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ABSTRACT

Federated semi-supervised learning (FSSL) has emerged as a powerful paradigm
for collaboratively training machine learning models using distributed data with
label deficiency. Advanced FSSL methods predominantly focus on training a
single model on each client. However, this approach could lead to a discrepancy
between the objective functions of labeled and unlabeled data, resulting in gra-
dient conflicts. To alleviate gradient conflict, we propose a novel twin-model
paradigm, called Twin-sight, designed to enhance mutual guidance by providing
insights from different perspectives of labeled and unlabeled data. In particular,
Twin-sight concurrently trains a supervised model with a supervised objective
function while training an unsupervised model using an unsupervised objective
function. To enhance the synergy between these two models, Twin-sight intro-
duces a neighbourhood-preserving constraint, which encourages the preservation
of the neighbourhood relationship among data features extracted by both models.
Our comprehensive experiments on four benchmark datasets provide substantial
evidence that Twin-sight can significantly outperform state-of-the-art methods
across various experimental settings, demonstrating the efficacy of the proposed
Twin-sight. The code is publicly available at: github.com/tmlr-group/Twin-sight.

1 INTRODUCTION

Federated learning (FL) (Yang et al., 2019; Kairouz et al., 2021; Li et al., 2021; McMahan et al.,
2017; Wang et al., 2020) has gained widespread popularity in machine learning, enabling models
to learn from decentralized devices under diverse domains (Li et al., 2019; Xu et al., 2021; Long
et al., 2020a). Despite the benefits of FL, obtaining high-quality annotations remains challenging in
resource-constrained scenarios, often leading to label deficiency and degraded performance (Jin et al.,
2023). In this regard, federated semi-supervised learning (FSSL) (Diao et al., 2022; Liu et al., 2021c;
Jeong et al., 2021) has achieved significant improvements in tackling label scarcity by jointly training
a global model using labeled and/or unlabeled data.

Advanced FSSL methods propose to combine off-the-rack semi-supervised methods (Sohn et al.,
2020; Xie et al., 2020a; Berthelot et al., 2020) with FL (McMahan et al., 2017; Li et al., 2020),
leveraging the strengths of both approaches like pseudo-labeling (Lee et al., 2013) and teacher-
student models (Tarvainen & Valpola, 2017). These methods typically train a single model on
each client using labeled or unlabeled data, following the inspirits of traditional semi-supervised
learning. However, the decentralized nature of FL scenarios distinguishes FSSL from traditional
semi-supervised learning, where labeled and unlabeled data are on the same device. Namely, clients
in FL may have diverse capabilities to label data, leading to label deficiency on many clients (Liu
et al., 2021c; Yang et al., 2021; Liang et al., 2022). Training a single model using different objective
functions could make gradients on different distributions collide, as depicted in Figure 2(a). Thus, it
is urgent to develop an FL-friendly semi-supervised learning framework to tackle label deficiency.

To combat label deficiency, we propose a twin-model paradigm, called Twin-sight, to enhance mutual
guidance by providing insights from different perspectives of labeled and unlabeled data, adapting

∗Equal contributions.
†Correspondence to Bo Han (bhanml@comp.hkbu.edu.hk).

1

https://github.com/tmlr-group/Twin-sight


Published as a conference paper at ICLR 2024

Labeled 
client

Unlabeled 
client

U

S

Unsupervised
loss

Supervised
loss

Labeled data
Unlabeled data

Twin-sight
loss

Supervised model Unsupervised model

U

S

Data embedding

Distance vector

U S

Twin-sight

, ,

Distance vector

Unsupervised
loss

Supervised
loss

Twin-sight
loss

Figure 1: Overview of Twin-sight. The framework illustrates the process for both fully-labeled and
fully-unlabeled clients. Each client incorporates a supervised model and an unsupervised model.
The supervised model undergoes supervised learning using either ground-truth labels or pseudo
labels, while the unsupervised model performs self-supervised learning. This approach enables the
generation of twin sights for each sample, capturing both supervised and unsupervised perspectives.
Subsequently, these two models are aligned, leveraging the complementary information.

traditional semi-supervised learning to FL. In particular, Twin-sight trains a supervised model using a
supervised objective function, while training an unsupervised model using an unsupervised objective
function. The twin-model paradigm naturally avoids the issue of gradient conflict. Consequently,
the interaction between the supervised and unsupervised models plays a crucial role in Twin-sight.
Drawing inspiration from traditional semi-supervised learning (Belkin & Niyogi, 2004) from a
manifold perspective (Roweis & Saul, 2000), we introduce a neighborhood-preserving constraint to
encourage preserving the neighborhood relation among data features extracted by these two models.
Consequently, the supervised and unsupervised models can co-guide each other by providing insights
from different perspectives of labeled and unlabeled data without gradient conflict.

The overview of the proposed Twin-sight can be found in Figure 1. In Twin-sight, the unsupervised
objective function, e.g., instance discrimination (Wu et al., 2018)1, does not vary with the presence
or absence of labels for the unsupervised model. In contrast, the supervised objective function
varies with the presence or absence of labels. For clients with label information, it can be a vanilla
objective, e.g., cross-entropy loss. For clients without labels, Twin-sight regards predictions with high
confidence as reliable labels to perform supervised learning. In Twin-sight, the constraint remains
the same whether labels exist, encouraging the preservation of neighborhood relation (Sarkar et al.,
2022; Gao et al., 2023; Pandey et al., 2021). Comprehensive experiments conducted on four standard
datasets demonstrate the efficacy of the proposed Twin-sight.

Overall, our contributions can be summarized as follows:

• We point out that the discrepancy between the objective functions of labeled and unlabeled
data could cause gradient conflict, posing specific challenges for semi-supervised learning
approaches in FL scenarios.

• To tackle label deficiency, we propose a twin-model framework, Twin-sight, to tackle
gradient conflict in federated learning. Twin-sight trains a supervised model paired with an
unsupervised model. Meanwhile, Twin-sight introduces a constraint to make the two models
co-guide each other with insights from different perspectives of labeled and unlabeled data
by preserving the neighborhood relation of data features.

1The objective function can refine class-level identification into fine-grained challenges causally (Chalupka
et al., 2014; Mitrovic et al., 2020).
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• We conduct comprehensive experiments under various settings using widely used benchmark
datasets. Our experimental results show that Twin-sight outperforms previous methods,
achieving state-of-the-art performance.

