Reinforcement Learning with Simple Sequence Priors

Tankred Saanum'’ Noémi Eltet' Peter Dayan'>2 Marcel Binz' Eric Schulz!

Max Planck Institute for Biological Cybernetics, 2University of Tiibingen
Ttankred.saanum@tuebingen.mpg.de

Abstract

In reinforcement learning (RL), simplicity is typically quantified on an action-
by-action basis — but this timescale ignores temporal regularities, like repetitions,
often present in sequential strategies. We therefore propose an RL algorithm that
learns to solve tasks with sequences of actions that are compressible. We explore
two possible sources of simple action sequences: Sequences that can be learned
by autoregressive models, and sequences that are compressible with off-the-shelf
data compression algorithms. Distilling these preferences into sequence priors,
we derive a novel information-theoretic objective that incentivizes agents to learn
policies that maximize rewards while conforming to these priors. We show that
the resulting RL algorithm leads to faster learning, and attains higher returns than
state-of-the-art model-free approaches in a series of continuous control tasks from
the DeepMind Control Suite. These priors also produce a powerful information-
regularized agent that is robust to noisy observations and can perform open-loop

control.

1 Introduction

800 walker run Actuator 1 before trainin
1.0
£ 700
2 600 0.5
¥ 500 S
@ 400 E 0.0
T
300 &
.3200 —— LZ-SAC (ours) —0.5
L 100 — SAC
0 -1.0
00 02 04 06 08 10 0 20 40 60 80 100
z Actuator 1 after training
b} 1.0
?8600 o5
S 8500 5
5 0.0
] 8400 %
j= —
g 0.5
8300
g -1.0
0 00 02 04 06 08 10 0 20 40 60 80 100

Les

Step Step

Figure 1: Action sequences produced by a bipedal
walker become more compressible with learning.
Our algorithm learns policies that solve tasks with
simple action sequences, leading to decreased com-
plexity and higher returns.

Simplicity is a powerful inductive bias [1-3]. In
science, we strive to build parsimonious theo-
ries and algorithms that involve repetitions of the
same basic steps. Simplicity is also important in
the context of reinforcement learning (RL). Poli-
cies that are simple are often easier to execute,
and practical to implement even with limited
computational resources [4, 5]. Many control
problems have solutions that are compressible:
Motor behaviors like running and walking in-
volve moving our legs in a periodic, alternating
fashion (Fig. 1). Here it is the sequence of ac-
tions selected that is compressible. Sequences
with repetitive, periodic elements are easier to
predict and can be compressed more than se-
quences that lack such structure. In the current
work, we augment RL agents with a prior that
their action sequences should be simple: If so-
lutions to control problems are generally com-
pressible, one should consider only the set of
simple solutions to a problem rather than the set

of all solutions. In a series of experiments, we show that RL with simple sequence priors produces
policies that perform better and more robustly than state-of-the-art approaches without such priors.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Fixed Adaptive LZ-SAC SPAC MIRACLE
prior _ prior %
Individual MIRACLE \ |)l ‘ g .
actions
\ 1§ | | |
Action
sequences SPAC | | | |l | N (-

No sequence
priors

Figure 2: Top left: Policy regularization either incentivizes sequences or individual actions to be
close to the prior. Priors may be distinct in that they stay fixed over training or change from episode
to episode with learning. Top right: Agents need to navigate to a goal location, where the shortest
path requires fine control, following a repeating pattern. After learning, SAC randomly diffuses
among multiple paths. MIRACLE prefers a simple path that only goes up and then to the right. Since
the optimal path is compressible (repeating UP and RIGHT in a periodic fashion), the agents with
the simple sequence priors prefer this path. Bottom: An agent with simple sequence priors, in this
case SPAC, learns simple strategies for walking, using mostly the left leg to push itself forward in a
repetitive fashion.

Though there are methods for regularizing policies with respect to the individual actions they produce
[6, 7], we present a method that explicitly regularizes the sequences of actions used to solve a task.
Our regularization incentivizes the agent to use action sequences that can be compressed with a
sequence prior. If an action sequence is likely under the prior, one needs fewer bits of information to
represent it [8]. We explore two types of sequence priors: i) Priors in the form of an autoregressive
sequence model [9, 10] that learns to predict future actions based on actions that were performed in
the past and i) priors distilled from a pre-programmed, lossless compression algorithm. Building on
the Soft Actor-Critic algorithm (SAC) [7], we introduce Lempel-Ziv Soft Actor-Critic (LZ-SAC),
using an off-the-shelf compression algorithm as its prior, and Soft Predictable Actor-Critic (SPAC),
using a learned sequence prior (Fig. 2).

The contributions of this paper are the following: We introduce a model-free RL algorithm for
maximizing rewards with simple action sequences. In a series of continuous control tasks, we evaluate
the utility of such simple sequence priors. First, we investigate whether simple sequence priors speed
up policy search: In our experiments, agents with simple sequence priors consistently outperform
state-of-the-art model-free RL algorithms in terms of reward maximization. This holds both in terms
of learning speed and often in the final performance. Our second result is that our regularization
produces an information-efficient RL agent, using fewer bits of information to solve control problems.
Information-regularized models are more robust and better at generalizing [11, 4, 12]. Lastly, we
demonstrate the agents’ advantages in environments with noisy and missing observations.'

2 Related work

The idea of simplicity has received significant attention in previous work. Maximum entropy RL, for
instance, augments the reward function with an entropy maximization term, effectively encouraging
the agent to stay close to a simple uniform prior policy over actions [13, 14]. Though uniform priors
can lead to discontinuous and unpredictable behaviors, maximum entropy methods are considered
simple in that they try to minimize the use of information about the state to select actions [4, 15, 16].
Many current approaches to deep RL — such as SAC [7] —rely on this principle. This concept has been
further extended by models like Mutual Information Regularized Actor-Critic Learning (MIRACLE)

"For videos showing behaviors learned with our algorithm, see our project website:
https://sequencepriors.github.io
Code: https://github.com/tankred-saanum/simple priors

https://sequencepriors.github.io
https://github.com/tankred-saanum/simple_priors

[6] and others [17, 18], which use a learnable state-independent prior policy instead of the uniform
prior assumed by SAC. SAC and MIRACLE both induce simplicity at the level of individual actions.
In contrast, our proposed approach works on the level of action sequences.

It is not only possible to encode preferences for simplicity at the action level. Instead, simplicity
can also be imposed by encouraging the agent to maintain simple internal representations — the core
idea behind the information bottleneck principle [19]. Deep RL agents that rely on this principle
have many appealing properties, such as improved robustness to noise, better generalization, and
more efficient exploration characteristics [20-22]. Related to compression is predictability: Berseth
et al. [23] learn a density model over states, and then learn a policy that seeks out states that are
predictable, leading to self sustaining behaviors in unstable environments. On the opposite end there
are methods that seek out unpredictable states [24, 25], or states that the agent cannot compress, to
improve exploration. Recently, [4] demonstrated how to construct RL agents that learn policies that
use few bits of information by not only compressing individual observations but entire sequences
of observations. In some sense, our approach can be seen as a variant of the algorithm from [4].
However, we compress sequences of actions, rather than sequences of observations. Thus, our
regularization does not target the complexity of the sequence of internal representations, but instead
the complexity of the agent’s behavior, manifested in the sequence of actions selected to solve a task.

