𝜔∗ using labeled support samples via inner-loop optimization.
To be more specific, we first construct a cross-modal similarity map
by computing the pair-wise similarity between the transformed
support features X̂𝑠 and semantic features A as S𝑠 ∈ R𝑁 ·𝐾×𝑁 ·𝑀 ,
where each element in S𝑠 is obtained by s𝑖 𝑗 =< x̂𝑠

𝑖
, a𝑗 >, 𝑖 =

1, ..., 𝑁 ·𝐾 , and 𝑗 = 1, ..., 𝑁 ·𝑀 . Similarly, we compute the pair-wise
similarity between the query image 𝐼𝑞 and A as S𝑞 ∈ R𝑁 ·𝑀 .

Then, we adjust the contribution of each semantic attribute to
classification by performing broadcast and addition operations on
𝜔 , thus obtaining an adjusted similarity map S̃𝑠 = S𝑠 + [1𝑁 ·𝐾×1 ·𝜔].
In this way, the similarities associated with each semantic attribute
are re-weighted via𝜔 . Subsequently, the semantic logits (denoted as
𝑙𝑠𝑛) of the 𝑖th support sample 𝐼𝑠

𝑖
belonging to class𝑛 can be computed

as follows:

𝑙𝑠𝑛 =
1

|S̃𝑠
𝑖𝑛
|

∑︁
s∈S̃𝑠

𝑖𝑛

s (12)

where S̃𝑠
𝑖𝑛

is a set of similarity logits in S̃𝑠 associated with both 𝐼𝑠
𝑖

and semantic attributes of class 𝑛. Then, the class prediction 𝑦′
𝑖
of

𝐼𝑠
𝑖
can be computed as: 𝑦′

𝑖
= softmax({𝑙𝑠𝑛}𝑁𝑛=1).

Given that y′ = {𝑦′
𝑖
}𝑁 ·𝐾
𝑖=1 is dependent on 𝜔 , we optimize 𝜔 to

re-weight semantic attributes’ classification contributions using
support labels y = {𝑦𝑖 }𝑁 ·𝐾

𝑖=1 as supervision, and formulate an online
optimization objective as follows:

min
𝜔

L𝐶𝐸 (y, y′) (13)

This objective is optimized iteratively through gradient descent to
obtain the optimal weight vector 𝜔∗ that gives the insights into the
positive/negative impact of each semantic attribute on classifica-
tion.

Finally, we compute 𝑙𝑠𝑒𝑚𝑛 as follows:

S̃𝑞 = S𝑞 + 𝜔∗

𝑙𝑠𝑒𝑚𝑛 =
1

|S̃𝑞𝑛 |

∑︁
s∈S̃𝑞𝑛

s (14)

where S̃𝑞𝑛 is a set of similarity logits in S̃𝑞 associated with semantic
attributes of class 𝑛.

4 EXPERIMENTS
To test the performance of FewVS, we conducted experiments
on four public datasets including miniImageNet, tieredImageNet,
CIFAR-FS, and FC100.

4.1 Datasets
miniImageNet [42] and tieredImageNet [37] are both subsets of
ImageNet [12], while CIFAR-FS [3] and FC100 [31] are derived
from CIFAR100 [22]. miniImageNet contains 100 classes, with
600 images in each class, and is split into 64 classes for training, 16
classes for validation, and 20 classes for testing. tieredImageNet
encompasses 351 training classes, 97 validating classes, and 160

2024-04-13 20:18. Page 5 of 1–9.
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Table 1: Comparison with previous methods onminiImageNet and tieredImageNet. The best performance is highlighted in
bold.

