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Abstract

We rethink test-time scaling laws from a practi-
cal efficiency perspective, revealing that the effec-
tiveness of smaller models is significantly over-
estimated. Prior work, grounded in compute-
optimality, overlooks critical memory access bot-
tlenecks introduced by inference-time strategies
(e.g., Best-of-N, long CoTs). Our holistic anal-
ysis, spanning models from 0.6B to 32B param-
eters, reveals a new Kinetics Scaling Law that
better guides resource allocation by incorporat-
ing both computation and memory access costs.
Kinetics Scaling Law suggests that test-time com-
pute is more effective when used on models above
a threshold than smaller ones. A key reason is that
in TTS, attention, rather than parameter count,
emerges as the dominant cost factor. Motivated by
this, we propose a new scaling paradigm centered
on sparse attention, which lowers per-token cost
and enables longer generations and more parallel
samples within the same resource budget. Empiri-
cally, we show that sparse attention models consis-
tently outperform dense counterparts, achieving
over 60 point gains in low-cost regimes and over
5 point gains in high-cost regimes for problem-
solving accuracy on AIME and LiveCodeBench.
These results suggest that sparse attention is es-
sential for realizing the full potential of test-time
scaling because, unlike training, where parameter
scaling saturates, test-time accuracy continues to
improve through increased generation.

1 Introduction

Test-time scaling (TTS) has recently emerged as a power-
ful strategy (e.g., Best-of-IV, Long-CoT (Wei et al., 2022))
for enhancing the reasoning capabilities of large language
models (LLMs) (Guo et al., 2025; Jaech et al., 2024; Team,
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2025b), particularly in scenarios where agents interact with
complex environments, e.g., writing code, browsing the
web (Nakano et al., 2021; Yao et al., 2023b) or reinforce-
ment learning (RL) with LLMs-in-the-loop (Huang et al.,
2022; Driess et al., 2023; Chen et al., 2025a). These capa-
bilities, however, introduce substantial inference-time costs,
making it critical to understand performance scaling in this
new paradigm. Existing scaling law studies (Brown et al.,
2024; Snell et al., 2024; Wu et al., 2024) focus on floating-
point operations (FLOPs) while ignoring memory access
costs, which are often the dominant factor in determining
wall-clock latency in TTS regimes. As shown in Figure 1a,
this gap can lead to sub-optimal deployment decisions.

In Section 3, we introduce the Kinetics Scaling Law for
TTS, derived from a novel cost model that explicitly incor-
porates memory access costs. This new perspective reveals
markedly different conclusions about Pareto-optimal strate-
gies for allocating test-time compute (Figure 1a). Specifi-
cally, we find that: (1) prior scaling laws consistently over-
estimate the effectiveness of small models enhanced with
inference-time strategies; and (2) computational resources
are best spent first on increasing model size up to a critical
threshold (empirically around 14B), before investing in test-
time strategies, such as Best-of-/NV sampling or long CoTs.
Guided by the Kinetics Scaling Law, our approach yields
up to a 3x throughput improvement on B200 hardware.

Our roofline analysis across a suite of state-of-the-art rea-
soning models reveals that the shift in optimal test-time
compute strategies arises because test-time strategies (e.g.,
long CoTs, Best-of-V) disproportionately increase attention
costs rather than parameter costs (Figure 2a). Our Iso-cost
analysis shows that the quadratic growth of attention with
generation length, combined with the disproportionate scal-
ing of KV memory relative to model parameters, drives
a preference for scaling up model size over generations.
This imbalance is further exacerbated by MoE architec-
tures (Shazeer et al., 2017; Du et al., 2021; Fedus et al.,
2022; Al@Meta, 2025; Dai et al., 2024; Jiang et al., 2024),
which reduce active parameter count without alleviating
attention overhead.

Building on this analysis, in Section 4 we introduce a new
scaling paradigm, centered on sparse attention, which fun-
damentally reshapes the scaling law and significantly en-
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Figure 1. (a): Pareto Frontier for Qwen3 series on AIME24. Previous test-time scaling laws (Brown et al., 2024; Snell et al., 2024; Wu
et al., 2024) focus solely on compute optimality, neglecting the significant bottleneck of memory access in long-sequence generation. This
leads to suboptimal resource utilization. By incorporating memory access, the Kinetics Scaling Law reduces resource demands by up to
3% to achieve the same accuracy. (b): Inspired by the Kinetics Scaling Law, we show that sparse attention models scale significantly
better than dense models, achieving over 50-point improvements in AIME24 in the low-cost regime and consistently outperforming dense
models in the high-cost regime, in addition to substantial efficiency gains. B200 second represents the amount of work performed by a
single B200 at full utilization for one second.
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Figure 2. (a) Attention dominates inference cost, exceeding parameter computation by 100 ~ 1000x; sparse attention alleviates this
bottleneck. (b) Under equal resource constraints, sparse attention enables significantly more token generation, enhancing test-time scaling.
(c) Simple block-sparse attention delivers major gains—improving accuracy by 45 points in low-cost settings and matching dense accuracy
with 8.58 x fewer resources.

hances the scalability of TTS (Figure 1b). According to our
Kinetics Sparse Scaling Law, computational resources are

mentally different perspective: sparsity as a central enabler
of efficient and scalable test-time inference. In contrast to

best allocated to test-time strategies rather than reducing
sparsity. As more computing is invested at test time, lower
sparsity becomes increasingly critical to fully leveraging
the benefits of these strategies. Guided by this principle, it
increases problem-solving rates by up to 60 points in the
low-cost regime and over 5 points in the high-cost regime on
AIME24 and LiveCodeBench, through massive generated
tokens, which is unaffordable for dense counterparts.