Finally, simplicity is also an important feature of natural intelligence, where it has been repeatedly
argued that simplicity is a unifying principle of human cognition [2]. For instance, [26] showed that
people rely on compressed policies, ultimately leading to behavioral effects such as preservation or
chunking [27, 28]. Likewise, [29] demonstrated that human exploration behavior can be described by
RL algorithms with limited description length, while [30] showed that compression captures human
behavior in a visual search task.

3 Control with simple sequences

In this section, we demonstrate how to construct RL agents that solve tasks using simple action
sequences. We start by outlining the general problem formulation. We assume that the task can be
posed as a Markov Decision Process (MDP). The MDP consists of a state space s € S, an action
space a € A, and environment dynamics p(sg) and p(s;+1 | St,a;). The dynamics determine the
probability of an episode starting in a particular state and the probability of the next state given the
previous state and action, respectively. Lastly, there is the discount factor v and a reward function
r(st, a;) that maps state-action pairs to a scalar reward term. The agent learns a policy 7y (a|s:)
parameterized by 6 that maps states to actions in a way that maximizes the sum of discounted rewards

Er, [2321 'ytr(st, at) .

Though we want our RL agent to maximize rewards, we encourage it to do so with policies that
produce simple action sequences. Inspired by previous approaches, we achieve this by augmenting
the agent’s objective [7, 4, 14], and search for a set of policy parameters ¢ that maximize reward
while minimizing the complexity of the policy C'(a;_r.¢,s¢, 6):

T
meaXIEM Z’yt(r(st,at) —aC(ai—r,8t,0)) ey
=1 S———™

Complexity cost

where the hyper-parameter « controls the trade-off between complexity and discounted rewards.

We can recover various previous approaches using this formulation. If we, for instance, set
C(at—r,8t,0) = logmg(a;s | s¢), we obtain maximum entropy RL algorithms such as SAC.
SAC implicitly assumes a uniform prior over individual actions. An alternative to using the uni-
form prior in maximum entropy RL is to learn a parameterized prior over actions py(a) based
on the empirical distribution of actions the agent selects when solving the task [18, 6]. Setting
C(aj—r.t,8:,0) =logmg(as | s¢) — logpg(a;), we obtain MIRACLE.

3.1 Simplicity with learned priors

While both SAC and MIRACLE compress sums of individual actions, they do not account for the
structure that is present in whole action sequences. To close this gap, we present two methods for
regularizing policies on the level of action sequences. For the first, we train a prior distribution
oo(a; | a;—r.t—1) to predict the agent’s future actions from actions it performed in the past. We
parameterize the prior as a neural sequence model. We use a causal transformer model [9, 31] to
parameterize ¢y. Though any type of sequence model could be used in principle, Transformers
are arguably better suited for learning complex sequence data with long-range dependencies. We
can augment the reward function to incorporate the preference for predictable action sequences as
follows:

7(St, ar—r:¢) = 7(s¢,) — a(log mg(ay | s¢) —log do(as | ar—rit—1)) (2)

where a;_.;—1 is a sequence of the last 7 actions. Optimizing this objective, the agent will get
rewarded for performing behaviors that the sequence model can predict better. The sequence model
can learn to predict action sequences more easily if they contain structure and regularity. This has
two interesting implications. i) The agent is incentivized to visit states where its actions will be
predictable, for instance by oscillating between states in a periodic manner. ii) To perform actions that
make it easier for the sequence model to predict future actions, for instance by performing behaviors
that signal to the sequence model how it will behave in the future. We refer to this agent as the Soft
Predictable Actor-Critic agent, or SPAC.

3.2 Simplicity with compression algorithms

Since the sequence model and the policy are

adapting their behavior and prior towards each >
other, the augmented reward function will '5 1.01
change throughout training. This plasticity can &
make it challenging to search for viable policies. g 0.8
Moreover, training a sequence model on top of © 0.6
the RL agent creates additional computational — ~'
overhead. We, therefore, explore the possibility _;’ 0.4
of instilling a simplicity preference without the & ™
use of a sequence prior that necessarily adapts 5 2
over episodes. £

Z 0.0

This second method for distilling simple se- « C o o
quence priors relies on off-the-shelf data com- a(\do ?e(\od q.%a‘\ 0(\5‘3
pression algorithms [32]. Lossless data compres- w 2 c

sion algorithms like LZ4, bzip2 and zlib

engode data.ir'lto sequences of symbols from Figure 3: Some sequences are more compressible
which the original data can be reconstructed Or (han others. A sequence of randomly generated
decompressed exactly. If there are repetitions, pumbers is less compressible than sequences with
regularities, or periodicity in the data, the length yeriodicity, sequences that only contain two types
of the encoded sequence can be significantly of vaJues (also known as Bang-Bang control), or

shorter than the original size of the data (Fig. 3). ¢onstant sequences that only contain a single num-
Relying on pre-programmed rules for data com- ey

pression, this simplicity prior will not change

over the course of training. Since compression

algorithms like LZ4 are fast, the sequence prior can be implemented with little computational
overhead.

In this setting, we compute C' using the extra number of bits needed to encode a; given that we have
already encoded a;—;.4—1:

615 = len(g(atfr:tfl)) - len(g(ath:t)) (3)
7(St, ap—r:t) = (¢,) — a(log mg(ay | s¢) — d¢) 4

where g(-) is our compression function and len(-) returns the length of a sequence. We use the LZ4
compression algorithm to compute the augmented rewards and refer to this agent as the LZ-SAC
agent.

3.3 Implementational details

We implement all agents as extensions of the SAC algorithm. SAC is an off-policy actor-critic
algorithm that performs maximum entropy RL. We train critics to learn the augmented ()-value
function Q(s¢, ap—r.t) = E[Zi L V7 (8¢, as— 7.4)] with temporal-difference learning [33]. The actors
and sequence models are trained to minimize the same loss:

L= Est,at_T:tND[a(log 7T9(at | St) - IOg ¢9(at | at—T:t—l)) - Q(St7at—7:t)] (5)

where D is a replay buffer and a; ~ 7y(- | s;). The LZ-SAC actor minimizes the same loss except
that — log ¢g(a; | az—r.t—1) is replaced with the term in Eq. 3. In practice, we take the minimum of
two target (Q-networks to train the actor and critic. Learning is achieved by sampling experiences from
a replay buffer. To calculate the augmented rewards, we simply sample action sequences a;_.;_1
that led to the (s, at, S¢41,7¢) tuple used for training (see Appendix A for full implementational
details).