2 RELATED WORK

Federated Learning. Federated learning (FL) enables distributed clients to collaboratively train a
global model with privacy-preserving (Kairouz et al., 2021; Ji et al., 2023). However, the performance
of federated learning typically suffers from heterogeneity in data distributions, processing capabilities,
and network conditions among clients (Lin et al., 2020; Li et al., 2022; Diao et al., 2023; Zhu et al.,
2022; Tang et al., 2022). One of the most popular algorithms in FL is FedAvg (McMahan et al.,
2017), which aggregates parameters from randomly selected clients to create a global model and
achieves convergence after several rounds of communication. A series of works, e.g., FedProx (Li
et al., 2020), SCAFFOLD (Karimireddy et al., 2020), is proposed to calibrate the local updating
direction. These methods implicitly assume that all clients can label data, which could be violated in
many practical scenarios. Some approaches include the sharing of privacy-free information (Tang
et al., 2022) or the use of protected features (Yang et al., 2023). These strategies have shown promise
in achieving better performance.

Semi-Supervised Federated Learning (SemiFL). To relax the assumption, SemiFL (Diao et al.,
2022) assumes that the server can annotate data, while clients collect data without labels. In SemiFL,
selected clients generate pseudo-labels using the global model and then fine-tune the aggregated
model using labeled data on the server side. Semi-supervised learning is a well-established approach
that has proven to be effective in improving the performance of machine learning models by making
use of both labeled and unlabeled data (Zhu et al., 2003; Zhu & Goldberg, 2009). Self-training
methods (Xie et al., 2020b; Zoph et al., 2020; Liu et al., 2021b) have emerged as a popular approach
for semi-supervised learning, in which a teacher model is trained on labeled data and used to
generate pseudo-labels for the remaining unlabeled data. Another significant line of work is based on
consistency training (Tarvainen & Valpola, 2017; Xie et al., 2020a). Apart from the above, combining
these two methods is effective in achieving improved performance on various benchmark datasets,
e.g., MixMatch (Berthelot et al., 2019), FixMatch (Sohn et al., 2020), and RemixMatch (Berthelot
et al., 2020). However, the server may fail to collect data due to privacy concerns.

Federated Semi-Supervised Learning (FSSL). Advanced works assume that the some clients have
labeled data (Jin et al., 2023; Liu et al., 2021c), which has garnered significant attention. One stream
of research focuses on the fully-labeled clients versus fully-unlabeled clients (Liu et al., 2021c;
Yang et al., 2021; Liang et al., 2022), while another body of literature studies the use of partially
labeled data at each client (Long et al., 2020b; Lin et al., 2021; Wei & Huang, 2023). For instance,
RSCFed (Liang et al., 2022) leverages mean-teacher on fully-unlabeled clients and sub-sample clients
for sub-consensus by distance-reweighted model aggregation. This approach comes at the cost of
increased communication burden. FedIRM (Liu et al., 2021c) learns the inter-client relationships
between different clients using a relation-matching module. However, these methods merely train a
single model on labeled and unlabeled data, causing the gradient conflict issue.

Self-Supervised Learning. Self-supervised learning is an increasingly popular approach to acquiring
meaningful representations without needing explicit labels (He et al., 2020; Chen & He, 2021). Con-
trastive methods (Wu et al., 2018; Bachman et al., 2019; Misra & Maaten, 2020) have demonstrated
state-of-the-art performance, which enforces the similarity of representations between two augmented
views of input. One of the predominant methods, SimCLR (Chen et al., 2020), applies InfoNCE
(Oord et al., 2018) loss to discriminate positive pairs from numerous negative samples. There is a
work (Zhuang et al., 2021) also investigates the federated version of these unsupervised methods.
Previous work shows that the instance discrimination task can be regarded as a (more challenging)
fine-grained version of the downstream task (Mitrovic et al., 2020). These insightful works inspire us
to introduce self-supervised learning into FSSL for processing unlabeled data.

3 METHODOLOGY

In this section, we present our “Twin-sight” framework in detail. Before that, we provide a formal
definition of the studied problem (Sec 3.1) and the motivation (Sec 3.2). We then elaborate on the
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twin-model paradigm (Sec 3.3), outlining the roles and training procedures of the supervised and
unsupervised models. Finally, we explore the interaction between these two sights (Sec 3.4).

3.1 PROBLEM DEFINITION

In general, FL tends to train a global model parameterized by w with K participants collaboratively.
In other words, the objective function J (w) of the global model is composed of the local function
over all participants’ data distribution:

min
w
J (w) =

K∑
k=1

βkJk(wk), (1)

where βk determines the weight of the k-th client’s objective function. The k-th client possesses a
local private dataset denoted by Dk, drawn from the distribution P (Xk, Yk).

In FSSL, a typical scenario involves M clients with fully-labeled data, while the remaining T
clients have unlabeled data. The set of all clients C = {ck}Kk=1 can be divided into two subsets,
CL = {cm}Mm=1 and CU = {ct}Tt=1, corresponding to the clients with labeled and unlabeled data,
respectively. The dataset of the m-th client in CL is DL

m = {(xi
m, yim)}Nm

i=1 ∼ P (Xm, Ym) and
DU

t = {(xi
t)}

Nt
i=1 ∼ P (Xt) denotes the dataset containing data witout annotation for ct.

3.2 MOTIVATION

In the existing FSSL framework, the local objective function on labeled data can be formulated as:

Jm(wm) := E(x,y)∼P (Xm.Ym)ℓ(wm;x, y), (2)

where (Xm, Ym) is the random variable denoting the image Xm and its label Ym and ℓ(·) is the
cross-entropy loss. To leverage unlabeled data, advanced methods (Liang et al., 2022; Liu et al.,
2021c; Yang et al., 2021) propose to employ traditional semi-supervised earning techniques such
as pseudo-labeling (Lee et al., 2013) and mean-teacher (Tarvainen & Valpola, 2017) in conjunction
with a transformation function T(·). These methods utilize a global model parameterized to utilize
unlabeled data on the t-th client:

Jt(wt) := Ex∼P (Xt)f(wt;x,T(x)), (3)

where f(·; ·) denotes a consistency constraint. Therefore, the global objective can be rewritten as:

min
w
J (w) =

M∑
m=1

βmJm(w) +

T∑
t=1

βtJt(w). (4)

In centralized training, this approach can achieve state-of-the-art performance. However, the objective
function may cause “client drift” due to the different objective functions of clients. Specifically, all
parameters will be aggregated to construct a global model, even if these models are trained with
different objective functions. In practice, aggregating models with different objective functions will
cause “client drift” (Wang et al., 2020). To verify the client drifts, we calculate the similarity between
gradients calculated under different objective functions, i.e., Eq. 2 and Eq. 3. The results are shown
in Figure 2(a), demonstrating that gradients from these two do not align well, i.e., gradient conflict.