While sparsity has traditionally been employed either
for regularization in small models (Tibshirani, 1996;
Molchanov et al., 2017) or to reduce computation in over-
parameterized networks (Mishra et al., 2021; Chen et al.,
2021; Hoefler et al., 2021; Dao et al., 2021; Frantar & Alis-
tarh, 2023; Liu et al., 2023), our work introduces a funda-

pretraining — where scaling laws often exhibit diminishing
returns (Ilya) — TTS continues to benefit from increased
token generation and more optimized inference paths. We
hope this study can guide and encourage future co-design of
model architectures, inference-time strategies, and hardware
to fully unlock the next wave of scaling at deployment.

2 Cost Model and eFLOPs

We propose a cost model that captures both compute and
memory access overhead during inference, focusing on re-
alistic deployment settings (batch size >> 1, model paral-
lelism, and shared prompt cache). Notation is in Table 1.
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Computation and Memory. Following (Brown et al.,
2024), the compute cost combines linear layer operations
and self-attention:

C(comp = 2PLout + r(2Lin + Lout)LoutD

Memory access includes both parameter loading and KV
cache reads:

Cmem - 2PL0llt + 2L11’1L0UID + L D

out

In practice, parameter loading is amortized across large
batches (DeepSeek-Al, 2025), so we omit that term and
share prompt KV cache across N trials. The final per-task
compute and memory cost becomes:

Ceomp(N) = 2PN Lo + 2rN Lin LowD + 7N L
Chnem(N) = 2LinLowD + N L

oulD (])
ouD @
eFLOPs. We define eFLOPs (equivalent FLOPs) as a lin-
ear combination of compute and memory cost, scaled by
hardware intensity [ to capture the memory and computa-

tional operations under the same scale:
eFLOPs = Ceomp + Crem - {

We use I = 562.5 FLOPs-s/GB from NVIDIA B200.

2.1 Takeaway: Attention Bottleneck

Our eFLOPs calculation reveals that attention dominates

inference cost for long generations. The ratio of attention
2erD+(rD+ID)Lm,[

to parameter cost, & = , can exceed
100x for Ly, > 4k (Figure 2a). ThlS effect is magnified
in MoEs (Al@Meta, 2025; Dai et al., 2024), which reduce
linear FLOPs and further shift the bottleneck to attention.

Scalability Implication. Given long-CoT usage, where
Ly > Ly, inference cost is increasingly governed by the
quadratic term L2, D, motivating our Kinetics Scaling Law,

akin to kinetic energy: Ey = %va.

More details are in Appendix A.

2.2 Experimental Setup

We evaluate LLMs under our cost model on three
challenging reasoning tasks: AIME24 (MAA, 2024),
AIME25 (MAA, 2025), and LiveCodeBench (Jain et al.,
2024), using the Qwen3 (Yang et al., 2025) model family.
Our theoretical estimates assume NVIDIA B200 hardware.
Our evaluations are focused on two representative inference
strategies, Long-CoTs and Best-of-N .

3 Rethinking Test-time Scaling Law

In Section 3.1, we first introduce the Kinetics Scaling Law,
derived from empirical investigations across the Qwen3

model series. Then, we explore the underlying reasons
for the divergence between Kinetics and prior scaling laws
through an Iso-Cost analysis in Section 3.2.

3.1 Kinetics Scaling Law

we study the scaling behavior of Qwen3 (Yang et al., 2025)
considering the following problem:

Given a fixed inference budget (eFLOPs per question),
what is the Pareto frontier of achievable accuracy across
different LLM configurations?

In the Long CoTs setting (single trial per question, N7 = 1),
we vary generation length ny to evaluate performance
across cost levels. Results in Figure 3 reveal two key find-
ings of our Kinetics Scaling Law.

* Efficiency of small models is overestimated. As shown
in Figures 2b and 3 (a, ¢), smaller models like 4B and 8B
are outperformed by the 14B model even at low accuracy
levels (e.g., below 40%). The 0.6B model appears on
the Pareto frontier only when accuracy is negligible. In
contrast to prior scaling laws, which gave smaller models
more prominence, our results show they are often subop-
timal in practice.

* CoT length more effective than parameter size only
beyond a critical model scale (empirically, 14B). The
Kinetics Scaling Law shows that, under limited compute,
scaling up the model yields greater benefits than extend-
ing CoT length. As seen in Figure 3 (b, d), only the
14B and 32B models gain from CoTs longer than 10K
tokens. For smaller models (e.g., 1.7B and 4B), switching
to a larger model is more effective when Ly, < 5K. This
suggests compute should primarily be allocated to increas-
ing model size, not generation length (Figure 3 (d)). In
contrast, previous scaling laws assumed longer CoTs con-
sistently improved performance across all model sizes and
only favored model scaling once those gains plateaued.

In the Best-of-N setting, we fix the maximum number of
generated tokens at np, and vary the number of reasoning
trials IV to evaluate the problem-solving rate (i.e., the prob-
ability that at least one trial produces a correct answer). We
have similar observations in Figures 4a to 4c. Under the
previous scaling laws (Figure 4b), the most cost-effective
strategy to achieve high accuracy is to apply repeated sam-
pling using smaller models. Kinetics Scaling Law Figure 4a
reveals that deploying a 14B model with fewer reasoning
trials is more efficient. We also observe a critical size of
14B. For models smaller than 14B, increasing compute is
best allocated toward model scaling rather than additional
trials. For models at or above 14B, however, further compu-
tation is more effectively spent on increasing the number of
reasoning trials, up to diminishing returns.
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the accuracy (Pass@1) in AIME24. The optimal model is marked with different colors in (ac). The optimal generation length is in (bd).
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3.2 Iso-Cost Study
We attribute the above divergence between Kinetics and
previous scaling laws to two reasons.