4 Simple sequence priors guide policy search

hopper stand hopper hop quadruped walk 800 walker run
c 8001 — gzp;\scAc 100 e
2 600 | — SAC 600
1] 75
hd MIRACLE
— RPC 500
o 400
L 400 50
(]
2 200 M 25 250 ; 200
Q.
L
0 0 0 0
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
le6 le6 le6 le6
cheetah run fish swim acrobot swingup reacher hard
300 1000
800
c
= 150
600 600 750
g
100
) 500
_8 400 400
2 200 50 250
a 200
L
0 0 0
0.0 0.5 1.0 0.0 05 1.0 0.0 0.5 1.0

Step 1e6 Step 1e6 Step 1e6

Figure 4: Learning curves of agents in the DeepMind Control suite. Overall, LZ-SAC shows the
best learning speed and final performance. Lines are the average episodic returns collected in 20 test
episodes with a deterministic policy, averaged over five agents trained with different seeds. Shaded
regions represent 20-80 performance percentiles.

We evaluated the agents described in Section 3 on eight continuous control tasks from the DeepMind
Control Suite [34]. As an additional baseline we included Robust Predictable Control (RPC) from
[4], which compresses sequences of states rather than actions. Many of the tasks in the DeepMind
Control Suite promote behaviors with periodic action sequences, such as running and walking. While
specialized architectures exist for such tasks [35], we expect compressibility to be a useful inductive
bias for learning these behaviors. We trained agents for 1 million environment steps across five seeds
and evaluated their abilities at regular intervals with a deterministic policy, as in [7, 36]. We tuned
« for each agent and found an o = 0.1 to give the best performance in almost all tasks. We found
lower information costs o worked better for RPC. Tasks and hyperparameter fitting is described in
Appendix B.

Actuator 1 Actuator 3 Actuator 6
1.0

1.0 1.0
1.0 05 05 05
c < -
— o
S 00 0.0 0.0
2 g
< -os -05 -05
0038
~1.0-] -1.0 -1.0
o 6 25 50 75 100 6 25 50 75 100 6 25 50 75 100
Q 1.0 1.0 1.0
No6 c os 0s
o
@© D00 0.0 0.0
e 9]
o O 4 < -0.5 -0.5 -0.5
Qo 0. -1.01 -1.0) -10]
= 6 25 50 75 100 0 25 50 75 100 6 25 50 75 100
C 1.0 1.0 1.0
©
05 05 05
© 0.2 S
E o 0.0- 0.0 0.0
Q
< o5 -05 -05
0.0 -1.0 -1.0 -1.0
0 1 2 5 10 6 25 75 100 [75 100 6 25 75 100

Discretization resolution Step Step Step
Figure 5: Left: LZ-SAC works best when the discretization resolution allows the agent to distinguish
between compressible and incompressible sequences. Bars show mean return and SEM from 20
evaluation episodes over three seeds and three environments after 300k steps. Right: Time series
of actions produced by the LZ-SAC, SPAC and SAC agent in the walker run task. Action time
series of the SPAC agent exhibits a simpler periodic pattern, even outputting a constant value for its
third actuator. Actuators were chosen to show qualitatively different behaviors.

In a majority of the tasks, the LZ-SAC agent outperformed the SAC, RPC and MIRACLE agents in
learning speed and often final performance (Fig. 4). At worst, the LZ-SAC agent matched the learning
curves of SAC. This suggests that learning policies with simple sequence priors is indeed fruitful
for policy search. We investigated whether this performance difference could simply be attributed
to LZ-SAC acting more deterministically than SAC. Lowering the incentive of acting randomly for
SAC did not close the performance gap, and often led to worse returns (see Appendix B.1).

We conducted an additional ablation experiment to make sure the performance gain could be attributed
to the compressibility incentive: We varied the resolution with which we discretized the action
sequences used as input to the compression algorithm when LZ-SAC was trained. Across three
DeepMind Control tasks (cheetah run,acrobot swingupandwalker walk), we observe
that both too low and too high resolutions remove the performance gain of LZ-SAC: When the
resolution is 0, the compression bonus no longer conveys a signal about the simplicity of the policy.
Conversely, if the resolution is too high, every action sequence is equally incompressible due to the
continuous nature of the action space. We find that rounding to two decimal places gave the best
performance on average across the tasks (see Fig 5, left). Though we do not expect LZ-SAC to
always outperform SAC in more generic control settings, we see an improvement in many tasks with
periodic elements, like walking and running. We evaluate LZ-SAC in non-periodic tasks in Section 8.

In two tasks, acrobot swingup and fish swim, the SPAC agent showed a competitive advan-
tage over the other models. However, the SPAC agent lagged behind both the LZ-SAC agent and
SAC agent in tasks from the hopper, cheetah, and walker domains. Here the policy that the
SPAC agent learned achieves roughly 75% of the return of the LZ-SAC agent.

The policies learned by the SPAC agent shine in a different setting: The agent has discovered solutions
to these tasks that essentially use fewer action dimensions than the competitors (Fig. 5, right): For
certain actuators a;, the agent outputs a constant value throughout the episodes. For other actuators,
the agent alternates between two extreme values, like a soft bang-bang controller [37, 38]. Essentially,
the SPAC agent figures out which degrees of freedom it can eliminate without jettisoning rewards.
Having fewer degrees of freedom makes it easier to predict the action sequences produced by the
policy. This suggests that policy compression using adaptive sequence priors is better suited in tasks
with low-dimensional action spaces. Lastly, the difficulties of learning a policy and a sequence prior
jointly can be mitigated by using a pre-trained sequence model as a prior. We pre-trained Transformer
models to predict action sequences produced by the converged LZ-SAC agents in all eight control
tasks. Using the pre-trained Transformers with frozen weights sped up learning significantly and
allowed the SPAC agent to learn more rewarding behaviors (see Appendix G).

P —
4 1.0 — LZ-SAC
o 1 | ' ' | ! £ SPAC
3 J—
& 0.8 i 0.8- SAC
£ | | | @ MIRACLE
S — RPC
5 0.6 - | 8 0.6
—
N
o B =
Q %4 | T 04
N | | £
© 0.2 | :6
0.2
g 0.0 1D & i = \
Z T T T T T :
5?1 s £ & m@* @;‘f *g S 0.0 0.1 0.2 0.3 0.4 0.5
£ = Q £ 5 N
§ & & ¢ L P & F o)
“ @ ,Q‘J g (2 g & >
s & ¢ & & & 8
g (% < IS} b &
£ < g
& &

Figure 6: Left: Normalized return per bit attained by the agents in the eight tasks. Agents with simple
sequence priors achieve better return per bit ratios. Error bars represent the standard error of the
mean (SEM). Right: Normalized return averaged over all tasks as a function of noise scale. Error
bands represent the SEM.

5 Simple sequence priors for information-regularized RL

The expected difference in log-likelihood of the agents’ actions under the policy versus the prior is
an upper bound on the mutual information between states and actions [4, 11, 19]. Encouraging this
difference to be low acts as an information-regularizer, the prior p(a;|a;—,.;—1) being the information
bottleneck. We tested the information-efficiency of learned policies; that is, how much reward the
agents could collect relative to the information they used to make decisions. For the experiments, we
again tested the deterministic versions of the agents. Simulating 25 episodes, we computed how much
reward the agents were able to collect divided by the entropy of the distribution of actions used to solve

T
T
the task E [Z;l—[l] t} (see Appendix D.1 for details and experiments with stochastic policies). Since
a

the policies were deterministic, this entropy term approximated the mutual information between states
and actions I (s; a) (see Appendix D). In the left panel of Fig. 6, we show the normalized episodic
return per bit. This quantity represents how much reward the agent attains per bit of information it
uses on average to make a decision over the course of the episode.