Method Backbone
miniImageNet tieredImageNet

5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

Vision-based

MatchNet [42] Res12 65.64±0.20 78.72±0.15 68.50±0.92 80.60±0.71
ProtoNet [39] Res12 62.39±0.21 80.53±0.14 68.23±0.23 84.03±0.16
MAML [16] Res12 49.24±0.21 58.05±0.10 67.92±0.17 72.41±0.20
CTM [25] Res12 64.12±0.82 80.51±0.13 68.41±0.39 84.28±1.73
RFS [41] Res12 62.02±0.63 79.64±0.44 69.74±0.72 84.41±0.55
FEAT [47] Res12 66.78±0.20 82.05±0.14 70.80±0.23 84.79±0.16
Meta-Baseline [9] Res12 63.17±0.23 79.26±0.17 68.62±0.27 83.29±0.18
SUN [14] ViT-S 67.80±0.45 83.25±0.30 72.99±0.50 86.74±0.33
FGFL [10] Res12 69.14±0.80 86.01±0.62 73.21±0.88 87.21±0.61
Meta-AdaM [40] Res12 59.89±0.49 77.92±0.43 65.31±0.48 85.24±0.35
FewTURE [19] Swin-T 72.40±0.78 86.38±0.49 76.32±0.87 89.96±0.55
SMKD [18] ViT-S 74.28±0.18 88.82±0.09 78.83±0.20 91.02±0.12

Semantics-based

KTN [34] Conv-128 64.42±0.72 74.16±0.56 74.16±0.56 -
AM3 [44] Res12 65.30±0.49 78.10±0.36 69.08±0.47 82.58±0.31
TRAML [24] Res12 67.10±0.52 79.54±0.60 - -
AM3-BERT [46] Res12 68.42±0.51 81.29±0.59 77.03±0.85 87.20±0.70
SVAE-Proto [45] Res12 74.84±0.23 83.28±0.40 76.98±0.65 85.77±0.50
SP-CLIP [8] Visformer-T 72.31±0.40 83.42±0.30 78.03±0.46 88.55±0.32
BMI [26] Res12 77.01±0.34 84.85±0.27 78.37±0.44 86.30±0.32
SemFew-Res [50] Res12 77.63±0.63 83.04±0.48 78.96±0.80 85.88±0.62
SemFew-Trans [50] Swin-T 78.94±0.66 86.49±0.50 82.37±0.77 89.89±0.52

Ours

Baseline-Res Res12 63.31±0.44 80.66±0.32 69.50±0.50 84.23±0.34
FewVS-Res Res12 82.01±0.29 85.29±0.25 84.17±0.36 87.51±0.30
Baseline-Trans ViT-S 73.43±0.43 87.60±0.27 77.03±0.52 89.84±0.32
FewVS-Trans ViT-S 86.80±0.28 90.32±0.22 87.87±0.36 92.27±0.26

testing classes, with 779165 images in total.CIFAR-FS contains 100
classes, split into 64 classes for training, 16 classes for validation,
and 20 classes for testing. FC100 introduces a distinctive class
partitioning approach, resulting in 60 classes for training, 20 classes
for validation, and 20 classes for testing. For both CIFAR-FS and
FC100, each class has 600 images with a smaller resolution (32×32)
compared with ImageNet.

4.2 Implementation Details
Architecture. In all experimental configurations, we utilized ResNet-
12 (Res12) and ViT-Small (ViT-S) as the few-shot encoders. Specifi-
cally, we implemented and pretrained the Res12 encoder using the
same settings as described in FEAT [47]. For the ViT-S encoder, we
employed the training strategy reported in SMKD [18]. We estab-
lished two baseline methods using these vanilla few-shot encoders,
namely Baseline-Res and Baseline-Trans, in which we performed
prototype-based classification following [39]. For the Res12 encoder,
visual features were derived by averaging the outputs from the final
residual block. For the ViT-S encoder, visual features were obtained
by averaging the hidden states from the last transformer block.
Additionally, we utilized both the vision and text encoders from
Res50x4 CLIP, and employed a single linear layer to construct the
linear projection layer ℎ(·).

Training details. During the training phase of FewVS, we kept
the pretrained few-shot encoder and CLIP’s vision encoder frozen
and focused only on optimizing the linear projection layer ℎ(·). For
FewVS based on Res12, we adhered to traditional FSIC methods
[9, 31, 39, 47, 53] by resizing the input images to 84 × 84. We also
adjusted the stride of the last downsampling layer in CLIP’s vision
encoder to 1 to accommodate smaller input sizes. For FewVS based
on ViT-S, we resized the input image to 320× 320 forminiImagenet
and tierdImagene, and 224× 224 for CIFAR-FS and FC100, maintain-
ing the consistency with SMKD [18]. We set the batchsize 𝐵 = 128
and trained the linear projection layer for 20 epochs, using the
AdamW optimizer [28] with a learning rate of 1e-3. To construct
the entity embedding set E used in Eq. (3) and Eq. (4), we encoded
the names of 1,000 entities sampled from WordNet [30] via CLIP’s
text encoder.