Disproportionation between KV memory size D and
model parameters P. Smaller models tend to require
significantly more KV cache relative to their parameter size.
For example, Qwen3-0.6B demands 3.5GB of KV cache to
store 32K tokens, despite the model itself occupying only
1.2GB. In contrast, Qwen3-32B uses just 8GB of KV cache
for the same sequence length. Empirically, doubling model
parameters results in only a 1.18 % increase in KV cache
size. As shown in Figure 5a, this phenomenon is consistently
observed across model families such as OPT (Zhang et al.,
2022) (1.55x), Qwen2.5 (Yang et al., 2024) (1.46x), and
LLaMA3 (Grattafiori et al., 2024) (1.27x).

Shift from linear to quadratic cost model. Under this
revised model, increasing generation length incurs a sub-
stantially higher cost than scaling model size; consequently,
the tradeoff between model capacity and token budget shifts
meaningfully. For instance, under the linear L P model, the
cost of generating 8K tokens with a 14B model (which is
usually insufficient to solve complex tasks) is treated as
equivalent to generating 24K tokens with a 4B model (suf-
ficient to complete most tasks). However, under the L2D
model, the same 14B@8K generation is only comparable in
cost to a 4B@9K generation. This tighter bound makes it
much harder for smaller models to compensate for their lim-
ited capacity through extended generation alone. Thus, only
if the gap in model capacities is small enough (e.g., 32B
only improves the accuracy by 3% on AIME24 compared
to 14B), the benefits of extending generation length might
be more effective than directly enlarging model parameters.

Figures 5b and 5c show an Iso-Cost analysis comparing two
cost models. Under Kinetics Scaling Law, the cost grows
quadratically with L, while the KV cache scales sublin-
early with model parameters P. As a result, when total
budget is low, the Iso-eFLOPs contours tend to stretch hori-
zontally, favoring larger model sizes over longer generation
lengths. This implies that increasing model size is a more
efficient use of resources than generating longer outputs. In
contrast, the traditional FLOPs-based model leads to steeply
vertical contours, encouraging longer generation before in-
creasing model size. More details are in Appendix B.

4 Sparse Test-time Scaling Law

Based on our findings in Section 3, we propose a new scal-
ing paradigm centered on sparse attention. Sparse attention
fundamentally reshapes the Kinetics Scaling Law in Sec-
tion 3 and enhances the scalability of TTS.

Sparse attention significantly enhances problem-solving
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Figure 6. Sparse Attention Boosts Test-Time Scaling. In (a) and
(c), we show that sparse attention models significantly improve the
cost-accuracy trade-off under both inference strategies.

performance. As shown in Figures 6a and 6b, compared
to dense baselines, for both of the inference strategies and
models of various sizes, sparse attention models improve
problem-solving rates by up to 60 points in the low-cost
regime and over 5 points in the high-cost regime. From an
efficiency perspective, dense models require over 10 x more
eFLOPs to match the same solving rate. These findings
underscore sparse attention as a key enabler for unlocking
the full benefits of test-time scaling.
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Figure 7. Tradeoff Between Generated Tokens and KV Budget.
We empirically investigate how to balance the tradeoff between
generating more tokens and allocating a larger KV cache bud-
get, which may yield more accurate but potentially shorter outputs.
Using Qwen3-8B as a representative model, we fit curves to charac-
terize this tradeoff. For Best-of-N, we find that for every doubling
of the total compute cost, the optimal KV budget increases by a
factor of 1.18x, while the total number of generated tokens in-
creases by 1.74x.

Sparse attention becomes increasingly valuable in high-
cost scenarios. We investigate the tradeoff between KV
budget B and reasoning trials (V). Our analysis reveals
a consistent trend: allocating additional compute toward
generating more tokens is generally more effective than
expanding the KV cache. In Best-of-N frontier, doubling the
cost leads to only a 1.18 x increase in KV budget, compared
to a 1.74 x increase in total generated tokens.

Sparse attention reshapes the Kinetics Scaling Law. As
shown in Section 4, applying sparse attention significantly
improves the efficiency of smaller models (0.6B, 1.7B, 4B),
allowing them to re-emerge on the Pareto frontier across a
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Figure 8. Compared to the scaling law for the dense models (a),
small models (0.6B, 1.7B, 4B) are more effective with sparse atten-
tion. They occupy more space in the Pareto Frontier (Figure 6a).

broader range. Sparse attention reduces attention memory
access from a quadratic cost term (L2D) to a linear one
(LBD), making it negligible or comparable when compared
to the cost of computing with model parameters (L P).

More details are in Appendices C and D.
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Figure 9. Sparse Attention Algorithms. We illustrate the optimal-
ity of block top-k sparse attention in terms of TTS on AIME24
dataset. Although upper bounded by the oracle top-k attention
performance, block top-k achieves a good trade-off between effec-
tiveness and tractability.

In this section, we demonstrate the practicality of our sparse
scaling law through block top-k attention. We report em-
pirical improvements in task throughput (number of tasks
performed per unit time) using our block-sparse implemen-
tation and conduct ablation studies with alternative sparsi-
fication strategies, such as local attention, to highlight the
importance of the KV selection mechanism.