The SPAC agent attained a superior return per bit ratio in five out of eight tasks. LZ-SAC attained the
highest return per bit ratio in two tasks, and SAC in one. This indicates that action sequence compres-
sion is a powerful information-regularizer, allowing agents to find policies that use significantly fewer
bits of information to collect reward than both policy compression models (SAC and MIRACLE),
and state sequence compression models (RPC).

6 Robustness to noise

Information-regularized policies tend to show stronger robustness to noisy observations [39, 4]: The
less an agent’s actions vary systematically with the state, the less will a perturbation to the agent’s
observation affect its actions. We assessed how observation noise affected the agents’ ability to collect
rewards. In the following experiments, we added Gaussian noise to the observations the policies were
conditioned on, s; « s; + ¢, where ¢, ~ N (0, diag(o)). We tested the agents on a series of noise
levels o; € [0.01,0.05,0.1,0.15,0.2,0.3, 0.5]. The effect of noise was probed in all tasks except the
hopper hop task, since here only the LZ-SAC agent reliably learned a policy that was better than
random. Each agent was evaluated using 50 episodes for each noise level.

We evaluated the agents based on how much reward they collected given various levels of observation
noise. Averaged over all tasks, the LZ-SAC agent showed the best ability to collect rewards when
observations were perturbed with Gaussian noise (see the right panel in Fig. 6). The agents that were
better at maximizing rewards showed greater sensitivity to noise: compared to the noise-free setting,
LZ-SAC and SAC dropped to 20% and 17% of their average performance, respectively. While the

LZ-SAC agent suffered greater percentage drops in return than the MIRACLE and SPAC agents,
it still retained the highest performance for all noise levels. In the highest noise settings, SAC is
comparable to the MIRACLE and SPAC agents, despite its generally stronger performance in the
noise-free setting. This indicates that the LZ-SAC agent performed better in the noisy setting not
only because the policy it learned was generally better at maximizing rewards, but also because of
robustness properties afforded by the sequence prior.

7 Open-loop control

If simple action sequences are pervasive in policies learned with RL, these priors could provide a
good starting point for policy search. To further test this claim, we evaluated how well tasks from the
DeepMind Control Suite could be solved by autoregressively generated action sequences from the
sequence priors themselves. We omitted RPC from this analysis since it has the same prior policy
as SAC. In our experiments, all agents produced the first 15 actions of an episode in a closed-loop
manner. We then conditioned the sequence priors with these first 15 actions and sampled actions
autoregressively for the remainder of the episode. The priors of the SAC and MIRACLE agents
have no autoregressive component, and generated action sequences in a memory-less manner. We
approximated samples from the L.Z4 prior by discretizing the action space and sampling the next
action proportionally to how low its encoding cost is, given the previous actions.

cheetah run walker run

3
S

=)
=]

— LZ-SAC
SPAC

— SAC
MIRACLE

0 50 100 150 200 250 0 100 200 300 400 500

Step Step

w
S

N
S
=
o

Cumulative rewards
N

=)
o

Normalized return

Figure 7: Left: Bars represent return attained in the open-loop phase exclusively. Error bars represent
the SEM. The sequence prior learned by the transformer generally performs the best. Notably, the
L.Z 4 prior performs well in tasks solved with periodic action sequences, like cheetah and walker.
Right: Average cumulative reward obtained by agents in the cheetah and walker tasks. Dashed
lines indicate where the open-loop controls start.

The adaptive prior implemented as a transformer generally performs the best in the open-loop setting
(Fig. 7, left). This is expected, as it was trained to predict behaviors that solve the tasks. In the
fish swim task a uniform prior collects more rewards in the open-loop phase than the sequences
generated by the transformer. However, increasing the number of closed-loop actions used to prompt
the transformer to 25 made it surpass the performance of the uniform prior (Appendix E). This points
to the importance of providing the sequence models with sufficient context to allow them to accurately
predict behavior.

More interesting is the performance of the prior obtained from the LZ4 algorithm. Not only does it
perform better than chance, but even comes close to the performance of the learned sequence prior in
tasks like cheetah runandwalker run. By conditioning on only a few actions from the policy,
autoregressively approximating samples from LZ4’s prior produced behaviors outperforming the
non-sequential priors used by SAC and MIRACLE (Fig. 7, right). This vindicates the compressibility
prior as a starting point for policy search.

8 Non-periodic and high-dimensional environments

Many DeepMind Control Suite tasks have solutions that are composed of repeating sub-sequences.
Can simple sequence priors be beneficial in tasks without prevalent periodic aspects, or in more
complex tasks with high-dimensional state spaces? We first evaluated LZ-SAC against SAC on

button-press-wall-v2 drawer-close-v2 reach-v2 DMC 100k
1.0+ 1.0

— LZ-SAC
038 06 — sac

bed
@

< 5004
=

4
o

06 2 4001
0.4- £ 400

e
0.4 < 3001

e
=

b
200
=

o
~

0.2

Success rate

e
°

.) | oo g)) oo -)
P I B oo 02 04 06 08 10 00 05 1 15 o
Step 1e5 Step 1es Step 1e5 LZSAC CURL SAC SACHAE

Figure 8: Left: Learning curves for three robotic manipulation tasks in the Metaworld benchmark.
Lines represent the success rate across 20 test episodes with a deterministic policy, averaged over
five agents trained with different seeds. Right: Average return attained in the pixel-based version of
the Deepmind Control Suite tasks across 20 test episodes after 100k environment steps, averaged
over six tasks and five seeds. Error bars reflect standard deviation. LZ-SAC with image augmentation
outperforms the SAC baseline and two state-of-the-art off-policy methods that combine SAC with
representation learning: one using contrastive learning (CURL) and one using an autoencoder
(SAC+AE).

three tasks from the Metaworld benchmark [40]. The Metaworld benchmark consists of robotic
manipulation tasks where periodic action sequences are less prevalent. Despite this, we found that the
simple sequence priors allowed agents to learn policies with higher success rates faster (see Fig. 8,
left). In fact, the solutions LZ-SAC developed for the robotics tasks often consisted of single, smooth
movements with the Sawyer arm. SAC on the other hand relied on more convoluted movements to
manipulate the environment, which were more prone to failure.

Next, we benchmarked LZ-SAC in pixel-based versions of six DeepMind Control Suite tasks. We
trained LZ-SAC and a SAC baseline on 100k environment steps, and modified both algorithms with a
convolutional neural network encoder and performed a random shift augmentation to images before
training the actor and critic. With this simple modification and our compression bonus, LZ-SAC
outperformed state-of-the-art off-policy algorithms like CURL [41] and SAC+AE [36] on average
over the six tasks (see Fig. 8, right). Across five seeds, LZ-SAC outperformed the three baseline
models on three out of the six tasks. See Appendix C.1 for the full scores and implementation details.