Testing details. At the testing stage, we mined five fine-grained
semantic attributes for each class using GPT-3 (i.e., 𝑀 = 5). We
online optimized 𝜔 in Eq. (13) via iterative gradient decent, employ-
ing an SGD optimizer with a learning rate of 5e-2. The number of
iterations was set to 1 for the 1-shot task, and to 5 for the 5-shot
task. Additionally, in FewVS based on Res12, we set 𝛼 in Eq. (9)
to 2 and 3 for the 1-shot and 5-shot tasks, respectively. In FewVS

2024-04-13 20:18. Page 6 of 1–9.
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Table 2: Comparison with previous methods on CIFAR-FS and FC100. The best performance is highlighted in bold.

Method Backbone
CIFAR-FS FC100

5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

ProtoNet [39] Res12 72.20±0.70 83.50±0.50 41.54±0.76 57.08±0.76
TADAM [31] Res12 - - 40.10±0.40 56.10±0.40
MetaOptNet [23] Res12 72.80±0.70 84.30±0.50 47.20±0.60 55.50±0.60
MABAS [21] Res12 73.51±0.92 85.65±0.65 42.31±0.75 58.16±0.78
RFS [41] Res12 71.50±0.80 86.00±0.50 42.60±0.70 59.10±0.60
Mata-AdaM [40] Res12 - - 41.12±0.49 56.14±0.49
SUN [14] ViT-S 78.37±0.46 88.84±0.32 - -
FewTURE [19] Swin-T 77.76±0.81 88.90±0.59 47.68±0.78 63.81±0.75
SMKD [18] ViT-S 80.08±0.18 90.63±0.13 50.38±0.16 68.37±0.16
SP-CLIP [8] Visformer-T 82.18±0.40 88.24±0.32 48.53±0.38 61.55±0.41
SemFew-Res [50] Res12 83.65±0.70 87.66±0.60 54.36±0.71 62.79±0.74
SemFew-Trans [50] Swin-T 84.34±0.67 89.11±0.54 54.27±0.77 65.02±0.72
Baseline-Res Res12 71.76±0.49 86.27±0.34 42.68±0.41 59.52±0.42
FewVS-Res Res12 84.40±0.35 88.14±0.31 58.86±0.40 65.27±0.38
Baseline-Trans ViT-S 79.47±0.45 90.22±0.33 48.93±0.43 67.29±0.42
FewVS-Trans ViT-S 85.63±0.37 90.73±0.33 61.01±0.40 70.37±0.39

based on ViT-S, we set 𝛼 to 2 and 10 for the 1-shot and 5-shot tasks,
respectively.

Evaluation. To ensure the stability of our evaluation results, we
tested on 2,000 randomly sampled episodes from each benchmark
test set, and reported the average performance with a 95% confi-
dence interval. In each episode, we randomly selected 15 query
features per class to assess the performance in both the 5-way
1-shot and 5-way 5-shot tasks.

4.3 Results
The classification results are reported in Table 1 and Table 2. From
Table 1 and Table 2, compared with the two baselines, the perfor-
mance of FewVS is remarkably better. In particular, in the 1-shot
task, FewVS achieves accuracy improvement by 13.3% ∼ 18.7%,
10.8% ∼ 14.6%, 6.1% ∼ 12.6%, and 12.1% ∼ 16.2% on miniImageNet,
tieredImageNet, CIFAR-FS, and FC100, respectively. This is because
the semantic information derived from class names effectively as-
sists in constructing knowledge of novel classes in the extreme
absence of support samples.

Comparedwith other semantics-based competitors, FewVS-Trans
surpasses the existing SoTA method (i.e., SemFew [50]) by 0.5% ∼
7.8% on the four datasets. This is because FewVS enforces unbiased
alignment, mines fine-grained semantic attributes, and adaptively
integrates these semantic attributes with visual features via an on-
line optimization strategy. In summary, FewVS-Trans achieves new
SoTA performance compared with previous FSIC methods across
both 1-shot and 5-shot tasks.