5.1 Block Top-k Attention

While top-k attention offers attractive theoretical scaling, it
is computationally intractable in practice. Instead, we adopt
block top-k attention for two key reasons. First, it exploits
temporal locality in attention patterns (Sun et al., 2024a) to
retrieve semantically related key-value (KV) blocks. Second,
its localized retrieval is hardware-efficient and integrates
seamlessly with paged attention (Kwon et al., 2023), en-
abling high-throughput decoding. In practice, we compute
a representative vector for each KV block by averaging its
key vectors, and use these to score the relevance of blocks
to each query. Importance scores are shared across query
heads within a group, following the Grouped Query Atten-
tion (GQA) scheme. As shown in Figures 9a and 9b, block
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Figure 10. Task throughput improvement with block top-k.

top-k achieves a good trade-off between effectiveness and
tractability, scaling far beyond dense counterparts.

5.2 Empirical Results

We quantify TTS efficiency using fask throughput, defined
as the number of tasks completed per unit time. This metric
is particularly relevant for reasoning tasks, where the utility
of generation hinges entirely on the correctness of the final
output—unlike tasks such as summarization or content cre-
ation, where partial outputs may still be useful. We illustrate
the benefit of block top-k attention across different model
sizes on 8 xH200 machines with an extremely large batch
size of 4096. As shown in Figure 10, block top-% atten-
tion substantially improves task throughput, particularly for
smaller models. Qwen3-0.6B model achieves a 12.6x to
25x increase in throughput as the generation length extends
from 16k to 32k tokens. This improvement reflects the grow-
ing inefficiency of dense attention at longer contexts, which
disproportionately affects smaller models. Thus, the use of
sparse attention not only alleviates this bottleneck but also
restores much of the practical utility of smaller models in
resource-constrained settings by enabling them to use more
test-time compute more cost-effectively.

6 Conclusion and Discussion

This work introduces the Kinetics Scaling Law, showing that
attention costs—not parameter counts—dominate test-time
inference. Sparse attention reshapes the scaling landscape,
enabling longer generations and higher accuracy. We view
Kinetics Scaling as a foundation for guiding LLM serv-
ing, agent systems, and RL environments, especially as
progress slows in pretraining. Though our analysis focuses
on NVIDIA GPUs, the core insight—that memory band-
width is harder to scale than FLOPs—applies broadly. Ulti-
mately, our findings call for co-designing models, inference
algorithms, and hardware to enable the next generation of
scalable LLMs. Test-time scaling can consume a substantial
amount of energy, raising concerns about the environmental
sustainability of widespread deployment. By promoting
sparse attention, our work hopes to help to reduce the car-
bon footprint and energy consumption of inference systems
and support the broader goal of sustainable Al
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Table 1. Notation Used throughout the Paper.

Symbol Description Symbol Description

T,T Task (set) Lout # Gen tokens
M Model N,Nr  Reasoning trials
C,Crrs(-)  Cost function n,ny Max # tokens
A Algorithm B,Br KV budget

Lin Prompt length P Parameters

D KV size /token r GQA ratio

A Cost Model

In this section, we delve into the cost models used in the Kinetics Scaling Law. We show empirically that adopting a max
cost model does not alter the scaling behavior and outline methods for calculating the cost of sparse attention models.

A.1 Full Formulations of Cost Model

We first calculate the inference cost for the cases where the batch size is 1, and then extend to a more general case in TTS.
Finally, we propose our cost model using equivalent FLOPs.

12
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Computation. As discussed in (Brown et al., 2024), the computation consists of two parts: linear modules and self-attention,
which is (we assume the model is served in BFloat16.)

C’Comp - 2]DLouiE +T(2L1n + Lout)LoutD
model parameters computation self-attention

Memory Access. Memory access also consists of two parts: model parameters and KV cache.

CVmem = 2PLout + 2LinLoutD + L2 D
—— —_—————

out
model parameter access  prompt KV cache  decoding KV cache

In real serving scenarios, a large batch size will be used (DeepSeek-Al, 2025) with growing GPU VRAM (Tirumala &
Wong, 2024) and model parallelism (Pope et al., 2023). The access to the model parameter will be amortized across requests
in a batch shows parameter access time is negligible when the batch size is large). Thus, we only consider the second term
(i.e., KV cache loading) in our cost function. Furthermore, in the cases that we have N reasoning trials, the prompt cache
access (Juravsky et al., 2024; Zheng et al., 2024) is also shared across these N trials. Thus,

Ceomp(N) = 2PN Loyt 4+ 2rNLip Loyt D +rNL2,,D 3)

out
Cmem(N) = 2LinLOutD + NL2 D (4)

out

eFLOPs. We propose eFLOPs (equivalent FLOPs) to capture both compute and memory access cost,
eFLOPs = Ceomp + Cimem < 1 5)

where [ is the arithmetic intensity of hardware, which reflects that modern accelerators usually have a much larger
computation capacity over memory bandwidth, and the gap is growing over the years (Sadhukhan et al., 2024). In this work,
we use [ = 562.5 (unit: FLOPs x s/ GB) from NVIDIA B200 (Tirumala & Wong, 2024).

With Equations (3) to (5), we obtain the final cost model.

Crrs = INPLyus +2rNLiyDLyyt +rNDL?,, +2IL;,DLoy; + INDL?,, (6)
N—_——
linear modules computation self-attention computation KV access

where P, r, D are hyper-parameters determined by model M.

