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Abstract
Unsupervised domain adaptation (UDA) aims to adapt a model
trained on the source domain (e.g. synthetic data) to the target do-
main (e.g. real-world data) without requiring further annotations
on the target domain. Most previous UDA methods for semantic
segmentation focus on minimizing the domain discrepancy of vari-
ous levels, e.g., pixels and features, for extracting domain-invariant
knowledge. However, the primary domain knowledge, such as con-
text and detail correlation, remains underexplored. To address this
problem, we propose a context- and detail-enhanced unsupervised
learning framework, called CDEA, for domain adaptive semantic
segmentation that facilitates image detail correlations and contexts
semantic consistency. Firstly, we propose an adaptive masked image
consistency module to enhance UDA by learning spatial context re-
lations of the target domain, which enforces the consistency between
predictions and masked target images. Secondly, we propose a detail
extraction module to enhance UDA by integrating the learning of
spatial information into low-level layers, which fuses the low-level
detail features with deep semantic features. Extensive experiments
verify the effectiveness of the proposed method and demonstrate the
superiority of our approach over state-of-the-art methods.
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1 Introduction
Deep neural networks have achieved significant success in recent
years across various multimedia tasks [1], such as cross-modal re-
trieval, image captioning, etc. However, their training often requires a
large amount of annotated data. Providing annotations is particularly
labor-intensive for specific tasks, such as semantic segmentation [2].
Besides, pixel-wise labels of the entire image are necessary, and it
can take more than one hour per image [3]. However, a network
trained on such a source dataset usually performs worse when ap-
plied to the target dataset [4], as neural networks are sensitive to
domain gaps. To minimize such a gap, researchers resort to Un-
supervised Domain Adaptation (UDA) to transfer the knowledge
from labeled source-domain data to the unlabeled target-domain
environment.

Domain adaptive semantic segmentation has got great attention
and various methods have been proposed in the last few years, which
can be roughly divided into two categories: adversarial training [5–7]
and unsupervised training [8–10]. However, there is still a noticeable
performance gap compared to supervised training [5]. A common
challenge is the confusion of classes with a similar visual appearance
on the target domain, such as "wall/fence" or "pedestrian/rider", The
reason is that no ground truth supervision is available to learn the
slight appearance differences. For example, the segmentation class
of the fence in Fig. 1(a) is segmented as a wall, probably as a result
of a similar local look. In addition, we find that the edge of category
prediction results is not significant and exists a large noise.

To address this challenge, we propose to enhance UDA with spa-
tial context relations as additional clues for robust visual recognition.
For instance, the curb in the foreground of Fig. 1(a) could be a cru-
cial context relation to recognizing the fence despite the ambiguous
texture correctly. Hoyer et al. [11] propose a mask patch method by
learning spatial information of the target domain, which achieves
robust visual recognition. Fan et al. [12] propose a short-term dense
concatenate network to learn detailed information, which improves
edge extraction capability. Although the used network architectures
already can model context relations, previous UDA methods can
still not reach the full potential of using context dependencies on
the target domain as the unsupervised target losses are not powerful
enough to enable effective learning of such information.
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Figure 1: (a) Previous UDA methods such as HRDA struggle
with similar appearance classes on the target domain. (b) The
proposed Context- and Detail-Enhanced (CDEA) has solved the
above challenges to enhance the learning of context and detail
relations. With CDEA, the adapted network can correctly seg-
ment the wall and sidewalk. (c) Different from existing works,
we focus on learning the intra-domain information and argue
that the contextual structure between detail and mask patches
can facilitate the model learning the domain-invariant knowl-
edge in an unsupervised manner.

Therefore, we design a method to explicitly encourage the net-
work to learn comprehensive context relations of the target domain
during UDA. In particular, we propose a novel Context- and Detail-
Enhanced (CDEA) plug-in for UDA, shown as Fig. 1(c), which can
be applied to various visual recognition tasks. Considering semantic
segmentation for illustration, CDEA masks out a random selection
of target image patches and trains the network to predict the seman-
tic segmentation result of the entire image, including the masked
regions. Therefore, the network has to utilize the context to infer
the semantics of the masked-out regions, which can increase the
robustness of the network.

As there are no ground truth labels for the target domain, we
resort to pseudo-labels, generated by an EMA teacher [13] that uses
the original, unmasked target images as input. Therefore, the teacher
can utilize both context and local knowledge to generate robust
pseudo-labels. During the training, different classes of objects are
masked out so that the network learns to utilize different context
knowledge, which further increases the robustness [11]. After UDA
with Context- and Detail-Enhanced, the network can better exploit
context knowledge and correctly segment difficult areas that rely on
context knowledge, such as the sidewalk in Fig. 1(b).

To the best of our knowledge, CDEA is the first UDA method to
fuse masked images and edge features to facilitate learning context
and detail relations on the target domain. Due to its universality and
simplicity, Context- and Detail-Enhanced can be straightforwardly
integrated into various UDA methods across multiple visual recog-
nition tasks, making it highly valuable in practice. CDEA achieves
significant and consistent performance improvements for different

UDA methods, including adversarial training and unsupervised train-
ing on semantic segmentation tasks with domain gaps and network
architectures. The main contributions of this paper can be summa-
rized as follows:

(1) Different from existing works on semantic segmentation, we
focus on mining domain-invariant knowledge from the origi-
nal domain in an unsupervised manner. We propose a context-
and detail-enhanced unsupervised learning framework to har-
ness both context- and detail-wise consistency against dif-
ferent contexts, which is well-aligned with the segmentation
task.