4.4 Ablation Studies
In this section, our analysis is mainly based on the large challeng-
ing dataset, i.e., tieredImageNet, and all the experiments were per-
formed using Res12 as the few-shot encoder. More ablation stud-
ies, such as experiments w.r.t. hyperparameters and visual-
ization analysis, are provided in the supplementary material.

Table 3: Evaluation on the optimal transport-based align-
ment.

Method 1-shot 5-shot

w/o alignment 69.50±0.50 84.23±0.34
with L𝐿2 80.01±0.41 86.91±0.31
FewVS 84.17±0.36 87.51±0.30

4.4.1 Impact of the optimal transport-based alignment. In
FewVS, we proposed the optimal transport-based alignment, which
maximized the consistency between assignment predictions com-
puted from the output features of the few-shot encoder and those
of CLIP’s vision encoder. To study the impact of this alignment,
we tested two variants. In the first variant (w/o alignment), we
removed the alignment module and degenerated FewVS into a
baseline. In the second variant (with L𝐿2), we defined the align-
ment objective as the minimization of the L2 distance between the
features from the two encoders. As shown in Table 3, compared
with FewVS, the performance of these two variants drops signifi-
cantly, verifying the effectiveness of the optimal transport-based
alignment.

4.4.2 Impact of the entity-based cluster centers in assign-
ment prediction. Different from previous optimal transport-based
approaches [1, 2, 5, 33], we constructed the cluster centers (i.e., E in
Eq. (3) and Eq. (4)) for feature assignment using entity embeddings.
These embeddings were encoded from the names of entities in
WordNet through the text encoder of CLIP. To evaluate the efficacy
of these entity-based cluster centers, we tested two variants. In the
first variant (w/o entity embed), we defined E as 3K learnable
prototypes following [1, 2, 5]. In the second variant (with word
embed), we defined E as the word embeddings of CLIP’s text en-
coder following [33]. As shown in Table 4, compared with these two
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Table 4: Evaluation on the entity-based cluster centers.

Method 1-shot 5-shot

w/o entity embed. 68.23±0.47 82.28±0.35
with word embed. 79.19±0.39 87.36±0.31
FewVS 84.17±0.36 87.51±0.30

Table 5: Evaluation on mining fine-grained semantic at-
tributes.

Method 1-shot 5-shot

w/o mining 79.13±0.44 85.36±0.33
FewVS 84.17±0.36 87.51±0.30

Table 6: Evaluation on the online vision-semantics integrator.

Method 1-shot 5-shot

w/o optimization 83.03±0.39 85.97±0.34
FewVS 84.17±0.36 87.51±0.30

variants, the entity-based cluster centers achieve substantial perfor-
mance improvement, which is possibly because the cluster centers
constructed from entities are better to represent image contents,
thus producing more accurate feature assignments.

4.4.3 Impact of mining fine-grained semantic attributes. In
FewVS, we mined fine-grained semantic attributes from GPT-3 to
enrich the semantic information of class names. To demonstrate
its effectiveness, we tested a variant (w/o mining), in which we
removed the semantic attribute mining process. In this variant, the
semantic prototype 𝑝 (𝑛), defined in Eq. (11), only relies on the se-
mantic feature encoded from the class name 𝑛. Therefore, there is
no need to re-weight the semantic attributes, and the classification
is straightforwardly conducted using Eq. (11). As shown in Table
5, the performance of FewVS notably deteriorates in the absence
of fine-grained semantic attributes, indicating that mining seman-
tic attributes from large language models does enrich semantic
information on class names.

4.4.4 Impact of the online vision-semantics integrator. In
FewVS, we designed an online vision-semantics integrator that
adaptively integrated vision and semantics by re-weighting the
classification contribution of each semantic attribute. This was ac-
complished by iteratively optimizing 𝜔 in Eq. (13). To investigate
the rationality of this module, we tested a variant (w/o optimiza-
tion), in which the number of optimization iterations was set to
0. From Table 6, FewVS involving online optimization performs
better than its variant. This demonstrates the rationality of the
online vision-semantics integrator, which can identify the posi-
tive/negative impact of each semantic attribute on classification.