A.2 Max Cost Model v.s. Additive Cost Model

Max cost model is widely used in performance modeling (Yuan et al., 2024). It assumes that computation and memory
operations can be fully overlapped with each other and only considers the bottleneck operation for cost measurement.

Crax-cost = maX(Ccomp7 Crnem X I)
where Ceomp denotes the compute cost, Crer the memory cost per access, and I the memory intensity.

In this section, we analyze the Kinetics Scaling Law using the max cost model. For clarity, we refer to the cost model
Ceomp + Cmem X I, which is used in the main paper, as the additive cost model.

We draw two conclusions from empirical results under the max cost model:

* Kinetics scaling law for dense models still holds. We re-plot Figure 3(a)(b) and Figure 4a under the measurement of
max cost models in Figures 11 and 12. We find except that in Long-CoTs scenarios, large models become slightly more
effective in low-cost regime (with accuracy~0.3), the overall trends are very close to the plots with additive cost models.

» Sparse attention solves problems more cost-effectively. We re-plot Figures 6a and 6b in Figures 13a and 13b. Under the
max cost models, in Long-CoTs, the accuracy and efficiency gaps increase from 47.5 points and 11.21 x to 52.8 points
and 15.71x, respectively. In Best-of-/N, the gaps widen from 65 points and 10.67x to 69.4 points and 19.64x. These
results indicate that under the max cost model, our claim that sparse attention can enhance problem-solving performance
is strengthen. Compared to dense attention models, sparse attention models tend to have more balanced memory and
compute costs. Thus omitting one of them via a max cost model will favor sparse attention models.

'Since L, might differ across reasoning trials, we take the expectation for E[L,y:] and E[L2].
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Figure 11. AIME Pareto Frontier (Long-CoTs) with Max Cost Models. (a)(b) is the original plot with the additive cost model. (c)(d)
is the corresponding plot using max cost models. Compared to the original plots, the overall trend is similar except that larger models
span a slightly broader region on the Pareto frontier. For example, the 14B model now consistently outperforms the 4B model with a
noticeable gap around accuracy 0.3 and maintains dominance thereafter. In contrast, under the additive cost model in Figure 3(a), the two
models alternate in performance until accuracy exceeds 0.4. This suggests that, when evaluated using a max cost model, larger models
appear slightly more efficient relative to their performance under additive cost models.
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Figure 12. AIME Pareto Frontier (Best-of-N) with Max Cost Models. We re-plot Figure 4a using max cost models. The Pareto
Frontier is very similar under different cost models.

A.3 Details about Sparse Attention Cost Model

Sparse attention models follow different cost functions due to the sparsification of KV memory access. In this paper, we
focus on algorithms that impose a uniform KV budget (denoted as B) per attention head for each decoded token. We
consider L;,, > B for the sake of simplicity. Under this setting, the cost model for sparse attention is given by:

Csparse = 2N P Loy + 2rNDBLgy +2INDBLgy - @)

compute memory

In practical implementations, we must also account for the overhead associated with retrieving or searching KV memory,
denoted as Cieuren, Which depends on the specific sparse attention algorithm A. For example, in block top-k selection, the

search cost is:

ONLinDLow + *NDL2,  2ILinDLow + INDLZ, ©
2Block-Size 2Block-Size ’

compute memory

Csearch =

In our work, we choose the Block-Size in such a way that Cyparse and Ciearch are roughly balanced, so that the sparse attention

14
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Figure 13. Sparse attention scales significantly better under max cost models. We re-plot Figures 6a and 6b using max cost models.
Compared to the original plots, the performance and efficiency gaps between sparse attention models and dense models become more
pronounced. In Long-CoTs, the accuracy and efficiency gaps increase from 47.5 points and 11.21x to 52.8 points and 15.71x,
respectively. In Best-of-N, the gaps widen from 65 points and 10.67x to 69.4 points and 19.64 x.

cost increases sub-linearly with generation length.
For local attention and oracle top-k attention, we assume no search overhead, i.e., Csearen = 0.

Many sparse attention algorithms skip the first layer (Tang et al., 2024; Chen et al., 2024; Zhang et al., 2023), resulting in
only a minor increase in total cost. For the Qwen3 series, this additional overhead is bounded by 3.57% for the 0.6B model
and by 1.56% for the 32B model.

B Dense Scaling Law

In this section, we further verify Kinetics Scaling Law for dense models proposed in Section 3 with Iso-Cost analysis and
extended experimental results of different benchmarks and model series.

B.1 Additional Benchmarks

We evaluate on AIME25 in Figures 14 and 15a to 15¢ and LiveCodeBench?in Figures 16 and 17a to 17¢ (excluding the 0.6B
model), following the setting described in Section 3. The empirical results support the Kinetics Scaling Law: across both
benchmarks, the 0.6B and 1.7B models are consistently less effective, and the Pareto frontier is almost always dominated by
the 14B models.

B.2 Additional Reasoning Models

In Figures 18 and 19a to 19¢, we evaluate DeepSeek-R1 Distilled Qwen models (abbreviated as DS models) (Guo
et al., 2025) on AIME24. The DeepSeek series models further demonstrate that previous scaling laws—those based on
FLOPs—significantly overestimate the effectiveness of the 1.5B model. As predicted by the Kinetics Scaling Law, increasing
the number of generated tokens for the 1.5B model is less effective than scaling up the model size, such as using the 7B or
larger variants.