(2) Our unsupervised learning method does not require extra an-
notations and is compatible with other existing UDA frame-
works. The effectiveness of CDEA has been tested by exten-
sive ablation studies, and it achieves competitive accuracy
on two commonly used UDA benchmarks, 76.3 mIoU on
GTA→Cityscapes and 68.4 mIoU on Synthia→Cityscapes.

(3) We achieve a new state-of-the-art (SOTA), and outperform
other unsupervised domain adaptive methods by a large mar-
gin in solving both context and detail-enhanced problems for
semantic segmentation.

2 Related Work
2.1 Unsupervised Domain Adaptation
In recent years, semantic segmentation approaches have been based
on deep neural networks, which can be effectively trained in an end-
to-end manner to perform pixel-wise classification [14–17]. How-
ever, semantic segmentation approach training often requires a large
amount of annotated data, which can take more than one hour per
image. Unsupervised domain adaptation (UDA) enables a model to
transfer scalable knowledge from a label-rich source domain to a
label-scarce target domain, which improves the adaptation perfor-
mance. Several strategies have been proposed to adapt a semantic
segmentation network to the target domain, which can be grouped
into adversarial training [5–7] and unsupervised training [8–10, 18].

Adversarial training methods aim to learn domain-invariant knowl-
edge based on adversarial domain alignment. Wang et al. [19] pro-
pose a fine-grained adversarial learning strategy for class-level fea-
ture alignment while preserving the internal structure of semantics
across domains. Shan et al. [7] propose to conduct an auxiliary ad-
versarial training on the fused multi-level CNN features. However,
unstable adversarial training methods usually lead to suboptimal
performance. Unsupervised training methods aim to create pseudo
labels for the target domain images using the model trained by la-
beled source domain data, and then the model is re-trained by pseudo
labels. He et al. [20] build a dynamic dictionary with a queue and a
moving-averaged encoder to build a large and consistent dictionary
on-the-fly that facilitates contrastive unsupervised learning. Van et
al. [21] adopts a predetermined mid-level prior in a contrastive op-
timization objective to learn pixel embeddings. Different from the
above-mentioned works, we focus on learning the domain knowl-
edge of context and detail in an unsupervised manner. The proposed
method is complementary to the existing approach to further boost
the result.
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Figure 2: A brief illustration of our Context- and Detail-Enhanced Unsupervised Learning Framework (CDEA), based on a teacher-
student architecture. Given the labeled source data {(xS ,yS )}, we utilize the network fθ to calculate the segmentation prediction,
supervised by the Source Domain loss LSk . During training, we leverage the moving averaged model дϕ to generate the pseudo label
ỹT to craft the masked label ỹM . The D̃ ∈ RH×W denotes the pseudo detail ground-truth and D̃M ∈ RH×W denotes the masked
predicted detail. According to the masked label, we copy the corresponding regions as the masked data xM . We also deploy the
network дϕ to obtain the masked prediction ỹM supervised by LTk . Except for the above-mentioned basic segmentation losses, we
propose Context Loss LM

k and Detail Loss LD
k . During inference, we drop the Detail Head HDetail and only keep the network fθ .

2.2 Context and Detail Enhancement
Several UDA methods propose network components, such as cross-
domain attention [7], or context-aware feature fusion [22] can cap-
ture contexts to facilitate learning domain-robust context depen-
dencies. Although these network modules can capture context, the
unsupervised loss on the target domain does not provide sufficient
supervision to learn all relevant target context and detail relations.
For example, the segmentation performs poorly in details and edges
as a result of a similar local look, shown in Fig. 1(a). Research
has shown that the domain knowledge of context and detail Has a
significant impact on performance in semantic segmentation [23].
Therefore, we focus on learning the domain knowledge of context
and detail in an unsupervised manner.

Recently, semantic segmentation approaches have been based
on deep neural networks. Hoyer et al. [11] propose a mask patch
method by learning spatial information of the target domain, which
achieves robust visual recognition. However, these mechanisms can
not capture all relevant context information and the prediction re-
sults perform poorly in details and edges. Fan et al. [12] propose a
short-term dense concatenate network to learn detailed information,
which improves edge extraction capability. Different from the above-
mentioned works [11], The proposed Context- and Detail-Enhanced
can learn more extensive multi-scale context information due to the
random size of patch masking during training. Moreover, we intro-
duce a detail-enhanced module in an unsupervised manner according

to [12], which can improve the segmentation performance in details
and edges. Therefore, the multi-grained unsupervised learning on
both context and detail are complementary to each other and can
learn the domain-invariant context feature.

3 Approach
In this section, We first introduce the UDA definition and segmenta-
tion losses for semantic segmentation domain adaptation in Sec. 3.1.
Then, we introduce an adaptive masked image consistency module,
which enforces the consistency between predictions and masked
target images in Sec. 3.2. Besides, we introduce the detail-enhanced
module, leading to more precise preservation of spatial details in
low-level layers in Sec. 3.3. We finally discuss the mechanism of the
proposed method in Sec. 3.4. Our proposed method is designed to be
applicable to common network architectures and can be combined
with existing UDA methods.