9 Discussion

We have argued that simplicity is a powerful principle to guide policy search in RL tasks. Because
control problems are often solved with sequences of actions that contain repeating temporal patterns,
we proposed to use simple sequence priors to create effective and robust RL agents. To provide
agents with a notion of compressibility, we proposed two models: One where the strategy used for
compression was fixed throughout training (LZ-SAC), and one where the strategy itself could change
with experience (SPAC). While the LZ-SAC agents either outperformed or matched the performance
of state-of-the-art methods like SAC, the SPAC agents learned more compressible strategies, attaining
more rewards while using fewer bits of information to make a decision. Furthermore, agents trained
with the LZ-SAC algorithm proved to be the most robust to observation noise. Lastly, both the trained
transformer model and the prior distilled from the LZ4 algorithm could autoregressively generate
rewarding behaviors in continuous control tasks.

While SPAC showed a better ability to maximize rewards than MIRACLE, returns were lower than
SAC and our alternative regularization technique. This is not unexpected. The transformer always
required some amount of learning to be able to predict a particular action sequence. The LZz4
algorithm, on the other hand, could immediately provide feedback about the compressibility of the
agent’s action sequences without any learning. For SPAC, having to learn a sequence prior induced a
stronger bottleneck, resulting in more compressed policies. This is consistent with results reported
by Eysenbach et al. [4], where a learned dynamics model was used to compress sequences of states:
Here compression with a learned prior led to lower returns, but a higher return per bit rate. Our results
suggest that sequence compression based on off-the-shelf compression algorithms like L.Z 4 are better
for policy search since there is no need for learning a sequence prior from scratch.

Limitations: Action sequence compression requires either an adaptive prior, a neural sequence
model, or a pre-programmed compression algorithm. The particular algorithm used for compression
adds computational overhead and determines the types of action sequences that will be favored by
the agent [32]. Future work should address the ways in which different compression algorithms or
sequence priors affect policy regularization. Furthermore, a sufficiently sophisticated sequence model
could in principle learn to predict complex action sequences. A possible extension of our work could
be to further penalize the description length of the weights of the sequence model, or the compression
algorithm, itself [42]. Finally, while we evaluated our algorithm on a large and diverse set of control
tasks within the DeepMind Control Suite and Metaworld, the utility of simple sequence priors could
be tested on other benchmarks. In discrete action settings, Atari games [43] would be an appropriate
benchmark.

Future Directions: A central feature of simple action sequences is that they are predictable. Being
able to predict one’s future behavior from past behavior could allow agents to simplify and compress
their representations of the state of the world [11, 4]: If the point of observing the state is to
determine what action to choose, one could discard information about the state of the world simply
by considering the actions that were performed previously. This suggests that simple sequence priors
could be beneficial for compressing policies and internal representations jointly.

Finally, humans show a preference for simplicity and compressibility in various domains [30, 2]: We
not only produce art and music full of patterns and regularity [44], but also explore novel environments
using compressible trajectories [45], and rely on simple rules to explain and generalize about complex
stimuli relationships [46—48]. Recently, dopamine activity in the tail of the mouse striatum was
argued to encode an action prediction error signal [49]. Such a signal also features in our augmented
reward function to compress the policy. In the end, our algorithms could therefore serve as models of
how biological agents learn compressible sequential strategies from reinforcement.

Acknowledgements

We thank the four anonymous reviewers for the instructive and helpful feedback during the review
process, as well as the members of the Computational Principles of Intelligence Lab for feedback
provided throughout the project. We also thank Can Demircan for providing comments on an earlier
draft. This work was supported by the Max Planck Society, the German Federal Ministry of Educa-
tion and Research (BMBF): Tiibingen Al Center, FKZ: 01IS18039A, and funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strat-
egy—EXC2064/1-390727645.

10

References

[1] Carl Rasmussen and Zoubin Ghahramani. Occam’s razor. Advances in neural information
processing systems, 13, 2000.

[2] Nick Chater and Paul Vitanyi. Simplicity: a unifying principle in cognitive science? Trends in
cognitive sciences, 7(1):19-22, 2003.

[3] Ray J Solomonoff. A formal theory of inductive inference. part i. Information and control, 7(1):
1-22, 1964.

[4] Ben Eysenbach, Russ R Salakhutdinov, and Sergey Levine. Robust predictable control. Ad-
vances in Neural Information Processing Systems, 34:27813-27825, 2021.

[5] Pedro A Ortega and Daniel A Braun. Thermodynamics as a theory of decision-making with
information-processing costs. Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 469(2153):20120683, 2013.

[6] Felix Leibfried and Jordi Grau-Moya. Mutual-information regularization in markov decision
processes and actor-critic learning. In Conference on Robot Learning, pages 360-373. PMLR,
2020.

[7] Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan,
Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms
and applications. arXiv preprint arXiv:1812.05905, 2018.

[8] Jiirgen Schmidhuber. Learning complex, extended sequences using the principle of history
compression. Neural Computation, 4(2):234-242, 1992.

[9] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[10] Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735-1780, 1997.

[11] Alexander A Alemi, Ian Fischer, Joshua V Dillon, and Kevin Murphy. Deep variational
information bottleneck. arXiv preprint arXiv:1612.00410, 2016.

[12] Amy Zhang, Rowan McAllister, Roberto Calandra, Yarin Gal, and Sergey Levine. Learning
invariant representations for reinforcement learning without reconstruction. arXiv preprint
arXiv:2006.10742, 2020.

[13] Brian D Ziebart, Andrew L. Maas, J] Andrew Bagnell, Anind K Dey, et al. Maximum entropy
inverse reinforcement learning. In Aaai, volume 8, pages 1433—-1438. Chicago, IL, USA, 2008.

[14] Sergey Levine. Reinforcement learning and control as probabilistic inference: Tutorial and
review. arXiv preprint arXiv:1805.00909, 2018.

[15] Raef Bassily, Shay Moran, Ido Nachum, Jonathan Shafer, and Amir Yehudayoff. Learners that
use little information. In Algorithmic Learning Theory, pages 25-55. PMLR, 2018.

[16] Naftali Tishby and Noga Zaslavsky. Deep learning and the information bottleneck principle. In
2015 ieee information theory workshop (itw), pages 1-5. IEEE, 2015.

[17] Naftali Tishby and Daniel Polani. Information theory of decisions and actions. In Perception-
action cycle: Models, architectures, and hardware, pages 601-636. Springer, 2010.

[18] Jordi Grau-Moya, Felix Leibfried, and Peter Vrancx. Soft g-learning with mutual-information
regularization. In International conference on learning representations, 2018.

[19] Naftali Tishby, Fernando C Pereira, and William Bialek. The information bottleneck method.
arXiv preprint physics/0004057, 2000.

11

[20] Anirudh Goyal, Riashat Islam, Daniel Strouse, Zafarali Ahmed, Matthew Botvinick, Hugo
Larochelle, Yoshua Bengio, and Sergey Levine. Infobot: Transfer and exploration via the
information bottleneck. arXiv preprint arXiv:1901.10902, 2019.