Table 7: Comparison results on tieredImageNet.

Method Backbone # Params 1-shot 5-shot

Tip-Adapter Res50x4 87M 82.24 ±0.35 82.95±0.34
Baseline Res12 12M 69.50±0.50 84.23±0.34
FewVS Res12 12M 84.17±0.36 87.51±0.30

4.4.5 Compared with CLIP-based methods. We compared our
FewVS with a CLIP-based approach, i.e., Tip-Adapter [52]. Tip-
Adapter adapts CLIP to few-shot scenarios using a training-free
key-value cache model [20, 32]. The original few-shot setting in
Tip-Adapter differs from general FSIC. Therefore, we modified Tip-
Adapter for FSIC by restricting the cache model to only store images
from an 𝑁 -way 𝐾-shot episode as the key-value database during
the testing phase.

As reported in Table 7, FewVS outperforms Tip-Adapter by a
large margin on tieredImageNet and has fewer parameters. This
is because compared with the heavy CLIP vision encoder (namely
Res50x4), FewVS utilizes a lightweight few-shot encoder. This en-
coder can be easily fine-tuned or trained from scratch using method-
ologies specifically designed for FSIC, facilitating the encoding of
task-specific visual information.

5 CONCLUSION
In this paper, we proposed a framework, called FewVS, to integrate
visual and semantic information for improving FSIC. In FewVS,
we indirectly achieved unbiased vision-semantics alignment by
introducing CLIP and enforcing vision-vision alignment as a proxy
task, with an optimal transport-based objective. Furthermore, we
mined fine-grained semantic attributes from large language models,
and designed an online optimization module to adaptively integrate
these semantic attributes with information extracted from images.
Experiments showed that FewVS effectively improved baseline
methods and outperformed the state-of-the-art methods on four
challenging datasets.

REFERENCES
[1] Yuki Asano, Mandela Patrick, Christian Rupprecht, and Andrea Vedaldi. 2020.

Labelling unlabelled videos from scratch with multi-modal self-supervision. Ad-
vances in Neural Information Processing Systems 33 (2020), 4660–4671.

[2] Yuki Markus Asano, Christian Rupprecht, and Andrea Vedaldi. 2019. Self-
labelling via simultaneous clustering and representation learning. arXiv preprint
arXiv:1911.05371 (2019).

[3] Luca Bertinetto, Joao F Henriques, Philip HS Torr, and Andrea Vedaldi. 2018. Meta-
learning with differentiable closed-form solvers. arXiv preprint arXiv:1805.08136
(2018).

[4] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[5] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and
Armand Joulin. 2020. Unsupervised learning of visual features by contrasting
cluster assignments. Advances in neural information processing systems 33 (2020),
9912–9924.

[6] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr
Bojanowski, and Armand Joulin. 2021. Emerging properties in self-supervised
vision transformers. In Proceedings of the IEEE/CVF international conference on
computer vision. 9650–9660.

[7] Wanxing Chang, Ye Shi, Hoang Tuan, and Jingya Wang. 2022. Unified opti-
mal transport framework for universal domain adaptation. Advances in Neural
Information Processing Systems 35 (2022), 29512–29524.

2024-04-13 20:18. Page 8 of 1–9.



Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

FewVS: A Vision-Semantics Integration Framework for Few-Shot Image Classification MM ’24, 28 October - 1 November 2024, Melbourne, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

[8] Wentao Chen, Chenyang Si, Zhang Zhang, Liang Wang, Zilei Wang, and Tieniu
Tan. 2023. Semantic prompt for few-shot image recognition. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 23581–23591.

[9] Yinbo Chen, Zhuang Liu, Huijuan Xu, Trevor Darrell, and Xiaolong Wang. 2021.
Meta-baseline: Exploring simple meta-learning for few-shot learning. In Proceed-
ings of the IEEE/CVF International Conference on Computer Vision. 9062–9071.

[10] Hao Cheng, Siyuan Yang, Joey Tianyi Zhou, Lanqing Guo, and Bihan Wen. 2023.
Frequency guidance matters in few-shot learning. In Proceedings of the IEEE/CVF
International Conference on Computer Vision. 11814–11824.