3.1 Unsupervised Domain Adaptation
The UDA neural network can be trained on the source domain
synthetic data XS = {xSk }

NS
k=1 labeled by Y S = {ySk }

NS
k=1 and the

unlabelled target domain real-world data XT = {xTk }
NT
k=1 with a

supervised source loss and adaptation target loss, where NS and
NT are the numbers of images in the source and target domain,
respectively. Domain adaptive semantic segmentation intends to
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learn a mapping function that projects the input image xT to the
segmentation prediction ỹT in the target domain.
Source Domain Losses. The specific source loss depends on the
computer vision task. For semantic segmentation, the pixel-wise
cross-entropy is typically used.

H(ŷ,y) = −
H∑
i=1

W∑
j=1

C∑
c=1

pi jc log ŷi jc (1)

where H ,W is the height and width of the input image. The label yS

belongs to C categories. pi jc is the one-hot vector of label yi jc , and
the value pi jc (c) equals to 1 if c == yi jc otherwise 0.

We learn the basic source domain knowledge by adopting the
segmentation loss on the source domain, which can be formulated
as:

LS
k = H(fθ (x

S
k ) ,y

S
k ) (2)

where we utilize the visual backbone and 2-layer Multi-Layer Per-
ceptrons (MLPs) as fθ for segmentation category prediction.
Target Domain Loss. However, a model trained on the source do-
main usually experiences a performance drop when applied to an-
other domain. Considering that there are no labels for the target-
domain data, we generate pseudo labels ỸT = {ỹTk } for the target
domain data XT by a teacher network дϕ during training to learn the
knowledge from the target domain, where ỹTk = arдmax(дϕ (x

T
k )).

Therefore, UDA methods can use unlabeled images from the target
domain XT = {xTk }

NT
k=1 to adapt the network, the segmentation loss

on the target domain can be formulated as:

LT
k = H(fθ (x

T
k ) , ỹ

T
k ) (3)

where ỹTk is the pseudo label of xTk .
In practice, the teacher network дϕ is set as the Exponential

Moving Average (EMA) of the weights of the student network fθ
after each training iteration. Therefore, the unsupervised loss for
the target domain LT is added to the optimization problem with a
weight λT

min
θ

1
NS

NS∑
k=1
LSk +

1
NT

NT∑
k=1

λTLTk . (4)

3.2 Context Enhance of High-level Features
Recently, many network architectures can integrate both local and
context information in their features to recognize an object [22,
24]. Although the learning of context relations can be guided by
ground truth in supervised learning, without ground truth supervision
is available for the target domain in UDA. However, the existing
unsupervised losses are not consequential enough to enable effective
learning of context information, such as in Fig. 1.

Therefore, we propose encouraging the learning performance of
context relations on the target domain to provide context information
for robust recognition of classes with similar local appearances. To
improve the learning context relations in the target domain, we
introduce a Context Enhance Module (CEM), which can be easily
plugged into various existing UDA methods. The domain adaptation
process with the CEM is illustrated in Fig. 3 and explained below.
The CEM withholds local information by randomly masking out

Algorithm 1 CDEA algorithm

Input: Source domain data XS with labels Y S , Target domain data
XT , segmentation network fθ with detail head HDetail, segmen-
tation teacher network дϕ , the total iteration number Ttotal.

1: Initialize network parameter θ with ImageNet pre-trained pa-
rameters. Initialize teacher network ϕ randomly.

2: for iteration = 1→ Ttotal do
3: xS , yS ∼ U ., xT ∼ V .
4: xTM ← Mask(xT , r , s). Generate masked image from param

mask-ratio r and mask-size s.
5: Generate pseudo labels. ỹT ← arдmax(дϕ (x

T )).

6: Compute predictions. ŷS ← arдmax(fθ (x
S )).

7: Compute detail. D̃ ← arдmax(Laplacian(fθ (x
T ))),

D̂M ← arдmax(HDetail (fθ (x
T
M ))).

8: Compute Loss for the mini-batch Ltotal.

9: Compute ∇θLtotal by backpropagation.
10: Perform stochastic gradient descent.
11: Update teacher network ϕ with θ .
12: end for
13: return Segmentation network fθ .

patches of the target image. Therefore, a patch mask M is randomly
sampled from a uniform distribution

M(x ,y) = [v > r ] , if
{
x ∈ [ms + 1 :ms + s],
y ∈ [ns + 1 : ns + s] (5)

where v ∼ U(0, 1), s is the mask-size, r is the mask-ratio, m ∈
[0 . . .W /s − 1], n ∈ [0 . . .H/s − 1] the patch indices, and [·] denotes
the Iverson bracket.

xTM =M ⊙ x
T (6)

where the target image xT . The masked target image xTM is obtained
by element-wise multiplication ⊙ of mask and image, shown as
Fig. 3.

The masked target prediction ŷTM can use the unmasked image
regions’ limited information to learn the context information. There-
fore, we use the remaining context information to reconstruct the
correct label without access to the entire image, the Context Enhance
loss LM is introduced

LM = µ H(fθ (x
T
M ) , ỹ

T ) (7)

where ỹT is a pseudo-label and λT is quality weight. The pseudo-
label ỹT is the prediction of a teacher network дϕ of the complete
target image xT . The pixel-wise cross-entropy H(·) be shown in
Eq. (1).