[21] Maximilian Igl, Kamil Ciosek, Yingzhen Li, Sebastian Tschiatschek, Cheng Zhang, Sam Devlin,
and Katja Hofmann. Generalization in reinforcement learning with selective noise injection and
information bottleneck. Advances in neural information processing systems, 32, 2019.

[22] Xingyu Lu, Kimin Lee, Pieter Abbeel, and Stas Tiomkin. Dynamics generalization via informa-
tion bottleneck in deep reinforcement learning. arXiv preprint arXiv:2008.00614, 2020.

[23] Glen Berseth, Daniel Geng, Coline Devin, Nicholas Rhinehart, Chelsea Finn, Dinesh Jayaraman,
and Sergey Levine. Smirl: Surprise minimizing reinforcement learning in unstable environments.
arXiv preprint arXiv:1912.05510, 2019.

[24] Joshua Achiam and Shankar Sastry. Surprise-based intrinsic motivation for deep reinforcement
learning. arXiv preprint arXiv:1703.01732,2017.

[25] Yuri Burda, Harri Edwards, Deepak Pathak, Amos Storkey, Trevor Darrell, and Alexei A Efros.
Large-scale study of curiosity-driven learning. arXiv preprint arXiv:1808.04355, 2018.

[26] Lucy Lai and Samuel J Gershman. Policy compression: An information bottleneck in action
selection. In Psychology of Learning and Motivation, volume 74, pages 195-232. Elsevier,
2021.

[27] Shuchen Wu, Noémi Elteto, Ishita Dasgupta, and Eric Schulz. Learning structure from the
ground up—hierarchical representation learning by chunking. Advances in Neural Information
Processing Systems, 35:36706-36721, 2022.

[28] Noémi Eltetd, Dezsé Nemeth, Karolina Janacsek, and Peter Dayan. Tracking human skill
learning with a hierarchical bayesian sequence model. PLoS Computational Biology, 18(11):
€1009866, 2022.

[29] Marcel Binz and Eric Schulz. Modeling human exploration through resource-rational reinforce-
ment learning. In Advances in Neural Information Processing Systems, 2022.

[30] Sreejan Kumar, Carlos G Correa, Ishita Dasgupta, Raja Marjieh, Michael Y Hu, Robert
Hawkins, Jonathan D Cohen, Karthik Narasimhan, Tom Griffiths, et al. Using natural language
and program abstractions to instill human inductive biases in machines. Advances in Neural
Information Processing Systems, 35:167—-180, 2022.

[31] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter
Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning

via sequence modeling. Advances in neural information processing systems, 34:15084-15097,
2021.

[32] Khalid Sayood. Introduction to data compression. Morgan Kaufmann, 2017.

[33] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018.

[34] Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David
Budden, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite.
arXiv preprint arXiv:1801.00690, 2018.

[35] Arjun Sharma and Kris Kitani. Phase-parametric policies for reinforcement learning in cyclic
environments. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32,
2018.

[36] Denis Yarats, Amy Zhang, Ilya Kostrikov, Brandon Amos, Joelle Pineau, and Rob Fergus.

Improving sample efficiency in model-free reinforcement learning from images. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 35, pages 10674-10681, 2021.

12

[37] Richard Bellman, Irving Glicksberg, and Oliver Gross. On the “bang-bang” control problem.
Quarterly of Applied Mathematics, 14(1):11-18, 1956.

[38] Tim Seyde, Igor Gilitschenski, Wilko Schwarting, Bartolomeo Stellato, Martin Riedmiller,
Markus Wulfmeier, and Daniela Rus. Is bang-bang control all you need? solving continuous

control with bernoulli policies. Advances in Neural Information Processing Systems, 34:
27209-27221, 2021.

[39] Benjamin Eysenbach and Sergey Levine. Maximum entropy 1l (provably) solves some robust rl
problems. arXiv preprint arXiv:2103.06257, 2021.

[40] Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and
Sergey Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement
learning. In Conference on robot learning, pages 1094-1100. PMLR, 2020.

[41] Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Curl: Contrastive unsupervised represen-
tations for reinforcement learning. In International Conference on Machine Learning, pages

5639-5650. PMLR, 2020.

[42] Alex Graves. Practical variational inference for neural networks. Advances in neural information
processing systems, 24, 2011.

[43] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning
environment: An evaluation platform for general agents. Journal of Artificial Intelligence
Research, 47:253-279, 2013.

[44] Jirgen Schmidhuber. Formal theory of creativity, fun, and intrinsic motivation (1990-2010).
IEEE transactions on autonomous mental development, 2(3):230-247, 2010.

[45] Mona M Garvert, Tankred Saanum, Eric Schulz, Nicolas W Schuck, and Christian F Doeller.
Hippocampal spatio-predictive cognitive maps adaptively guide reward generalization. Nature
Neuroscience, 26(4):615-626, 2023.

[46] Can Demircan, Tankred Saanum, Leonardo Pettini, Marcel Binz, Blazej M Baczkowski, Paula
Kaanders, Christian F Doeller, Mona M Garvert, and Eric Schulz. Language aligned vi-
sual representations predict human behavior in naturalistic learning tasks. arXiv preprint
arXiv:2306.09377, 2023.

[47] Neil R Bramley, Peter Dayan, Thomas L Griffiths, and David A Lagnado. Formalizing neurath’s
ship: Approximate algorithms for online causal learning. Psychological review, 124(3):301,
2017.

[48] Bonan Zhao, Christopher G Lucas, and Neil R Bramley. How do people generalize causal
relations over objects? a non-parametric bayesian account. Computational Brain & Behavior, 5
(1):22-44, 2022.

[49] Francesca Greenstreet, Hernando Martinez Vergara, Sthitapranjya Pati, Laura Schwarz, Matthew
Wisdom, Fred Marbach, Yvonne Johansson, Lars Rollik, Theodore Moskovitz, Claudia Clopath,
et al. Action prediction error: a value-free dopaminergic teaching signal that drives stable
learning. BiorXiv, pages 2022-09, 2022.

[50] Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan,
Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms
and applications. arXiv preprint arXiv:1812.05905, 2018.

[51] Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control:
Learning behaviors by latent imagination. arXiv preprint arXiv:1912.01603, 2019.

[52] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines.
In Icml, 2010.

[53] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

13

[54] Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Mastering visual continuous
control: Improved data-augmented reinforcement learning. arXiv preprint arXiv:2107.09645,
2021.

[55] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation
of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555,
2014.

14

A Implementation details

Our algorithm is an extension of the Soft Actor-Critic algorithm [7, 50], implemented in PyTorch.
Like [36, 51], we initialize agents’ replay buffer with a 1000 seed observations collected with a
uniform random policy. We update the Q-network pairs to predict the augmented () value function
at every interaction step, and the actor network to maximize the augmented () value function every
second interaction step. The augmented () targets take the following form:

y=r(se,ar) + 7 [Qsi41,a41) — alog mo(art1[si41) — log do(ar1ar—r:t))] (©6)
where a;11 ~ mp(+|s¢+1)- To train the networks we sampled B tuples of state, actions, next state,
reward and terminal flags, as well as the 7 actions that led to them. To allow the agent to train on
observations early in episodes, we sampled 7 from a uniform distribution of integers between 5
and Tx (see tables 1, 2) for every mini-batch sample used for training. We update the adaptive
priors used in SPAC and MIRACLE together with the actor network. All actor and critic networks
consisted of two hidden layers with 256 ReLU units [52] each. The action prior used in MIRACLE
was implemented as a multivariate isotropic Gaussian with learnable mean and standard deviation.