The gradient conflict issue is inherently attributed to the decentralized nature of data. Specifically, FL
models are trained on labeled or unlabeled data, leading to aggregation with models trained using
different objective functions and data distributions.

3.3 TWIN-MODEL PARADIGM

Built upon the aforementioned analysis, we propose to introduce a twin-model paradigm to tackle
gradient conflict. Intuitively, we can train a supervised model using labeled data while training an
unsupervised model using unlabeled data. Consequently, the main challenge is designing an effective
interaction mechanism between these two models, making these two models promote each other by
providing insights from different perspectives of labeled and unlabeled data.
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Algorithm 1 pseudo-code of Twin-sight
Server input: communication round R
Client k’s input: local epochs E, k-th local dataset Dk

Initialization: all clients initialize the model w0
s,k,w

0
u,k.

Server Executes:
for each round r = 1, 2, · · · , R do

server random samples a subset of clients Cr ⊆ {1, ...,K},
server communicates wr

s,w
r
u to selected clients

for each client ck ∈ Cr in parallel do
wr+1

u,k ,wr+1
s,k ← Local_Training (k,wr

s,w
r
u)

end for
wr+1

s ,wr+1 ← AGG (wr+1
s,k ,wr+1

u,k , ck ∈ Cr)
end for

Local_Training((k,wr
s,w

r
u)):

if ck ∈ CL then
wr+1

u,k ,wr+1
s,k ←SGD update by Eq 10 in E epochs.

else if ck ∈ CU then
wr+1

u,k ,wr+1
s,k ←SGD update by Eq 11 in E epochs.

end if
Return wr+1

u,k ,wr+1
s,k to server

The twin-model paradigm has two models: an unsupervised model parameterized with wu and a
supervised model parameterized with ws. The unsupervised model is trained with a fine-grained task
of a downstream classification task, i.e., instance discrimination:

min
wu

J u(wu) =

M∑
m=1

βmJ u
m(wu)︸ ︷︷ ︸

Unsupervised model
on fully-labeled clients

+

T∑
t=1

βtJ u
t (wu),︸ ︷︷ ︸

Unsupervised model
on fully-unlabeled clients

(5)

where the objective function J u
· (·) is the same for all client2:

J u
· (wu) = − log

exp (sim (f(wu;xi), f(wu;xj)) /τ)∑2N
k=1 I[k ̸=i] exp (sim (f(wu;xi), f(wu;xk)) /τ)

, (6)

where f(wu; ·) is the unsupervised model and τ is the temperature hyper-parameter. Thus, the
unsupervised model can be trained in a vanilla FL manner.

Supervised models on clients with labeled data can be trained with a cross-entropy loss Jm(·).
Notably, the label information is invalid on clients sampled from the unlabeled subset CU = {ct}Tt=1.
Thus, we introduce a surrogate loss J s

t (·) to train the supervised model with unlabeled data on client
ct. This can be formulated as:

min
ws

J s(ws) =

M∑
m=1

βmJm(ws) +

T∑
t=1

βtJ s
t (ws), (7)

where the surrogate loss replaces the label used in cross-entropy loss with a pseudo label ỹ predicted
by the supervised model f(ws; ·):

J s
t (ws) := −I [σ(ỹ) > r]σ(ỹ) log f(ws;xi), (8)

where I(·) is an indicator function, σ(·) can select the maximum value for a given vector, and r is a
threshold working as a hyper-parameter to select predictions with high confidence. This is because
training models using data with low-confidence predictions cause performance degradation, which is
consistent with previous work (Wang et al., 2022). Consequently, we can train a supervised model in
a vanilla FL manner.

2Here, we omit the difference induced by distribution discrepancy between clients.
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3.4 TWIN-SIGHT INTERACTION

Training two models separately cannot make these two models benefit each other. Therefore, we
introduce a Twin-sight loss to complete the Twin-sight framework. The inspiration is drawn from
local linear embedding (Roweis & Saul, 2000) and distribution alignment (Zhang et al., 2022), where
the features (or embeddings) of the same data should keep the same neighborhood relations under
different feature spaces.

Specifically, we introduce a constraint to encourage preserving the neighborhood relation among
data features extracted by supervised and unsupervised models. The intuition is straightforward that
features extracted by the supervised model and the unsupervised model can be drastically different,
making it hard to align the feature distributions. Thus, we propose to Twin-sight loss Ja(·) to align
the neighborhood relation among features:

min
ws,wu

Ja(ws,wu) := d(N(f(ws;x)),N(f(wu;x)), (9)

where d is a certain metric to measure the difference between two matrices, e.g., ℓF -norm and N(·)
stands for the function used to construct a neighborhood relation. The Twin-sight loss can be used
to train both the supervised and unsupervised models in a vanilla FL manner. Consequently, the
objective function on labeled data J l(·)is formulated as:

J l(ws,wu) = Jm(ws)︸ ︷︷ ︸
Supervised model

on fully-labeled clients

+ λuJ u(wu)︸ ︷︷ ︸
Unsupervised model
on fully-labeled clients

+ λdJa(ws,wu),︸ ︷︷ ︸
Twin−sight interaction

on both models

(10)

Similarly, we can leverage unlabeled data by loss function J u(·):

J u(ws,wu) = J s
t (ws)︸ ︷︷ ︸

Supervised model
on fully-unlabeled clients

+ λuJ u(wu)︸ ︷︷ ︸
Unsupervised model

on fully-unlabeled clients

+ λdJa(ws,wu),︸ ︷︷ ︸
Twin−sight interaction

on both models

(11)

where λu and λd is the hypter-parameters to adjust.