The existing study found that there are potential faults in pseudo-
labels, especially at the beginning of the training [11]. Therefore,
we design a weight of quality estimate λT for the Context Enhance
loss and utilize the ratio of pixels exceeding a threshold τ of the
maximum softmax probability.

µ =
1

H ·W

H∑
i=1

W∑
j=1

C∑
i=1
[max

c
дϕ (x

T
i jc ) > τ ]. (8)
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3.3 Detail Enhance of Low-level Features
Although existing network architectures can already model detailed
information in supervised learning, previous UDA methods can
still not reach the full potential of using detailed dependencies on
the target domain. As shown in Fig. 1, the existing unsupervised
methods easily neglect the detailed information about boundaries
because they do not learn detailed information effectively. Therefore,
we propose a Detail Enhance Module (DEM) to manually guide the
low-level layers in learning the spatial details.
Detail Head: Compared with the high-level semantic features, the
low-level features of neural networks can encode more spatial de-
tails [25]. Thus, we insert the Detail Head into the low-level back-
bone layer to generate the detailed feature map, shown in Fig. 2.
We first generate the detailed feature map ground truth from the
segmentation ground truth by the Laplacian operator. Then, we use
the detailed ground truth as the guide of a detailed feature map to
guide the low-level layers in learning the features of spatial details.
Finally, the learned detail features are fused with the context features
from the deep block of the decoder for segmentation prediction. As
shown in Fig. 2, the Detail Extract introduces the generating process
of detail ground truth.

We use the Detail Head to produce the detailed map, which guides
the low-level layer to encode spatial information, as shown in Fig. 2.
The Detail Head includes a 3 × 3 Conv-BN-ReLU operator followed
by a 1 × 1 convolution to get the output detail map. Then, we use
a bilinear interpolation to up-sample the feature map to the size of
ground truth. In the experiment, the Detail Head effectively enhances
the feature representation. Therefore, this detail-information can
easily boost the accuracy of the segmentation task without any cost
in inference.
Detail Enhance Loss: We model the detail prediction as a binary
segmentation task. We generate the binary detail ground truth from
the semantic segmentation ground truth. Considering the number of
detail pixels is much less than the non-detail pixels, detail prediction
is a class-imbalance problem, which often uses weighted cross-
entropy to solve [26]. However, the weighted cross-entropy always
leads to coarse results. Dice loss [27] is insensitive to the number
of foreground/background pixels, which can measure the overlap
between predicted maps and ground truth, thus can alleviate the class
imbalance problem [28].

Therefore, we adopt binary cross-entropy H(·) and Dice loss
LDice to jointly optimize detail learning. So for the predicted de-
tail map with height H and width W , the Detail loss LDetail is
formulated as follows:

LDetail (D̃, D̃
M ) = H(D̃, D̃M ) + LDice (D̃, D̃

M ) (9)

where D̃ ∈ RH×W denotes the pseudo detail ground-truth and
D̃M ∈ RH×W denotes the masked predicted detail. The binary cross-
entropyH(·) be shown in Eq. (1). The Dice loss LDice is given as
follows:

LDice (D̃, D̃
M ) = 1 −

2
∑H×W
1 (D̃i D̃

M
i ) + ϵ∑H×W

1 (D̃i )2 +
∑H×W
1 (D̃M

i )
2 + ϵ

(10)

where i denotes the i-th pixel and ϵ is a Laplace smoothing item to
avoid zero division. In this paper, we set ϵ = 1.

3.4 Method Summary and Discussion
Total Loss. The teacher network дϕ is implemented as an Exponen-
tial Moving Average (EMA) teacher. It is a common strategy used
in UDA [13]. Its weights are the EMA of the weights of fθ with
smoothing factor α

ϕt+1 ← αϕt + (1 − α)θt (11)

where t is a training step. The EMA teacher realizes a temporal
ensemble of previous student models fθ , which increases the ro-
bustness and temporal stability of pseudo-labels. As the teacher is
updated based on the student fθ , it will gradually obtain the context
enhanced learning capability from fθ . In contrast to the student fθ ,
the teacher дϕ has privileged access to the original image xT (see
Eq. 8). Thus, it can utilize the context and the detial information to
generate higher-quality pseudo-labels.

The overall training objective is the combination of pixel-level
cross-entropy loss and the proposed CDEA:

min
θ

1
NS

NS∑
k=1
LSk +

1
NT

NT∑
k=1
(λTLTk + λ

MLM
k + λ

DLD
k ). (12)

We summarize the overall training process of our CDEA frame-
work in Algorithm 1.
Discussion. 1. Correlation between Context and Detail Enhance.
Both context and detail enhance are derived from different levels
of learning, and they work at different effect regions, pixel-wise
and patch-wise. However, detail enhance explores the correlation
of different edge categories over the whole image, while context
enhance imposes regularization on the mask patches from a local
semantic perspective. Therefore, the two enhanced methods are
complementary and can learn the intra-domain inherent context and
detail within the data.
2. What is the advantage of the proposed approach? Previous
UDA methods mainly focused on designing the module for feature
learning in the target data. Differently, we are motivated by the
objectives of UDA semantic segmentation in a manner and thus
leverage context and detail correlations in the target data to facilitate
key features and knowledge learning. By explicitly regularizing
the feature space via CDEA, we enable the model to explore the
inherent intra-domain context and detail information in unsupervised
learning, pixel-wise and patch-wise, without extra parameters or
annotations. Therefore, CDEA can be easily integrated into existing
UDA approaches to achieve better results without extra work during
inference.
3. Difference from semantic segmentation for UDA. Conventional
contrastive learning methods tend to perform contrast in the instance
or pixel level alone. We formulate context and detail enhance in a
similar format but focus on the local effect regions within the im-
ages, which aligns well with the local-focused segmentation task. We
show that the proposed context and detail enhance, and regularize
the domain adaptation training and guide the model to shed more
light on the intra-domain context. The experiment result verifies
our innovation that context and detail enhance and improve smooth
edges between different categories and output a higher accuracy on
small-object categories.



MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia Shuyuan Wen, Bingrui Hu and Wenchao Li

Table 1: Quantitative results with previous UDA methods on GTA → Cityscapes. We present pre-class IoU and mIoU. The best
accuracy in every column is in bold.

Method Road SW Build Wall Fence Pole TL TS Veg. Terrain Sky PR Rider Car Truck Bus Train Motor Bike mIoU

AdvEnt [29] 89.4 33.1 81.0 26.6 26.8 27.2 33.5 24.7 83.9 36.7 78.8 58.7 30.5 84.8 38.5 44.5 1.7 31.6 32.4 45.5
CyCADA [30] 86.7 35.6 80.1 19.8 17.5 38.0 39.9 41.5 82.7 27.9 73.6 64.9 19.0 65.0 12.0 28.6 4.5 31.1 42.0 42.7

CLAN [31] 87.0 27.1 79.6 27.3 23.3 28.3 35.5 24.2 83.6 27.4 74.2 58.6 28.0 76.2 33.1 36.7 6.7 31.9 31.4 43.2
AdaptSegNet [32] 86.5 36.0 79.9 23.4 23.3 23.9 35.2 14.8 83.4 33.3 75.6 58.5 27.6 73.7 32.5 35.4 3.9 30.1 28.1 42.4

SP-Adv [7] 86.2 38.4 80.8 25.5 20.5 32.8 33.4 28.2 85.5 36.1 80.2 60.3 28.6 78.7 27.3 36.1 4.6 31.6 28.4 44.3
ASA [33] 89.2 27.8 81.3 25.3 22.7 28.7 36.5 19.6 83.8 31.4 77.1 59.2 29.8 84.3 33.2 45.6 16.9 34.5 30.8 45.1

MaxSquare [34] 88.1 27.7 80.8 28.7 19.8 24.9 34.0 17.8 83.6 34.7 76.0 58.6 28.6 84.1 37.8 43.1 7.2 32.3 34.2 44.3
APODA [6] 85.6 32.8 79.0 29.5 25.5 26.8 34.6 19.9 83.7 40.6 77.9 59.2 28.3 84.6 34.6 49.2 8.0 32.6 39.6 45.9
MRNet [35] 89.1 23.9 82.2 19.5 20.1 33.5 42.2 39.1 85.3 33.7 76.4 60.2 33.7 86.0 36.1 43.3 5.9 22.8 30.8 45.5
APODA [6] 85.6 32.8 79.0 29.5 25.5 26.8 34.6 19.9 83.7 40.6 77.9 59.2 28.3 84.6 34.6 49.2 8.0 32.6 39.6 45.9
CBST [36] 91.8 53.5 80.5 32.7 21.0 34.0 28.9 20.4 83.9 34.2 80.9 53.1 24.0 82.7 30.3 35.9 16.0 25.9 42.8 45.9

PatchAlign [37] 92.3 51.9 82.1 29.2 25.1 24.5 33.8 33.0 82.4 32.8 82.2 58.6 27.2 84.3 33.4 46.3 2.2 29.5 32.3 46.5
BL [38] 91.0 44.7 84.2 34.6 27.6 30.2 36.0 36.0 85.0 43.6 83.0 58.6 31.6 83.3 35.3 49.7 3.3 28.8 35.6 48.5

MRKLD [9] 91.0 55.4 80.0 33.7 21.4 37.3 32.9 24.5 85.0 34.1 80.8 57.7 24.6 84.1 27.8 30.1 26.9 26.0 42.3 47.1
DT [39] 90.6 44.7 84.8 34.3 28.7 31.6 35.0 37.6 84.7 43.3 85.3 57.0 31.5 83.8 42.6 48.5 1.9 30.4 39.0 49.2

FDA [40] 92.5 53.3 82.4 26.5 27.6 36.4 40.6 38.9 82.3 39.8 78.0 62.6 34.4 84.9 34.1 53.1 16.9 27.7 46.4 50.5
Uncertainty [41] 90.4 31.2 85.1 36.9 25.6 37.5 48.8 48.5 85.3 34.8 81.1 64.4 36.8 86.3 34.9 52.2 1.7 29.0 44.6 50.3
Adaboost [42] 90.7 35.9 85.7 40.1 27.8 39.0 49.0 48.4 85.9 35.1 85.1 63.1 34.4 86.8 38.3 49.5 0.2 26.5 45.3 50.9