Since actions are bounded between -1 and 1, we transform actions sampled from the policy using
the tanh transform a; = tanh(u;), u; ~ mp. We transformed the log-likelihood of an action under a
Gaussian policy 7y or action prior ¢y using the following formula [7, 50]:

D
log me(ay|s;) = log p(uglst) — Z log(1 — tanh?(u;)) (N
i=1
D
log ¢g(as|ai_r¢—1) = logg(uela,_ry—1) — Z log(1 — tanh®(u;)) (8
=1

where log ¥g(u¢|a;—,.+—1) is the log likelihood of the untransformed action u; under the untrans-
formed sequence prior g.

A.1 Quantifying compressibility

We used the Lz 4 algorithm to quantify the compressibility of action sequences. The following code
snippet describes how we computed the sequence complexity term in Eq. 3

sequence_i = action_sequence.numpy().ravel()

get length of compressed sequence at t

length_tl = len(compression_algorithm.compress(sequence_i))

action next = policy(state).numpy().ravel() # get next on-policy action
sequence_Jj = np.concatenate((sequence_i, action_next), axis=0)

get length of compressed sequence at t+1

length_t2 = len(compression_algorithm.compress(sequence_j))

delta = length t - length t2 # delta is the difference

Since the actions were continuous vectors, we quantized all action sequences with the following
function:

def quantize(action_sequence, N=100):
return (action_sequence*N).floor()

Here N determines the granularity of the quantization, with lower N producing more coarse-grained
sequences. We set NV = 100 for our experiments.

A.2 Pseudo-code for 1Z4 algorithm

The 174 algorithm compresses sequences by replacing repeating sub-sequences in the data with
references to an earlier occurring copy of the sub-sequence. These copies are maintained in a sliding

15

window. Repeating sub-sequences are encoded as length-distance pairs (I, d), specifying that a set of
[symbols have a match d symbols back in the uncompressed sequence. The following pseudo-code
sketches compression implemented by LZ4 [32]:

Algorithm 1 LZ4 pseudo-code

Require: Buffer size b, window size w, sequence k
t=0
window <+ ()
while t < len(k) do
match < longest repeated occurrence in window found in k.14
if match exists then
d < distance to start of match
l < length of match
¢ < symbol at k;
else
d<+0
l+0
c+0
end if
output (d, 1, ¢)
start < max(t — w + 1, 0)
endt + t+1
window < kstarl:end
t—t+1+1
end while

B Hyperparameters

B.1 Increasing reward scale

cheetah run walker run hopper stand

800
800
700

E 600
Jg 000 500 600
—
8 400 — LZ-SAC 400 400
8 — SAC 300
a 200 SAC o 200 200
i 2 100
0 0 0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Step Step Step

Figure 9: Halving the incentive of acting randomly does not close the performance gap between
LZ-SAC and SAC.

We investigated whether LZ-SAC’s performance improvement could simply be attributed to the incen-
tive to act more deterministically. We tested whether we could attain the same level of performance
with SAC just by lowering the incentive of acting randomly. Doubling the scale of extrinsic reward
relative to the intrinsic reward of acting randomly did not close the gap between the algorithms (Fig.
9). Instead, we see a decline in performance when we set the incentive of randomness lower than
o = 0.1 (or @ = 0.02 inwalker run). This indicates that there is value in having a preference for
simplicity on the sequence level that goes beyond simply being predictable at the level of individual
actions.

B.2 Algorithm hyperparameters

We implement all algorithms using hyperparameters from [36], with slight deviations depending on
the task. Since the computational overhead of using 1z4 as a compressor is small compared to the

16

transformer, we train the agents using larger action sequences. All networks were trained with the
Adam optimizer [53]. A full list of hyperparameters is given below:

Table 1: Hyperparameters used for SAC, MIRACLE, LZ-SAC, and SPAC

Hyperparameter Value
Complexity cost « (walker run, hopper hop, quadruped walk) 0.02
Complexity cost (all other environments) « 0.1
Discount vy 0.99
Critic update frequency 1
Actor update frequency 2
Action prior update frequency 2
Soft update p 0.01
Batch size 128
Learning rate actor 1073
Learning rate critic 1073
Optimizer Adam
Max context length LZ-SAC (Tinax) Interaction steps in episode x 0.4
Max context length LZ-SAC (Tmax; walker run) Interaction steps in episode x 0.25

B.3 Transformer

The SPAC agent uses a causal transformer [9] to learn a prior over action sequences. Our transformer
was implemented with the following hyperparameters:

Table 2: Transformer hyperparameters.

Hyperparameter Value
Attention heads 5
Embedding dimensions 30
Learning rate decay Linear
Warmup tokens 10000
Max context length (Tiax) 20
Number of layers 2
Learning rate 3x 107
Dropout 0.1
Optimizer Adam

C Task specification

We evaluated agents on tasks from the DeepMind Control Suite. Though dynamics are otherwise
deterministic, the starting state of an episode is sampled from a distribution p(sg). All episodes
consist of 1000 environment steps. However, in practice the episode length is reduced to a number of
interaction steps, that is smaller than 1000. This is due to an action repeat hyperparameter which
determines how many times an action a; is repeated after it is selected. An action repeat value of
4 thus reduces the number of time steps where the agent needs to act to 250 interaction steps. The
action repeat hyperparameter makes it more practical to train agents in the DeepMind Control Suite
[34]. We adopt conventional action repeat settings from the literature [36]. In the walker and
hopper domains we fitted the action repeat value for all agents among [2, 4, 8] and chose the value
that produced the best performance. Table 3 shows the action repeat values used in our experiments:

C.1 Pixel-based control
Our LZ-SAC and SAC implementations in the visual control domain differed little from the

state-based implementations. We equipped the agents with the convolutional neural network
architecture and image augmentation transformation from [54]. All MLPs had two hidden

17

Table 3: Action repeat values.

Task Action repeat
acrobot swingup
cheetah run
fish swim
hopper hop
hopper stand
quadruped walk
reacher hard
walker run
walker run (SPAC)

BN (S S Nl o NI N e}

Table 4: All final average model scores in the DeepMind Control 100k benchmark with pixel
observations. Scores are averaged over 10 runs after 100k steps for five seeds. Scores of the other
baselines are the ones reported in the respective papers [41] [36].