The overview of the Twin-sight framework is illustrated in Figure 1 and Algorithm 1. According
to the framework of Twin-sight, it is also possible to apply Twin-sight to a similar label deficiency
scenario where all clients hold data with a portion of it labeled. This superiority is supported by our
experiments, as shown in Table 3.

4 EXPERIMENTS

To evaluate our method, we have structured this section into four parts: 1) Detailed description of
the datasets and baseline methods used in this paper within FSSL (Sec 4.1). 2) The main results that
demonstrate the efficacy of our proposed method (Sec 4.2). 3) Extensive evaluations of Twin-sight to
another scenario in FSSL, where all clients possess partially labeled data (Sec 4.3).

4.1 EXPERIMENTAL SETUP

Datasets. In our experiments, we use four popular datasets that have been extensively utilized in
FSSL research (Liang et al., 2022; Wei & Huang, 2023) including CIFAR-10 (Krizhevsky et al.,
2009), SVHN (Netzer et al., 2011), Fashion-MNIST (FMNIST) (Xiao et al., 2017), and CIFAR-100
(Krizhevsky et al., 2009). The training sets of these four datasets are 50, 000, 73, 257, 60, 000, and
50, 000 respectively. They are partitioned into K clients in federated learning, and we resize all
images to 32× 32 size.

Federated Semi-supervised Learning Setting. 1) Data heterogeneity: To simulate data heterogene-
ity, we partition the dataset across clients using the Latent Dirichlet Sampling (LDA) strategy (Hsu
et al., 2019), with γ in Dir(γ) controlling the label and quantity skewness of the data distribution
among clients. In our experiments, we mainly use a severe non-IID setting with γ = 0.1 (Fig. 2(b)
(a) shows the data distribution across 10 clients ), which closely resembles real-world scenarios and
is important for evaluating the effectiveness of federated learning algorithms. 2) FSSL: We follow the
setting of existing FSSL works (Liang et al., 2022). Specifically, our federated learning (FL) system
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Figure 2: (a) The gradient similarity between two objective functions, i.e., defined on labeled and
unlabeled data, throughout the training process. The figure demonstrates the gradient conflict. (b)
Data heterogeneity under Dir(γ = 0.1). Each bubble indicates the number of y-th class at client k.

comprises K clients, among which M have access to fully-labeled training data, and T have only
unlabeled data. The proportion of fully-unlabeled clients, represented by the ratio α = T

K , constitutes
a key factor determining the extent of annotation scarcity in Twin-sight, while (1− α) = K−T

K = M
K

highlights the degree of label richness across the participating clients.

Baselines. To verify the performance and robustness of Twin-sight, we compare it against several
methods, including the combination of semi-supervised and FL methods, as well as other state-of-
the-art baseline methods in FSSL. 1) FedAvg (McMahan et al., 2017), trained only with labeled data
as a lower bound for comparison. 2) FedProx (Li et al., 2020), proposed to mitigate heterogeneous
scenarios in FL. 3)FedAvg+FixMatch (McMahan et al., 2017; Sohn et al., 2020), the combination
of two excellent methods in the respective fields of federated learning (FL) and semi-supervised
learning (SSL. 4) FedProx+FixMatch (Li et al., 2020; Sohn et al., 2020), revise federated learning
strategy to fit into heterogeneity. 5) FedAvg+Freematch (McMahan et al., 2017; Wang et al., 2023),
vanilla FL method deployed with SOTA semi-supervised framework. 6)FedProx+Freematch (Li et al.,
2020; Wang et al., 2023), a combination of two methods too. 7) Fed-Consist (Yang et al., 2021), use
consistency loss computed by augmented data. 8) FedIRM (Liu et al., 2021c), a relation matching
scheme between fully-labeled clients and fully-unlabeled clients. 9)RSCFed (Liang et al., 2022),
randomly sub-sample for sub-consensus.

Implementation Details. Similar to many works (Tang et al., 2022; Wei & Huang, 2023; Huang
et al., 2024), we use Resnet-18 (He et al., 2016) as a backbone feature extractor on all datasets and
baselines to ensure a fair comparison. In federated learning, we aggregate weights in a FedAvg
(McMahan et al., 2017) manner. In accordance with previous works (Liang et al., 2022), all of our
experimental results report on the performance of the global model after R = 500 rounds of training.
The server randomly samples a subset of all clients which means |Cr| = 5 when clients number
K = 10, namely the sampling rate S = 50%. The random seed in our experiments is 0. We use the
SGD optimizer with a learning rate of 0.01, weight decay of 0.0001, and momentum of 0.9 in all of
our experiments. The batch size is set to 64 for all datasets.

4.2 MAIN RESULTS

The experimental results for Twin-sight on CIFAR-10, SVHN, FMNIST, and CIFAR-100 are pre-
sented in Table 1 and Table 2. The experiments were conducted using the same random seed, with
6 out of 10 clients randomly selected to be fully-unlabeled clients while the remainder were fully-
labeled clients, namely α = 60%, and we select 5 clients per communication round (S = 50%) in
FL system. Overall, the performance of both the baseline methods and Twin-sight is lower than the
upper bound of FedAvg. However, our proposed method, “Twin-sight,” demonstrates a significant
improvement in performance, outperforming all baselines, indicating successful mitigation of the
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Table 1: The performance of Twin-sight is compared to state-of-the-art (SOTA) methods on CIFAR-10
and CIFAR-100, with γ = 0.1 and K = 10.