FADA [43] 91.0 50.6 86.0 43.4 29.8 36.8 43.4 25.0 86.8 38.3 87.4 64.0 38.0 85.2 31.6 46.1 6.5 25.4 37.1 50.1
CorDA [17] 94.7 63.1 87.6 30.7 40.6 40.2 47.8 51.6 87.6 47.0 89.7 66.7 35.9 90.2 48.9 57.5 0.0 39.8 56.0 56.6
DACS [44] 89.9 39.7 87.9 30.7 39.5 38.5 46.4 52.8 88.0 44.0 88.8 67.2 35.8 84.5 45.7 50.2 0.0 27.3 34.0 52.1
ProDA [45] 87.8 56.0 79.7 46.3 44.8 45.6 53.5 53.5 88.6 45.2 82.1 70.7 39.2 88.8 45.5 59.4 1.0 48.9 56.4 57.5

CaCo [4] 93.8 64.1 85.7 43.7 42.2 46.1 50.1 54.0 88.7 47.0 86.5 68.1 2.9 88.0 43.4 60.1 31.5 46.1 60.9 58.0
BAPA [46] 94.4 61.0 88.0 26.8 39.9 38.3 46.1 55.3 87.8 46.1 89.4 68.8 40.0 90.2 60.4 59.0 0.0 45.1 54.2 57.4

DAFormer [47] 95.7 71.2 89.4 53.5 48.1 49.6 55.8 59.4 89.9 47.9 92.5 72.2 44.7 92.3 74.5 78.2 65.1 55.9 61.8 68.3
DAFormer [47] + CDEA 97.5 76.8 92.7 58.5 58.1 52.6 65.8 69.4 92.8 49.4 94.3 74.1 48.7 96.7 77.5 81.4 67.2 59.9 63.8 72.5

HRDA [23] 96.4 74.4 91.0 61.6 51.5 57.1 63.9 69.3 91.3 48.4 94.2 79.0 52.9 93.9 84.1 85.7 75.9 63.9 67.5 73.8
HRDA [23] + CDEA 97.8 76.9 93.0 63.2 57.9 59.4 68.9 74.3 90.9 50.3 95.6 80.5 54.9 95.7 88.2 87.3 78.2 67.7 69.4 76.3
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Figure 3: Qualitative results on GTA→ Cityscapes and SYNTHIA→ Cityscapes. From left to right: Target Image, Ground Truth,
the visual results predicted by DAFormer [47], DAFormer [47] + Ours (CDEA), HRDA [23], HRDA [23] + Ours (CDEA). We deploy
the white dash boxes to highlight different prediction parts.

4 Experiments
4.1 Implementation Details
We train the network with batch size 2 for 60k iterations with a single
NVIDIA Tesla 4*V100 GPU server. We adopt AdamW [51] as the
optimizer, a learning rate of 6 × 10-5, a linear learning rate warmup

of 1.5k iterations, and a weight decay of 0.01. The input image is
resized to 1280 × 720 for GTA and 1280 × 760 for SYNTHIA, with
a random crop size of 640 × 640. We adopt various data augmenta-
tion during training, such as ClassMix [52], Gaussian blur and color
jitter. We design CDEA based on a DAFormer network [47]. The
teacher network is randomly initialized and the student network is
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Table 2: Quantitative results with previous UDA methods on SYNTHIA→ Cityscapes. We present pre-class IoU, mIoU and mIoU*.
mIoU and mIoU* are averaged over 16 and 13 categories, respectively. The best accuracy in every column is in bold.

Method Road SW Build Wall* Fence* Pole* TL TS Veg. Sky PR Rider Car Bus Motor Bike mIoU* mIoU

SIBAN [48] 82.5 24.0 79.4 − − − 16.5 12.7 79.2 82.8 58.3 18.0 79.3 25.3 17.6 25.9 46.3 −

MaxSquare [34] 77.4 34.0 78.7 5.6 0.2 27.7 5.8 9.8 80.7 83.2 58.5 20.5 74.1 32.1 11.0 29.9 45.8 39.3
AdaptSegNet [32] 84.3 42.7 77.5 − − − 4.7 7.0 77.9 82.5 54.3 21.0 72.3 32.2 18.9 32.3 46.7 −

PatchAlign [37] 82.4 38.0 78.6 8.7 0.6 26.0 3.9 11.1 75.5 84.6 53.5 21.6 71.4 32.6 19.3 31.7 46.5 40.0
ASA [33] 89.2 49.5 80.4 3.7 0.3 21.7 5.5 5.2 79.5 83.6 56.4 21.0 80.3 36.2 20.0 32.9 49.3 41.7

SP-Adv [7] 84.8 35.8 78.6 − − − 6.2 15.6 80.5 82.0 66.5 22.7 74.3 34.1 19.2 27.3 48.3 −

CLAN [31] 81.3 37.0 80.1 − − − 16.1 13.7 78.2 81.5 53.4 21.2 73.0 32.9 22.6 30.7 47.8 −

AdvEnt [29] 85.6 42.2 79.7 8.7 0.4 25.9 5.4 8.1 80.4 84.1 57.9 23.8 73.3 36.4 14.2 33.0 48.0 41.2
MRNet [35] 82.0 36.5 80.4 4.2 0.4 33.7 18.0 13.4 81.1 80.8 61.3 21.7 84.4 32.4 14.8 45.7 50.2 43.2