DMC 100k LZ-SAC SAC CURL SAC+AE
Finger, Spin 814 738 767 740
Cartpole, Swingup 683 609 582 311
Walker, Walk 635 609 403 394
Ball In Cup, Catch 653 499 769 391
Cheetah, Run 307 396 299 274
Reacher, Easy 513 427 538 274

layers and 512 ReLU units. We optimized the o hyperparameter both for the LZ-SAC and
SAC agents for all tasks with a grid search. For tasks with higher dimensional action spaces
a lower a of 0.01 worked best. In the end, the best performing « for both algorithms was the
same across task. Since LZ4 encoding lengths are not necessarily on the same scale as the log
likelihoods of the actions given the state in Equation 4, we experimented with scaling the 1.Z4 en-
coding cost by 0.5, which slightly improved performance. The full scores of the models are in Table 4.

Table 5: Action repeat values and complexity cost for both LZ-SAC and SAC agents in the pixel-based
tasks.

Task Action repeat | «

finger spin 2 0.01
cartpole swingup 8 0.1
walker walk 2 0.01
ball in cup catch 4 0.01
cheetah run 4 0.01
reacher easy 2 0.1

D Mutual information approximation

The mutual information (X ;Y") between variables X and Y is a measure of how much they depend
on each other. In our case we are interested in the mutual information between states and actions
I(s;a). The mutual information here quantifies how many bits of information knowing the outcome
of the random variable s; provides about the other random variable a;, in other words, how much the
state reveals about what action will be selected. The more an agent’s actions vary as a function of the
state, the more bits of information the state reveals about the action that the agent will select.

The mutual information is defined as the following quantity
I(a;s) = H[a] - Hlals] ©)

18

0.4

LI 1, 10 Dy
| B}

Normalized return per bit
o o +
[=)] =]
66"0’ 1

Figure 10: Return per bit for the stochastic policies. LZ-SAC attains the highest return per bit ratio in
most tasks.

To compute the mutual information we need to know the entropy of the distribution of actions used to
solve the task, and the conditional entropy of a|s. Since we make the policies deterministic, we know
that #H[a|s] = 0. This way the mutual information reduces to the entropy over actions #[a]. Given a
sample of actions produced by the agent solving the task, we approximate #[a] the following way:
We first quantized each selected action into 100 X |.4] bins, where A is the action space. We then
calculated a categorical distribution over actions based on the frequencies of the quantized actions, the
entropy of which we used as our approximation for H[a]. The categorical distribution was calculated
based on actions selected over 50 episodes.

D.1 Return per bit for stochastic policies

We evaluated the information efficiency of the stochastic variants of the policies learned by LZ-SAC,
SPAC, SAC and MIRACLE. We approximated the entropy of the distribution of actions in the same
way described above, sampling actions over 50 episodes. To compute the conditional entropy of
actions given the state 7{[a|s], we sampled 1000 actions from the policy at every state s;. We then
calculated a categorical distribution (described in previous section) based on this sample, the entropy
of which we used as our approximation of the conditional entropy H[a|s]. In this setting too, the
SPAC algorithm tends to produce the most information efficient agents (Fig. 10).

E Open-loop control

Increasing the number of closed-loop actions used to prompt the transformer makes it generate more
rewarding action sequences. This shows the importance of providing the sequence models with
enough context, to be able to predict rewarding behaviors (Fig. 11).

F Partial observability

The augmented reward function that induces the preference for simple action sequences depends
on the actions the agent selected in the past. This makes the reward function partially observable
for a purely state-conditioned policy. Our agents learn to maximize this reward function despite
this partial observability. We tested whether augmenting the state to contain information about
actions selected in the past produced substantial differences in the learned policies. We equipped
the LZ-SAC agents with a recurrent neural network (a Gated Recurrent Unit [55]) whose inputs
were sequences of actions. We trained this network along with a single readout layer to produce
embeddings e; of action sequences with which we defined the augmented state a; ~ 7y (-|S;) where

19

C 800
—_

2 600
[

et
@ 400
©

o
.2 200
[o%

5N}
0

& BB
[VERRNVT]
s O
o o

320

complexity

4300
[©]

enc
IS
N
©
o

u
~
N
o
<]

Seq

n
° I
5 2004 |
= |
L 150 :
g |
.= 100 | I
-+
© I m— | Z-SAC
35 501 | SPAC
e | — SAC
> MIRACLE
O o
0 50 100 150 200 250
Step
Figure 11: Cumulative rewards attained by sequence priors in the f£ish swim environment, with a
prompt length of 25.
cheetah run hopper hop hopper stand
80
J\-‘/M‘N 70 800{ =—— LZ-SAC
v 60 LZ-SAC RNN
st 600 4 4/..
40 400 r_//"
' 30 2
20 200
f 20 y
0 —A= of =
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
1500
1495 1500 mag
YW .
W 1490 A‘M.l,\ﬂ;_ 1450 YR
‘ ‘ ;‘ww 1485 ' \;dw 1400 \M N,
B 1, Wt 1480 1350 4]
i \ 'MM 1475
1470 1300
1465 1250
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
Step Step Step

Figure 12: Returns and compressibility of action sequences when the reward function is partially

fish swim

observable and fully observable.

8¢ = Concatenate(s, e;). In three tasks we observed only minor differences in the policies learned

(Fig 12).

G Pretraining the prior

We trained Transformer models to perform next-action prediction from action sequences produced by
the converged LZ-SAC agent for all tasks. Using the pretrained transformers (with frozen weights)
rather than a randomly initialized one whose weights were updated with stochastic gradient descent
sped up learning significantly and allowed the SPAC agent to learn more rewarding behaviors (see
Fig. 13). This showcases an interesting possible connection between our sequence compression

framework and behavioral cloning.

20

hopper stand hopper hop quadruped walk walker run

c

5 600 SPAC 75 750 750

40-,) —— SPAC-pretrained pAp~

< 400 ’ 50 500 500

[

-8 200 25 250 250

0

o 0 0 0 0

w 0o 0.5 1.0 0.0 05 10 0.0 0.5 1.0 0.0 0.5 1.0

le6 . . le6 . le6 16

c cheetah run fish swim acrobot swingup 1000 reacher hard

S 750 750

B

o 500

p 500 100 500

ko)

o 250 250 ’/w

0

Q o 0 0

w oo 05 10 0.0 05 10 0.0 0.5 1.0 0.0 0.5 1.0
Step le6 Step 1le6 Step le6 Step le6

Figure 13: Learning curves for SPAC using a pretrained transformer with frozen weights and a
randomly initialized transformer. Using a pretrained transformer allows SPAC to solve the more
challenging tasks in the benchmark. Learning curves are averaged over three seeds. Shaded region
represents 20-80 percentile.

21

	Introduction
	Related work
	Control with simple sequences
	Simplicity with learned priors
	Simplicity with compression algorithms
	Implementational details

	Simple sequence priors guide policy search
	Simple sequence priors for information-regularized RL
	Robustness to noise
	Open-loop control
	Non-periodic and high-dimensional environments
	Discussion
	Implementation details
	Quantifying compressibility
	Pseudo-code for lZ4 algorithm

	Hyperparameters
	Increasing reward scale
	Algorithm hyperparameters
	Transformer

	Task specification
	Pixel-based control

	Mutual information approximation
	Return per bit for stochastic policies

	Open-loop control
	Partial observability
	Pretraining the prior