Method
No. Fully-labeled Clients/Fully-unlabeled Clients CIFAR-10 CIFAR-100
Labeled Clients (M) Unlabeled Clients (T) Acc↑ Round↓ Acc↑ Round↓

Vanilla FL method
FedAvg-Upper Bound (McMahan et al., 2017) 10 0 82.78 64.45

FedAvg-Lower Bound 4 0 61.58 295 48.36 469
FedProx-Lower Bound (Li et al., 2020) 4 0 63.66 168 44.64 None

Combination of FL and SSL method
FedAvg+FixMatch (McMahan et al., 2017; Sohn et al., 2020) 4 6 63.58 207 48.73 315
FedProx+FixMatch (Li et al., 2020; Sohn et al., 2020) 4 6 62.44 269 43.61 None
FedAvg+Freematch (McMahan et al., 2017; Wang et al., 2023) 4 6 58.47 None 48.67 417
FedProx+Freematch (Li et al., 2020; Wang et al., 2023) 4 6 59.28 None 40.45 None

Existing FSSL method
Fed-Consist (Yang et al., 2021) 4 6 62.42 231 47.31 None
FedIRM (Liu et al., 2021c) 4 6 – – – –
RSCFed (Liang et al., 2022) 4 6 60.78 None 43.48 None

Twin-sight (Ours) 4 6 70.06 115 49.98 400

The performance of FedAvg-Lower Bound is the target accuracy. “Round” refers to the communication round
required to reach the target accuracy. “None” indicates that this method did not attain the target accuracy
throughout the entire training period. The bold indicates the best result, while the underlined represents the
runner-up.

Table 2: The performance of Twin-sight is compared to state-of-the-art (SOTA) methods on SVHN
and FMNIST, with γ = 0.1 and K = 10.

Method
No. Fully-labeled Clients/Fully-unlabeled Clients SVHN FMNIST
Labeled Clients (M) Unlabeled Clients (T) Acc↑ Round↓ Acc↑ Round↓

FedAvg-Upper Bound 10 0 87.34 88.98

FedAvg-Lower Bound 4 0 51.10 70 72.46 172
FedProx-Lower Bound 4 0 49.22 None 70.71 None

FedAvg+FixMatch 4 6 58.68 35 67.52 None
FedProx+FixMatch 4 6 45.58 None 63.20 None
FedAvg+Freematch 4 6 59.74 45 63.10 None
FedProx+Freematch 4 6 50.91 None 69.62 None

Fed-Consist 4 6 56.87 103 68.51 None
RSCFed 4 6 54.50 69 76.58 88

Twin-sight (Ours) 4 6 62.94 125 79.95 140

gradient conflict. Specifically, our method achieves excellent results on all datasets, with a particularly
notable improvement on CIFAR-10.

Despite its potential advantages, RSCFed did not exhibit superior performance compared to our
methods due to the presence of gradient conflict (see Figure 2(a)).However, the combination of
FedAvg (McMahan et al., 2017) and Fixmatch (Sohn et al., 2020) or Freematch (Wang et al., 2023)
achieved comparable performance in certain scenarios, leveraging two fundamental methods from
different fields despite its simplicity. Moreover, FedIRM results in a NaN loss when used in severely
skewed label distributions.

4.3 PARTIALLY LABELED DATA SCENARIO

Furthermore, we explore the scenario where all clients have partially labeled data. To quantify the
availability of labeled data for each client, we introduce τ , which represents the labeled data ratio,
indicating the proportion of labeled data available. In addition to the vanilla FL method and the
combination of FL and Semi-supervised learning (SSL) methods used in the previous setting, we
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Table 3: The performance of Twin-sight is compared to state-of-the-art (SOTA) methods on CIFAR-10,
CIFAR-100, SVHN and FMNIST in another scenario with γ = 0.1 and K = 10.

Method Labeled ratio (τ ) Unlabeded data ratio CIFAR-10 SVHN CIFAR-100 FMNIST

Vanilla FL method
FedAvg-Upper Bound 100% 0% 82.78 87.34 64.45 88.89

FedAvg-Lower Bound 5% 0% 45.35 37.81 19.46 75.21
FedProx-Lower Bound 5% 0% 45.44 27.34 20.47 79.77

Combination of FL and SSL method
FedAvg+FixMatch 5% 95% 74.97 64.44 33.58 75.62
FedProx+FixMatch 5% 95% 60.89 67.34 23.01 81.09
FedAvg+Freematch 5% 95% 75.47 68.43 44.16 74.78
FedProx+Freematch 5% 95% 64.73 69.01 31.78 76.75

Existing FSSL method
FedSem (Albaseer et al., 2020) 5% 95% 43.17 63.41 20.11 76.87
FedSiam (Long et al., 2020b) 5% 95% 47.05 57.18 21.25 80.53
FedMatch (Jeong et al., 2021) 5% 95% 52.86 69.08 23.64 80.16

Twin-sight (Ours) 5% 95% 78.89 73.24 45.62 80.11

incorporate three additional methods specifically designed for this partially labeled data scenario,
FedSem (Albaseer et al., 2020), FedSiam (Long et al., 2020b), and FedMatch (Jeong et al., 2021).
The results presented in Table 3 highlight the remarkable improvements achieved by Twin-sight in
the new scenario, with the exception of the FMNIST dataset. The observed performance difference
in the FMNIST dataset could be attributed to the fact that the algorithm’s performance has reached a
bottleneck when trained on only 5% of the available data. However, Twin-sight still demonstrates
comparable results with other methods on the FMNIST dataset.

5 CONCLUSION

In this work, we present Twin-sight, a novel twin-model paradigm designed to address the challenge of
label deficiency in federated learning (FL). There are three key factors contributing to the improvement
of Twin-sight. First of all, we decouple the learning objective into two models which avoids gradient
conflicts. In the most important part, twin-sight interaction, our unsupervised model conducts an
instance classification task which is a fine-grained classification problem. Namely, this task would
contribute to the downstream classification tasks (Mitrovic et al., 2020). Moreover, the data, model,
and the objective function are consistent among all clients. Lastly, our supervised model conducts a
classification task. Furthermore, the data, model, and objective functions are consistent among all
clients, except for some unlabelled data paired with pseudo labels.

Limitation The twin-model paradigm introduces an additional model, which can potentially increase
memory and communication overhead in federated learning (FL). As part of our future work, we aim
to explore a memory-friendly dual-model paradigm that addresses these concerns.

Future works Currently, few existing methods can effectively address multiple FSSL scenarios.
Therefore, future research should focus on proposing multi-scenario generalization and robust
methods capable of handling FSSL problems in various situations. Furthermore, it is essential to
consider communication overhead, computation overhead, and performance in the experimental
evaluations to provide diverse solutions that cater to the different requirements of cross-silo and
cross-device scenarios.
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A EXPERIMENTAL DETAILS

A.1 THE SYMBOLIC REPRESENTATION

In this section, we give a description of the symbol in our paper in Table 4.