[11] Marco Cuturi. 2013. Sinkhorn distances: Lightspeed computation of optimal
transport. Advances in neural information processing systems 26 (2013).

[12] Jia Deng,Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE Conference on Computer
Vision and Pattern Recognition. Ieee, 248–255.

[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[14] BowenDong, Pan Zhou, Shuicheng Yan, andWangmeng Zuo. 2022. Self-promoted
supervision for few-shot transformer. In European Conference on Computer Vision.
Springer, 329–347.

[15] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, et al. 2020. An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020).

[16] Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-agnostic meta-
learning for fast adaptation of deep networks. In International Conference on
Machine Learning. 1126–1135.

[17] Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. 2021. Knowl-
edge distillation: A survey. International Journal of Computer Vision 129, 6 (2021),
1789–1819.

[18] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick.
2022. Masked autoencoders are scalable vision learners. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. 16000–16009.

[19] Markus Hiller, Rongkai Ma, Mehrtash Harandi, and Tom Drummond. 2022. Re-
thinking generalization in few-shot classification. Advances in Neural Information
Processing Systems 35 (2022), 3582–3595.

[20] Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke Zettlemoyer, and Mike
Lewis. 2019. Generalization through memorization: Nearest neighbor language
models. arXiv preprint arXiv:1911.00172 (2019).

[21] Jaekyeom Kim, Hyoungseok Kim, and Gunhee Kim. 2020. Model-agnostic
boundary-adversarial sampling for test-time generalization in few-shot learning.
In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August
23–28, 2020, Proceedings, Part I 16. Springer, 599–617.

[22] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features
from tiny images. (2009).

[23] Kwonjoon Lee, Subhransu Maji, Avinash Ravichandran, and Stefano Soatto. 2019.
Meta-learning with differentiable convex optimization. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. 10657–10665.

[24] Aoxue Li, Weiran Huang, Xu Lan, Jiashi Feng, Zhenguo Li, and Liwei Wang.
2020. Boosting few-shot learning with adaptive margin loss. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. 12576–12584.

[25] Hongyang Li, David Eigen, Samuel Dodge, Matthew Zeiler, and Xiaogang Wang.
2019. Finding task-relevant features for few-shot learning by category traversal. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
1–10.

[26] Zhuoling Li and Yong Wang. 2023. Better Integrating Vision and Semantics for
Improving Few-shot Classification. In Proceedings of the 31st ACM International
Conference on Multimedia. 4737–4746.

[27] Han Lin, Guangxing Han, Jiawei Ma, Shiyuan Huang, Xudong Lin, and Shih-Fu
Chang. 2023. Supervised masked knowledge distillation for few-shot transform-
ers. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 19649–19659.

[28] Ilya Loshchilov and Frank Hutter. 2017. Decoupled weight decay regularization.
arXiv preprint arXiv:1711.05101 (2017).

[29] Sachit Menon and Carl Vondrick. 2022. Visual classification via description from
large language models. arXiv preprint arXiv:2210.07183 (2022).

[30] George A Miller. 1995. WordNet: a lexical database for English. Commun. ACM
38, 11 (1995), 39–41.

[31] Boris Oreshkin, Pau Rodríguez López, and Alexandre Lacoste. 2018. Tadam: Task
dependent adaptive metric for improved few-shot learning. Advances in neural
information processing systems 31 (2018).

[32] Emin Orhan. 2018. A simple cache model for image recognition. Advances in
Neural Information Processing Systems 31 (2018).

[33] Jungin Park, Jiyoung Lee, and Kwanghoon Sohn. 2023. Bridging Vision and Lan-
guage Spaces with Assignment Prediction. In The Twelfth International Conference
on Learning Representations.

[34] Zhimao Peng, Zechao Li, Junge Zhang, Yan Li, Guo-Jun Qi, and Jinhui Tang.
2019. Few-shot image recognition with knowledge transfer. In Proceedings of the

IEEE/CVF international conference on computer vision. 441–449.
[35] Jeffrey Pennington, Richard Socher, and Christopher D Manning. 2014. Glove:

Global vectors for word representation. In Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP). 1532–1543.

[36] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models from natural language supervision.
In International conference on machine learning. PMLR, 8748–8763.