BL [38] 86.0 46.7 80.3 − − − 14.1 11.6 79.2 81.3 54.1 27.9 73.7 42.2 25.7 45.3 51.4 −

CBST [36] 68.0 29.9 76.3 10.8 1.4 33.9 22.8 29.5 77.6 78.3 60.6 28.3 81.6 23.5 18.8 39.8 48.9 42.6
CCM [49] 79.6 36.4 80.6 13.3 0.3 25.5 22.4 14.9 81.8 77.4 56.8 25.9 80.7 45.3 29.9 52.0 52.9 45.2

MRKLD [9] 67.7 32.2 73.9 10.7 1.6 37.4 22.2 31.2 80.8 80.5 60.8 29.1 82.8 25.0 19.4 45.3 50.1 43.8
DADA [50] 89.2 44.8 81.4 6.8 0.3 26.2 8.6 11.1 81.8 84.0 54.7 19.3 79.7 40.7 14.0 38.8 49.8 42.6

Uncertainty [41] 87.6 41.9 83.1 14.7 1.7 36.2 31.3 19.9 81.6 80.6 63.0 21.8 86.2 40.7 23.6 53.1 54.9 47.9
APODA [6] 86.4 41.3 79.3 − − − 22.6 17.3 80.3 81.6 56.9 21.0 84.1 49.1 24.6 45.7 53.1 −

DT [39] 83.0 44.0 80.3 − − − 17.1 15.8 80.5 81.8 59.9 33.1 70.2 37.3 28.5 45.8 52.1 −

Adaboost [42] 85.6 43.9 83.9 19.2 1.7 38.0 37.9 19.6 85.5 88.4 64.1 25.7 86.6 43.9 31.2 51.3 57.5 50.4

DAFormer [47] 84.5 40.7 88.4 41.5 6.5 50.0 55.0 54.6 86.0 89.8 73.2 48.2 87.2 53.2 53.9 61.7 67.4 60.9
DAFormer [47] + CDEA 86.7 42.9 89.7 42.7 8.1 51.4 57.3 56.2 88.3 91.2 75.1 49.8 90.1 56.4 55.7 63.3 69.4 62.8

HRDA [23] 85.2 47.7 88.8 49.5 4.8 57.2 65.7 60.9 85.3 92.9 79.4 52.8 89.0 64.7 63.9 64.9 72.4 65.8
HRDA [23] + CDEA 88.6 54.8 90.6 52.3 7.4 62.4 68.8 64.6 87.5 93.9 83.6 56.6 90.0 58.7 66.6 68.5 74.8 68.4

pre-trained on ImageNet1k. The exponential moving average param-
eter α of the teacher network is 0.999 [13]. The hyperparameters of
the loss function are chosen empirically λT = 2, λM = 1, λD = 1
and the ratio of pixels exceeding a threshold τ = 0.5. We report
our results for 19 classes on GTA→Cityscapes and both 13 and 16
classes on SYNTHIA→Cityscapes.

4.2 Datasets and Evaluation Metrics
Datasets. In this paper, we use three commonly used datasets in
UDA. GTA5 is a synthetic dataset containing 24,966 high-resolution
images collected from game video, and the corresponding ground-
truth segmentation map can be generated by computer graphics.
SYNTHIA is also a synthetic dataset, which contains 9,400 images.
It shares 16 common classes with Cityscapes dataset. Cityscapes
is a real-world dataset collected for autonomous driving scenarios
from 50 cities around the world. It contains 2,975 and 500 images
for training and validation, respectively.
Evaluation Metrics. For segmentation evaluation, we adopt the
mean of class-wise intersection over union (mIoU) as the evaluation
metrics.
Reproducibility. The code is based on Pytorch and MMSegmenta-
tion. We will make our code open-source for reproducing all results.

4.3 Comparisons with State-of-the-art Methods
We compare CDEA with several competitive UDA methods on
GTA→ Cityscapes and SYNTHIA→ Cityscapes, respectively. The
quantitative comparisons are shown in Tab. 1 and Tab. 2, respectively.
We highlight the best accuracy in every column in bold. Meanwhile,
we visualize the visual result between the proposed method and the
other two state-of-the-art Transformer methods [23, 47] in Fig. 3.
GTA→ Cityscapes. We visualize all experiment results on GTA
→ Cityscapes in Tab. 1. It could be observed that Transformer meth-
ods significantly surpass the CNN methods by a large margin since

DAFormer [47]. The results show that our CDEA performed a re-
markable improvement over the existing SOTA transformer models
DAFormer [47] and HRDA [23]. Meanwhile, CDEA achieves 72.5
mIoU, which outperforms DAFormer [47] by a considerable mar-
gin of +4.2 mIoU. In addition, we improve +2.5 mIoU and achieve
the SOTA performance of 76.3 mIoU, verifying the effectiveness
of the CDEA that introduces a unified and multi-grained unsuper-
vised learning algorithm in UDA task, when applying CDEA to
HRDA [23] Moreover, CDEA achieves leading IoU of almost all
classes on GTA→ Cityscapes, including several small-object cate-
gories such as "fence", "pole", "training light" and "training sign".
SYNTHIA→Cityscapes. As shown in Tab. 2, CDEA also achieves
significant mIoU and mIoU* (13 most common categories) perfor-
mance on SYNTHIA→ Cityscapes, increasing +1.9 and +2.6 mIoU
compared with DAFormer [47] and HRDA [23], respectively. It is
noticeable that our CDEA remains competitive in segmenting each
individual class including small-scale objectives and yields the best
IoU score in almost all categories. The IoU performance of CDEA
verifies our innovation that the exploration of the inherent structures
of intra-domain images indeed helps category recognition, especially
for challenging small objectives.
Qualitative Results. As shown in Fig. 3, we show the segmenta-
tion prediction results of CDEA and the comparison with existing
SOTA methods DAFormer [47], HRDA [23], and the original image
with ground truth on both GTA→ Cityscapes and SYNTHIA→
Cityscapes benchmarks. The results show that CDEA can segment
the detail of edge and minor categories, such as "fence", "wall",
"traffic sign" and "traffic light", which are highlighted by white
bounding boxes. It is also noticeable that CDEA predicts smoother
edges between different categories, "traffic sign" and "person" in the
fourth row of Fig. 3. The reason is that the proposed detail-enhanced
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Table 3: Effect of the patch Mask Ratio and Size on GTA →
Cityscapes.