Interestingly, we observe a shift in the emerging model size: unlike Qwen3, where the 14B model dominates, the 7B model
becomes the dominant choice in the DeepSeek series. In Figures 18, 19a and 19c, the 7B model spans most of the Pareto
frontier, and Figure 18 shows that 7B models with long CoTs are more efficient and effective than 14B models with short
generations. We attribute this to an architectural outlier in the DeepSeek-R1 (Qwen2.5) model series. As shown in Table 2,
the DeepSeek-R1 7B model is significantly more KV memory-efficient than the Qwen3-8B model. Unlike most model series
illustrated in Figure 5a, where KV cache size typically grows sublinearly with respect to model parameters, DeepSeek-R1
shows a deviation from this trend: the 14B model has approximately 3.4x more KV memory than the 7B model, while

2For LiveCodeBench dataset, we have sampled 50 examples from the v5 subset consisting 167 examples. Our subset comprises 24
hard, 16 medium and 10 easy examples respectively.
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Figure 17. LiveCodeBench Score Curve (Best-of-N). We conduct the same experiments as Figures 4a to 4c.
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Figure 18. AIME24 Pareto Frontier (Long-CoTs). We conduct the same experiments as Figure 3 on DeepSeek Distilled Qwen series.

having only 2x more parameters.

Table 2. KV memory Size for Qwen3 and DeepSeek-R1 Distilled models (per 32K tokens, unit: GB).
Qwen3 Qwen3-1.7B  Qwen3-8B Qwen3-14B Qwen3-32B

3.5 4.5 6 8
DeepSeek DS-1.5B DS-7B DS-14B DS-32B
0.875 1.75 6 8

This finding highlights the importance of concrete model architecture design, rather than focusing solely on the number of
model parameters. Whether KV memory size is directly related to reasoning performance remains an open question, which
we leave for future investigation.

C Sparse Scaling Law

We present how we find the Pareto frontier of sparse attention models through an optimal resource allocation, which
demonstrates the upper bound of scalability of a certain sparse attention algorithms. Then we present additional results

supporting the kinetics sparse scaling law across multiple tasks and demonstrate how these insights enable scalable test-time
scaling with sparse attention.
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Figure 19. AIME24 Score Curve Envelope (Best-of-V). We conduct the same experiments as Figures 4a to 4c on DeepSeek Distilled
Qwen series.

C.1 Optimal Resource Allocation with Sparse Attention Models

Problem statement. Let A denote the corresponding sparsity patterns (e.g., top-k, block sparse and local. Our goal is
to explore the optimal tradeoff among three factors: model M, KV budget B, and number of trials, and the maximum
generation length (N, n). Specifically,

(N,n)s, My, B, =arg max Acc(N,n,B, A, M;T)
(N,n),M,B

st. Crrs(N,n, B, A, M;T)<C )

C.2 Greedy Algorithm for Optimal Resource Allocation

We present a method to optimally schedule generation parameters (N, n) and the KV budget B for each task, establishing
an upper bound on achievable performance and enabling analysis of the core tradeoff between TTS strategies and sparsity.
We begin by solving the subproblem for each individual task 7°:

max ACC(NT,RT,BT,.A,M;T) S.t. OTTs(NT,TLT,BT,A,M;T)SC (10)

Empirically, we discretize the searching space. For instance, in Best-of-IN, we discretize the space of NV and B by producing
a search grid:

G ={No,Ni1,...,N;} ®{Bo,B1,...,B;}
For each pair (N,, By) € G, we compute the corresponding cost Cr (, ) and accuracy Accy (q,5). We use (N7, Br) € G
which maximizes the accuracy under the cost constraint C' as an approximation for Equation (10). By combining the optimal
configurations (N, Br) for all tasks 7', we obtain a solution to the overall problem in Equation (9). Similar discretizations
also applies for Long-CoTs. Thus we find the optimal resource allocation.

We describe the procedure for identifying optimal resource allocations and establishing the Pareto frontier for sparse attention
models in Algorithms 1 and 2, as a supplement to Appendix C.1. Given a fixed cost constraint C, we perform a grid search
over key parameters: KV budgets and either reasoning trials or maximum generation lengths.

Empirically, we sweep over KV budgets {32, 64, 128, 256, 512, 1024}; reasoning trials {1, 2, 4, 8, 16, 32} (with a reduced
upper limit for the 14B and 32B models to save computation time); and generation lengths {2k, 4k, 6k, 8k, 10k, 12k, 14k,
16k, 18k, 20k, 22k, 24k, 26k, 28k, 30k, 32k}.

It is important to note that we do not consider inter-request resource scheduling strategies, such as early stopping or dynamic
reallocation across requests (Fu et al., 2024), since we aim to ensure fairness across all inputs. Instead, the cost constraint C'
is interpreted as the maximum allowable cost per request (not the average), even if some requests achieve saturated accuracy
below that threshold.

C.3 Additional Benchmarks

Beyond AIME24, we evaluate our approach on LiveCodeBench (Jain et al., 2024) and AIME25 (MAA, 2025). Live-
CodeBench features complex programming problems from recent coding contests, while AIME2S5 consists of challenging

3For fairness, we do not schedule resources across tasks, but consider a resource upper bound for all the tasks.
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Figure 20. LiveCodeBench Sparse Scaling. We evaluate sparse scaling laws for Qwen3-14B model using oracle top-%£ and block-top-k
attention on the LiveCodeBench dataset. (a)(d) compare block-top-k and oracle top-k with dense scaling under Best-of-N and long-CoT
TTS settings. (b)(e) show cost-accuracy trade-offs for top-k attention. (¢)(f) show trade-offs for block-top-£ attention. (g)(h)(i) compare
the oracle top-k scaling for easy, medium and hard difficulty questions.

math problems. In both cases, sparse attention—particularly oracle top-k—consistently outperforms dense attention. Block
top-k attention, a tractable alternative, closely matches the performance of the oracle.