[37] Mengye Ren, Eleni Triantafillou, Sachin Ravi, Jake Snell, Kevin Swersky, Joshua B
Tenenbaum, Hugo Larochelle, and Richard S Zemel. 2018. Meta-learning for
semi-supervised few-shot classification. arXiv preprint arXiv:1803.00676 (2018).

[38] Andrei A Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu,
Simon Osindero, and Raia Hadsell. 2018. Meta-learning with latent embedding
optimization. arXiv preprint arXiv:1807.05960 (2018).

[39] Jake Snell, Kevin Swersky, and Richard Zemel. 2017. Prototypical networks for
few-shot learning. Advances in Neural Information Processing Systems 30 (2017).

[40] Siyuan Sun and Hongyang Gao. 2024. Meta-AdaM: An Meta-Learned Adap-
tive Optimizer with Momentum for Few-Shot Learning. Advances in Neural
Information Processing Systems 36 (2024).

[41] Yonglong Tian, Yue Wang, Dilip Krishnan, Joshua B Tenenbaum, and Phillip
Isola. 2020. Rethinking few-shot image classification: a good embedding is all
you need?. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part XIV 16. Springer, 266–282.

[42] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. 2016.
Matching networks for one shot learning. Advances in Neural Information Pro-
cessing Systems 29 (2016).

[43] BichenWu, Ruizhe Cheng, Peizhao Zhang, Tianren Gao, Peter Vajda, and Joseph E
Gonzalez. 2021. Data efficient language-supervised zero-shot recognition with
optimal transport distillation. arXiv preprint arXiv:2112.09445 (2021).

[44] Chen Xing, Negar Rostamzadeh, Boris Oreshkin, and Pedro O O Pinheiro. 2019.
Adaptive cross-modal few-shot learning. Advances in Neural Information Process-
ing Systems 32 (2019).

[45] Jingyi Xu and Hieu Le. 2022. Generating representative samples for few-shot
classification. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 9003–9013.

[46] Kun Yan, Zied Bouraoui, Ping Wang, Shoaib Jameel, and Steven Schockaert.
2021. Aligning visual prototypes with bert embeddings for few-shot learning. In
Proceedings of the 2021 International Conference on Multimedia Retrieval. 367–375.

[47] Han-Jia Ye, Hexiang Hu, De-Chuan Zhan, and Fei Sha. 2020. Few-shot learning via
embedding adaptation with set-to-set functions. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 8808–8817.

[48] Baoquan Zhang, Xutao Li, Yunming Ye, Zhichao Huang, and Lisai Zhang. 2021.
Prototype completion with primitive knowledge for few-shot learning. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
3754–3762.

[49] Hongguang Zhang, Piotr Koniusz, Songlei Jian, Hongdong Li, and Philip HS Torr.
2021. Rethinking class relations: Absolute-relative supervised and unsupervised
few-shot learning. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 9432–9441.

[50] Hai Zhang, Junzhe Xu, Shanlin Jiang, and Zhenan He. 2023. Simple Semantic-
Aided Few-Shot Learning. arXiv preprint arXiv:2311.18649 (2023).

[51] Min Zhang, Donglin Wang, and Sibo Gai. 2020. Knowledge distillation for model-
agnostic meta-learning. In ECAI 2020. IOS Press, 1355–1362.

[52] Renrui Zhang, Wei Zhang, Rongyao Fang, Peng Gao, Kunchang Li, Jifeng Dai,
Yu Qiao, and Hongsheng Li. 2022. Tip-adapter: Training-free adaption of clip
for few-shot classification. In European conference on computer vision. Springer,
493–510.

[53] Ziqi Zhou, Xi Qiu, Jiangtao Xie, Jianan Wu, and Chi Zhang. 2021. Binocular mu-
tual learning for improving few-shot classification. In Proceedings of the IEEE/CVF
International Conference on Computer Vision. 8402–8411.

2024-04-13 20:18. Page 9 of 1–9.


	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Method
	3.1 Preliminary
	3.2 Optimal Transport-based Alignment at the Training Stage
	3.3 Vision-Semantics Integration at the Testing Stage

	4 Experiments
	4.1 Datasets
	4.2 Implementation Details
	4.3 Results
	4.4 Ablation Studies

	5 Conclusion
	References