Table 4: The Symbolic description.

Symbolic representation Description

βk the aggregation weight of client k
C the set of all clients
M the number of fully-labeled clients
T the number of fully-unlabeled clients
K the number of all clients (|C|)
R the communication round
S the sampling rate
E the local epochs
γ the non-iid degree
α the proportion of fully-unlabeled clients
τ the ratio of labeled data of each client

A.2 DATA VISUALIZATION

Figure 3: The data distribution of different clients under SVHN.

In this section, we present the data distribution of different clients on the SVHN dataset after
performing LDA partition with a parameter value of γ = 0.1. The visualization clearly illustrates that
each client predominantly contains samples from a specific class, indicating a significant concentration
of data within individual client distributions. We also visualize another dataset CIFAR-10 in Figure 4,
which contain both the distribution of clients and samples of fully-labeled client and fully-unlabeled
client.
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Figure 4: The blue and black areas in the figure correspond to the total amount of labeled and
unlabeled data, respectively. The other two areas in the figure show the class distribution of a labeled
client and an unlabeled client. This figure reveals that the challenges faced by FSSL are not limited
to the problem of label scarcity, but also include the impact of data heterogeneity.

B MORE EXPERIMENTAL RESULTS

B.1 HOW DIFFERENT DATA HETEROGENEITY AFFECT TWIN-SIGHT?

In this section, we aim to assess the robustness and generalization capability of FSSL under varying
levels of data heterogeneity. In addition to considering the degree of γ = 0.1 in the main paper, we
also explore a more severe heterogeneous scenario γ = 0.05, similar to what conventional methods
have investigated in prior works (Luo et al., 2021; Li et al., 2022). In this experiment, we maintained
a consistent sampling rate and communication round as in the previous experiments. Specifically, we
applied a sampling rate (S) of 50%, which involved randomly selecting 5 clients out of the total 10
clients. Additionally, we conducted a total of 500 communication rounds (R) during the experiment.

Table 5: The performance of Twin-sight is compared to state-of-the-art (SOTA) methods on CIFAR-10
and SVHN, with γ = 0.05 and K = 10.

Method
No. Fully-labeled Clients/Fully-unlabeled Clients CIFAR-10 SVHN
Labeled Clients (M) Unlabeled Clients (T) Acc↑ Round↓ Acc↑ Round↓

FedAvg-Upper Bound 10 0 75.34 79.13

FedAvg-Lower Bound 4 0 35.21 480 32.26 165
FedProx-Lower Bound 4 0 39.02 323 33.92 293

FedAvg+FixMatch 4 6 40.18 263 35.32 405
FedProx+FixMatch 4 6 29.61 None 20.93 None
FedAvg+Freematch 4 6 33.98 None 32.68 361
FedProx+Freematch 4 6 33.26 None 24.68 None

Fed-Consist 4 6 37.19 301 31.76 None
RSCFed 4 6 38.96 73 40.16 354

Twin-sight (Ours) 4 6 43.82 117 43.22 367

The results of the experiments conducted under different data heterogeneity degrees are presented in
Table 5 and Table 6. When analyzed in conjunction with the results from Table 1 and Table 2, these
findings highlight the impact of data heterogeneity on the performance of the evaluated methods. As
the non-iid degree (γ) decreased, indicating a more severe level of data heterogeneity among clients,
the performance of all methods showed a decline. However, it is worth noting that our approach
demonstrated a slower rate of performance decline compared to the other methods. These results
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Table 6: The performance of Twin-sight is compared to state-of-the-art (SOTA) methods on CIFAR-
100 and FMNIST, with γ = 0.05 and K = 10.

Method
No. Fully-labeled Clients/Fully-unlabeled Clients CIFAR-100 SVHN
Labeled Clients (M) Unlabeled Clients (T) Acc↑ Round↓ Acc↑ Round↓

FedAvg-Upper Bound 10 0 62.01 78.34

FedAvg-Lower Bound 4 0 41.57 290 47.10 255
FedProx-Lower Bound 4 0 39.41 None 48.5 403

FedAvg+FixMatch 4 6 43.19 222 43.27 None
FedProx+FixMatch 4 6 37.92 None 42.58 None
FedAvg+Freematch 4 6 42.96 273 42.16 None
FedProx+Freematch 4 6 35.77 None 41.63 None

Fed-Consist 4 6 41.67 379 40.73 None
RSCFed 4 6 43.48 200 48.5 159

Twin-sight (Ours) 4 6 43.57 221 50.6 176

suggest that our method exhibits greater robustness and resilience in the face of increasing data
heterogeneity.

B.2 HOW TO DETERMINE THE SELF-SUPERVISED METHOD?
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Figure 5: Different self-supervised model with our methods under the setting of γ = 0.1, E =
1,K = 10, CIFAR-10.

To verify the performance of Twin-sight with different self-supervised methods, namely BYOL and
SimSiam in addition to SimCLR, we conducted experiments and analyzed the results shown in
Figure 5. The results indicate that Twin-sight exhibits competitive performance regardless of the
specific self-supervised method employed. While SimCLR achieved the best performance, Twin-sight
still demonstrated strong performance when using BYOL or SimSiam.

This suggests that Twin-sight is adaptable to different self-supervised methods and can effectively
leverage their benefits within the twin-sight framework. The ability of Twin-sight to achieve
favourable results across multiple self-supervised approaches highlights its versatility and robustness
in incorporating different self-supervised learning techniques.
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Table 7: Comparison of Twin-sight’s performance with different sampling rates (S) on the CIFAR-10
dataset, under the setting of γ = 0.1 and K = 10 clients.

Method
50% 40% 30% 20%

Acc ↑ Round↓ Acc ↑ Round ↓ Acc ↑ Round↓ Acc ↑ Round↓
FedAvg-Lower Bound 61.58 295 60.78 429 51.21 474 49.76 489
FedProx-Lower Bound 63.66 68 64.33 285 59.14 133 55.91 271

FedAvg+FixMatch 63.58 207 63.14 392 57.21 368 52.12 455
FedProx+FixMatch 62.44 269 60.12 None 56.39 399 51.79 398
FedAvg+Freematch 58.47 None 56.71 None 50.95 None 51.18 498
FedProx+Freematch 59.28 None 57.34 None 61.53 223 54.98 280

Fed-Consist 62.42 231 61.09 462 54.14 405 50.35 465
RSCFed 60.78 None 59.04 None 58.24 73 53.71 267

Twin-sight (Ours) 70.06 115 69.15 214 63.84 134 61.52 226

B.3 WHAT WILL HAPPEN WHEN THE SAMPLING RATE (S) IS SMALL?