For LiveCodeBench, we sample 50 problems from the v5 subset (24 hard, 16 medium, 10 easy). As shown in Figure 20,
oracle top-k attention can achieve ~ 10x speedup in high-accuracy regimes and improves coverage by 40-50% in low-cost
regimes. Conversely, the tractable alternative, Block top-k yields 5-6 x speedup and 30-40% coverage gains. We further
show how the benefits of sparse attention scale with problem difficulty (Figures 20g to 20i).

Figure 21 confirms similar trends for AIME25, with substantial gains in both accuracy and efficiency under sparse attention.

C.4 Additional Analysis

Fixing a model (e.g., Qwen3-8B), we investigate the tradeoff between generating more tokens through Best-of-N and
increasing the KV budget in Figures 22a to 22d. As the figures suggest, on AIME25, each doubling of total compute cost
increases the optimal KV budget by 1.13 x, while generated tokens grow by 1.67; on LiveCodeBench, these factors are
1.14x and 1.89x, respectively. We find that although the concrete numbers depend on the types of tasks, the overall results
confirm our suggestions in the main paper that allocating compute toward generating more responses is generally more
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Figure 21. AIME25 Sparse Scaling. We evaluate sparse scaling laws for Qwen3-14B model using oracle top-k and block-top-k attention
on the AIME25 dataset. (a)(d) compare block-top-k and oracle top-k with dense scaling under Best-of-N and long-CoT settings. (b)(e)
show cost-accuracy trade-offs for oracle top-k attention. (c)(f) show trade-offs for block-top-k attention.

effective than expanding KV budget, highlighting the scalability of sparse attention.

D Experimental Details

In this section, we explain the details about our experiments.

D.1 Estimate Cost, Accuracy and Solving Rate

When empirically measuring cost, one major challenge is the difficulty of controlling the actual generation length. Although
it is possible to set an upper bound on the number of generated tokens, there is no guarantee that the model will utilize the
full budget. For instance, in our Best-of-/N experiments, we set the maximum number of generated tokens to 32,768, yet the
average generation length was only 14K-16K tokens.
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Figure 22. Tradeoff Between Generated Tokens and KV Budget. We empirically characterize the tradeoff between increasing generation
length and allocating a larger KV cache budget using Qwen3-8B. For AIME25 ((a)(b)) and LiveCodeBench ((c)(d)), we identify the
optimal KV budget and generated tokens (defined as number of reasoning trials times the average generated tokens per trial) to achieve
the highest problem-solving rate under every cost constraint C.
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Algorithm 1 Best-of-N optimal resource allocation under cost C

Data: Tasks 7, KV budgets {B;, ..., B;}, trial counts {Nq,. .., N;}, cost limit C
Result: Average of maximum accuracy per task under cost C

AccumBestAcc <— 0 Count <— 0 for rask T in T do

for KV budget By, do
Generate S > max{Ny, .., N;} responses using B, for task T for trial count N, do
compute cost cé? if cgi) < C then
Compute accuracy Accl(jj‘[;) = Pass@N,;
if Accl():‘l;) > BestAcc then
BestAcc « Acclg’Ta);
end if
end if
end for
end for
AccumBestAcc += BestAcc; Count += 1;
end for

AvgBestAcc = AccumBestAcc/Count return AvgBestAcc

Furthermore, it is important to model the relationship between actual inference cost and performance metrics, such as
accuracy in Long-CoTs or solving rate in Best-of-/V. Relying solely on the maximum allowed generation length to estimate
cost can substantially underestimate the efficiency of models that solve problems with much shorter responses—an ability
that may reflect higher capability.

To address this challenge, we first sample .S independent reasoning traces 71,72, . .., s from model M on task T', with the
maximum allowed number of tokens set to n. We slightly generalize Equation (6) as:
Crrs = 2N PE[Ley| + 2rN LinDE[Loy] + rNDE[L?, ]
+ 21 Liy DE[Loy] + INDE[L2,]
= aE[Lou] + DE[L5,] + ¢, (1)
where a, b, and c are constants determined by the model architecture and test-time strategies (e.g., the value of n). The

expectations are estimated from the sampled traces, whose distribution is influenced by the model M, the token limit n, and
the task 7.

For Long-CoTs, we fix N = 1 in Equation (11) and vary n. From the sampled traces, we estimate the accuracy (Pass@1),
and compute the corresponding cost by substituting the empirical values of E[ Loy and E[L2,,] measured under each n.
For Best-of-N, we fix n = 32,768, and estimate the solving rate (Pass@ K) following the methodology of Brown et al.
(2024). The corresponding cost is then computed by substituting N = K into Equation (11).

Similarly, we can estimate the cost for sparse attention models using Equations (7) and (8).

Advanced control of generation lengths is an active area of research (Yang et al., 2025; Muennighoff et al., 2025; Ma et al.,
2025a), but it is beyond the scope of this paper.

D.2 Top-K Attention and Block Top-K Attention

In this section, we explain the sparse attention algorithms discussed in the main paper, namely Top- K Attention and Block
Top- K Attention.