No. Type Mask Ratio Mask Size mIoU

1

Fixed

0.3 32 × 32 70.4
2 0.6 64 × 64 71.0
3 0.5 128 × 128 71.3
4 0.4 256 × 256 70.8

5

Random

0.2∼0.7 32∼128 71.9
6 0.3∼0.8 64∼256 72.1
7 0.2∼0.7 32∼128 72.5
8 0.3∼0.8 64∼256 72.2

Table 4: Effect of the Detail of UpSample and DownSample on
GTA→ Cityscapes.

No.
Up/Down

mIoU No.
Up/Down

mIoU
1x 2x 4x 1x 2x 4x

1 ✓ 70.4 4 ✓ ✓ 71.2
2 ✓ 71.1 5 ✓ ✓ 71.5
3 ✓ 70.8 6 ✓ ✓ ✓ 72.5

module explicitly encourages detail-wise consistency against differ-
ent contexts, which improves the prediction robustness on the edges
of categories.

4.4 Ablation Studies and Further Analysis
In this section, we introduce the ablation experiments to validate
the effectiveness of each component in our method. We verify the
effectiveness of the two proposed components, Context Guidance
and Detail Guidance in the proposed CDEA and investigate how set
the parameter of two Guidance contributes to the final performance
on GTA→ Cityscapes. For a fair comparison, we apply the same
experimental environment and data.
Effectiveness of Context Guidance. For context guidance, the ratio
and size of the mask also affect performance and training difficulty.
We evaluated the performance of both fixed and random types. As
shown in Tab. 3, we could observe: The best performance is 72.5

Table 5: Ablation study on the effect of Context and Detail-
Enhanced on GTA→ Cityscapes.

Method LContext LDetail mIoU ∆mIoU

DAFormer [47] 68.3 −

+Context Enhanced ✓ 69.5 +1.2
+Detail Enhanced ✓ 71.4 +3.1
+CDEA ✓ ✓ 72.5 +4.3

mIoU when the mask size range is 32∼128 and the mask ratio range
is 0.2∼0.7 by random type. The best performance of fixed type is
71.3 mIoU when the mask size is 128×128 and the mask ratio is 0.5
by fixed type. The experimental results show that the random type is
obviously better than the fixed method, indicating that the random
type can improve context awareness and accuracy by random mask.
Effectiveness of Detail Guidance. For detailed guidance, The dif-
ferent scales of Up/DownSample also affect the accuracy and perfor-
mance [12]. As shown in Tab. 4, we gradually utilize and combine
the different scales of Up/DownSample. We observe that larger patch
generally obtain better performance since it contains more diverse
contexts and is close to the test size. The best performance is 72.5
mIoU when the mask size range is 32∼128 and the mask ratio range
is 0.2∼0.7 by random type. The experimental results demonstrate
the effectiveness of Up/DownSample with multiple scales.
Effectiveness of the Both Guidance. The baseline model is based
on DAFormer [47], which outputs a competitive mIoU of 68.3,
shown in Tab. 5 When applying detailed guidance and context guid-
ance individually could lead to +1.2 mIoU, +3.1 and +4.3 mIoU
improvement respectively, verifying the effectiveness of exploring
the inherent contextual information, shown in Tab. 5. When applying
both guidances, our CDEA further improves the performance to 72.5
mIoU, surpassing the model that deploys only one kind of guidance.
The experimental results visually demonstrate the effectiveness of
the method, shown in Fig. 4. CDEA effectually learns the multi-level
information by combining the two kinds of guidance. Therefore, the
two kinds of guidance are complementary to each other.

5 Conclusion
In this paper, we presented Context- and Detail-Enhanced UDA
method (CDEA) to improve the learning of target domain context
relations and detail feature. We target to learn a feature space that
enables discriminative context features and the robust feature learn-
ing of the detail feature against variant contexts. CDEA can promote
the model to extract the inherent contextual and detail feature, which
is domain invariant. In comprehensive experiments, we have shown
that CDEA achieves significant performance improvements in all
of these UDA tasks. For instance, CDEA respectively improves
the SOTA performance by +2.5 and +2.6 on GTA→Cityscapes and
SYNTHIA→ Cityscapes. Since the simplicity of CDEA, it can be
combined with other existing methods to further facilitate the intra-
domain knowledge learning. In addition, We hope that CDEA can
be used as part of future UDA methods to narrow the gap between
UDA learning.
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