In a real-world federated learning setting, it is common for not all clients to be continuously online due
to various factors such as network connectivity issues, power constraints, or intermittent availability.
To simulate this on-and-off situation, we randomly select a subset of clients denoted as Cr from the
complete set of clients C = {ck}Kk=1. In each communication round, we determine the fraction of
clients to be sampled using a parameter called the sampling rate (S). This sampling rate represents
the proportion of clients that are randomly selected from the entire client pool C for participation in
that specific round.

If the available clients are small, what will happen? To investigate the scenario where only a small
number of clients are available, we conducted exploratory experiments on the CIFAR-10 dataset using
different sampling rates (S). In this case, we reduced the sampling rate from the commonly used
50% to 20% among the 10 available clients with R = 500 communication rounds. By decreasing the
sampling rate to 20%, we simulated a scenario where a smaller fraction of clients actively participated
in each communication round. This situation reflects scenarios where federated learning is carried
out with limited client availability.

The results are presented in Table 7. Upon analysis, it is evident that as the sampling rate decreases,
which corresponds to a smaller number of clients being sampled in each round, there are noticeable
impacts on both the overall performance and the convergence speed of the global model. However,
despite the reduced client participation, our method consistently maintains a significant performance
gain when compared to other baseline methods. For instance, when transitioning from a 50% to a 40%
sampling rate, the performance degradation of our method remains below 1%. This indicates that even
with a reduction in client availability, our method effectively mitigates the performance drop, ensuring
robust results. Moreover, when the sampling rate decreases to 20%, our method demonstrates a
sustained performance level above 60%, further highlighting its robustness and effectiveness.

B.4 DOES TWIN-SIGHT REMAIN EFFECTIVE ACROSS DIFFERENT NUMBERS OF CLIENTS (K)?

The total number of clients in a federated learning (FL) system poses a potential challenge for
Twin-sight. As the number of clients increases, each client possesses a smaller amount of data,
reflecting the cross-device scenario in the simulated federation. In this setting, different devices have
limited data availability, and some devices lack the capability to label data, resulting in unlabeled
data for those devices.

To assess its effectiveness in scenarios with varying client numbers, we conducted experiments and
evaluated the results. The outcomes are presented in Table 8 and Table 9 under CIFAR-10. To
simulate a scenario with a large number of clients, we selected 50 clients, of which 60% had no
labeled data while the remaining clients had labeled data available. In this setup, we sampled 5 out
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Table 8: The performance of Twin-sight is compared to state-of-the-art (SOTA) methods on CIFAR-
10, with γ = 0.1,K = 50 and α = 60%.

Method
No. Fully-labeled Clients/Fully-unlabeled Clients 50 clients
Labeled Clients (M) Unlabeled Clients (T) Acc ↑ Round ↓

FedAvg-Lower Bound 20 30 16.31 348
FedProx-Lower Bound 20 30 32.31 44

FedAvg+FixMatch 20 30 41.21 13
FedProx+FixMatch 20 30 54.74 7
FedAvg+Freematch 20 30 21.52 345
FedProx+Freematch 20 30 37.89 134

Fed-Consist 20 30 36.41 78
RSCFed 20 30 57.96 14

Twin-sight (Ours) 20 30 62.2 13

Table 9: The performance of Twin-sight is compared to state-of-the-art (SOTA) methods on CIFAR-
10, with γ = 0.1,K = 100 and α = 60%.

Method
No. Fully-labeled Clients/Fully-unlabeled Clients 100 clients
Labeled Clients (M) Unlabeled Clients (T) Acc ↑ Round ↓

FedAvg-Lower Bound 40 60 28.94 495
FedProx-Lower Bound 40 60 44.91 132

FedAvg+FixMatch 40 60 45.62 66
FedProx+FixMatch 40 60 54.93 35
FedAvg+Freematch 40 60 31.47 383
FedProx+Freematch 40 60 47.61 217

Fed-Consist 40 60 43.31 172
RSCFed 40 60 52.61 16

Twin-sight (Ours) 40 60 56.78 35

of 50 clients to participate in the FL process. Similarly, we also sampled 10 out of 100 clients to
simulate a scenario with a larger client pool (S = 10%).

In the scenario with 50 clients from Table 8, our method manages to achieve a performance of 62.2.
Despite the reduced amount of data per client, our method demonstrates its effectiveness in leveraging
the available labeled data and effectively utilizing the unlabeled data from devices that lack labeling
capabilities. However, we can observe from Table 9, the reduction in client data further exacerbates
the impact on performance. The limited amount of data available for each client poses a significant
challenge, potentially affecting the overall performance of the system.

B.5 HOW DOES THE PERFORMANCE OF TWIN-SIGHT VARY WITH DIFFERENT RATIOS OF
UNLABELED CLIENTS?

To evaluate the robustness of our approach, we conducted experiments with varying ratios of unlabeled
clients, ranging from α = 90% to α = 40%. The results, illustrated in Figure 6, demonstrate that the
ratios of unlabeled clients have an impact on the performance of Twin-sight. However, our method
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Figure 6: The effects of various ratios of unlabeled clients (α). Comparison between five baseline
methods and Twin-sight.

consistently performs well and surpasses baseline methods in these scenarios. We observed that as
the number of unlabeled clients increases, the overall performance tends to degrade. Despite this,
Twin-sight continues to outperform other methods even in the presence of a higher ratio of unlabeled
clients. Furthermore, we noticed that Twin-sight achieves larger performance gains compared to other
methods when the number of unlabeled clients is relatively small. This highlights the importance
of labeled data in guiding the twin-sight interaction and improving overall performance. More
experimental and ablation results can be found in Appendix B.

B.6 DOES THE RANDOM SEED AFFECT ROBUSTNESS?

Table 10: The mean and deviation of performance with different random seeds.

Method CIFAR-10 CIFAR-100 SVHN FMNIST

FedAvg-Lower Bound 60.14± 1.50 48.05± 0.52 56.36± 5.06 73.32± 3.79

FedProx-Lower Bound 63.03± 1.00 45.42± 0.68 56.03± 5.90 72.31± 4.73

FedAvg+FixMatch 63.87± 0.73 48.84± 0.70 56.29± 2.32 67.25± 2.79

FedProx+FixMatch 61.61± 0.72 43.55± 0.46 47.71± 3.79 65.57± 2.08

FedAvg+Freematch 58.40± 2.01 49.52± 0.74 56.77± 2.58 64.78± 4.67

FedProx+Freematch 59.43± 1.38 41.73± 0.51 51.69± 2.41 71.68± 2.51

Fed-Consist 62.79± 0.93 47.94± 0.70 53.74± 2.91 66.73± 3.41

RSCFed 60.11± 0.97 45.90± 1.32 58.46± 3.81 76.34± 1.09

Twin-sight (Ours) 70.02± 0.77 50.15± 0.43 63.16± 0.30 78.85± 1.04

In this section, we aim to investigate the impact of different random seeds on the overall performance
of the federated system. Random seed is essential for model initialization as well as client selection in
each round, both of which can influence the final results. To assess the robustness of Twin-sight in the
face of such variability, we select three different random seeds for each experiment and conduct tests
accordingly. These experiments are conducted under γ = 0.1,K = 10 with sampling rate S = 50%.
The results are reported in Table 10. Notably, even when considering three random seeds, Twin-sight
consistently outperforms other baseline methods across all four datasets.
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B.7 CAN INCREASING THE NUMBER OF COMMUNICATION ROUNDS (R) IMPROVE
PERFORMANCE?
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Figure 7: The performance of different communication rounds in the scenarios of fully-labeled clients
and fully-unlabeled clients under CIFAR-100, with γ = 0.1,K = 10 and α = 60%.

The performance of a federated system is jointly influenced by the number of communication rounds
R and the sampling rate S, as they determine the necessary communication bandwidth. To evaluate
the effects of different communication round settings on performance improvement, we conducted
experiments in two distinct scenarios. In one scenario, a subset of clients possessed fully-labeled data,
while in the other scenario, all clients had partial labels for their data. The primary objective was to
achieve a balance between enhancing performance and managing communication volume effectively.
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Figure 8: The performance of different communication rounds in the scenarios of all clients hold data
with a portion of it labeled under SVHN, with γ = 0.1,K = 10 and τ = 5%.
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As depicted in the Figure 7 and Figure 8, it is self-evident that when the number of rounds is relatively
small, there is a substantial improvement in performance with each increment of 100 rounds. However,
beyond 500 rounds, the performance improvement for most methods becomes less pronounced.
Consequently, all the experiments presented in our paper were conducted within a maximum of 500
rounds. Our method exhibits rapid convergence and achieves excellent performance within the first
300 rounds. This observation demonstrates that Twin-sight not only enhances performance but also
accelerates model convergence and reduces the number of required communication rounds. After
500 rounds, both FedAvg-Lower Bound and FedProx-Lower Bound exhibit substantial performance
improvements (in Figure 8). This improvement can be ascribed to the slower convergence speed
of the two lower-bound methods in this dataset, primarily due to the limited availability of labeled
data. As the iterations progress, the performance gradually improves, and significant enhancements
become evident after several hundred rounds of iterations.

C DETAILED EXPLANATIONS OF TWIN-SIGHT

In this section, we give more details and explanations of our method. Specifically, we introduce the
gradient conflict problem in our paper, the self-supervised method we investigate and the twin-sight
interaction.

Gradient conflict v.s. client drift: Gradient conflict is defined as the inconsistency between gradients.
The inconsistency may result from multi-objectives, e.g., multi-task learning (MTL) (Yu et al., 2020;
Liu et al., 2021a; Wang & Tsvetkov, 2021). The objective of MTL is the average loss of all kinds of
tasks which typically leads to gradient conflict. According to the definition of gradient conflict, two
gradients are considered conflicting if they point away from one another, i.e., have a negative cosine
similarity. This phenomenon also can be observed in Figure 2(a) in our paper. The gradient conflict
phenomenon has some drawbacks: i) this different loss may have various scales of gradient, and
the largest one dominates the update direction; ii) The averaged objective can be quite unfavourable
to a specific task’s performance (Liu et al., 2021a). Client drift is caused by data heterogeneity
while gradient conflict is typically induced by multiple objectives. In existing FSSL methods, the
"client drift" and "gradient conflicts" often exist at the same time. In the context of label deficiency,
gradient conflict may be attributed to both the samples and objectives. Specifically, partial samples
have annotations and the objective on lableled and unlableled data are typically different. Advanced
methods in FSSL typically use two different objective functions to train the local classifier, one for
fully-labeled clients with cross-entropy loss and another for fully-unlabeled clients by unsupervised
method. In this context, these methods suffer from gradient conflicts naturally.

The self-supversied method: In twin-sight, the J u(wu) in Eq.(6) refers to the unsupervised model
parameterized by wu. And the sim (f(wu;xi), f(wu;xj)) denote the dot product between ℓ2
normalized embedding of data i and j. To investigate different unsupervised methods in twin-sight,
we perform some prevailing unsupervised methods, such as SimCLR (Chen et al., 2020), BYOL (Grill
et al., 2020) and SimSiam (Chen & He, 2021), and SimCLR is chosen to be the backbone of J u(wu).
The results of different self-supervised methods are reported in Appendix B.2.

The function N(·) and metric d(·): The function N(·) is leveraged to quantify the relationship
between different samples in a mini-batch. Specifically, N(·) is the matrix calculating the distance
among samples in the feature space, i.e., outputs of supervised model Zs ∈ Rn×d and those of
unsupervised model Zu ∈ Rn×d with d being the dimension and n the batch size. Using these
outputs, we can employ the matrix M ∈ Rn×nto represents the relationships among samples, i.e.,
N(f(ws,x)) := Ms = Zs · ZT

s , N(f(wu,x)) := Mu = Zu · ZT
u . Meanwhile, the metric d(·)

is realized as the mean square error, which is formulated as: d(N(f(ws,x)),N(f(wu,x))) =
∥Ms −Mu∥2.
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