During the decoding phase of a large language model (LLM), the self-attention mechanism computes a weighted average of
past values as follows:

T

o = Softmax (%) V=wV, geR™ K VeR™ weR>" (12)
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Algorithm 2 Long-CoTs optimal resource allocation under cost C

Data: Tasks 7, KV budgets {By, ..., B;}, gen. lengths {nq,...,n;}, samples S, cost limit C
Result: Average of maximum accuracy per task under cost C

AccumBestAcc <— 0 Count <— 0 for rask T in T do

BestAcc < 0 for gen. length n, do
for KV budget By, do
Generate S responses using (By, 1, ); compute cost cha) if Cz(;,j;) < C then
Compute accuracy Accl(jj‘[;) = Pass@1;
if Accl()j;) > BestAcc then
BestAcc « Acclg’Ta);
end if
end if
end for
end for
AccumBestAcc += BestAcc; Count += 1;
end for
AvgBestAcc = AccumBestAcc/Count return AvgBestAcc
where d is the head dimension and n is the context length. The key and value matrices are given by K = [ky, ka, . .., ky],
V = [v1,v2,...,v,], where each k;, v; € R are cached from previous decoding steps.

Top-K Attention. Top-K Attention is a sparsification method where only the K most relevant tokens (i.e., those with the
highest attention scores) are selected to compute the output. Formally, instead of computing the full softmax, we define a
sparse attention weight vector:
exp(si) F
0 ifiel T
w; = {ZJGIK exp(s;) 5 Where 5; = ak;

,  Ix = TopKx(s), (13)
0 otherwise, Vd )

Here, Zx denotes the indices of the top K attention scores s;. By masking out the less important positions, this approach
reduces the computational and memory cost of attention from O(n) to O(K), where K < n.

Block Top- K. Block Top-K Attention is a block-level sparse attention mechanism. Instead of selecting individual tokens
based on attention scores, this method selects entire blocks of tokens, thereby reducing the number of attention computations.

Specifically, assume the full sequence of n keys is divided into m = consecutive blocks, each of size

BLOCK_SIZE:

BLOCI?,SIZE
K=1[ki,....kn) = {K1,Ks,...,Kp}, K;e RBPOCK-512Exd

For each block K;, we first compute the average key vector:

BLOCK_SIZE

- 1
k

* T BLOCK_SIZE b

Jj=1

Next, we compute the attention score between the query ¢ and each block’s average key:

\/;i )

Si fori =1,2,...,m

We then select the top K/ = m blocks based on the scores s;, denoted by the index set Jx+ = TopK.(s).

Attention is computed only over the tokens within the selected blocks. The sparse attention weights are defined as:

S ez, b(5;)

o) pi e T x C tokens in selected blocks,
w; =
0 otherwise
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For both algorithms, K is the KV budget. For GQA, we conduct an average pooling across all the query heads in a group,
ensuring that the total number of retrieved key-value vectors does not exceed the allocated KV budget.

Implementation. Here we provide details of our block top-k attention implementation. We build our inference backend on
Flashinfer (Ye et al., 2025), incorporating support for paged attention (Kwon et al., 2023) and continuous batching (Yu et al.,
2022). Alongside the paged KV cache, we introduce an auxiliary data structure to store block-level average key vectors.
The KV block size is chosen such that the memory load from the block-average vectors and the selected top-k KV blocks
remains balanced. This design enables sub-quadratic KV loading cost as the number of reasoning tokens increases.

E Related Work

Efficient Attention. Sparse attention (Kitaev et al., 2020; Zandieh et al., 2023; Chen et al., 2021; 2024; Zhang et al.,
2023; Xiao et al., 2024; Yuan et al., 2025; Nawrot et al., 2025; Child et al., 2019; Li et al., 2024; Cai et al., 2024) has
been comprehensively studied to reduce the attention cost when processing long sequeces. In parallel, approaches like
FlashAttention (Dao et al., 2022; Dao, 2023) accelerate attention by maximizing hardware efficiency. To address the
quadratic complexity of standard attention, researchers have also explored linear attention architectures (Gu & Dao, 2023;
Gu et al., 2022; Katharopoulos et al., 2020; Choromanski et al., 2020). Additionally, quantization and low-precision
methods (Liu et al., 2024; Hooper et al., 2024; Lin et al., 2024b) have been broadly applied for improving inference
efficiency.

Efficient Inference. Orca (Yu et al., 2022), vLLM (Kwon et al., 2023), and SGLang (Zheng et al., 2024) are widely adopted
to enhance the efficiency of LLM serving. Our analysis builds on the practical designs and implementations of these systems.
In parallel, speculative decoding (Leviathan et al., 2023; Chen et al., 2023; Miao et al., 2023; Sadhukhan et al., 2024) has
been proposed to mitigate the memory-bandwidth bottleneck during LLM decoding. Additionally, model compression
and offloading (Dettmers et al., 2022; Lin et al., 2024a; Svirschevski et al., 2024; Sheng et al., 2023; Frantar et al., 2022)
techniques are playing a crucial role in democratizing LLM deployment.

Efficient Test-time Strategies. Optimizing reasoning models to generate fewer tokens has been shown to directly reduce
inference-time cost (Team, 2025a; Arora & Zanette; Ma et al., 2025b). Recent work such as CoCoNut (Hao et al., 2024) and
CoCoMix (Tack et al., 2025) explores conducting reasoning in a latent space, thereby reducing decoding time. Methods like
ParScale (Chen et al., 2025b), Tree-of-Thoughts (Yao et al., 2023a), and Skeleton-of-Thoughts (Ning et al., 2023) aim to
improve efficiency by enabling parallel reasoning. Architectural innovations such as CoTFormer (Mohtashami et al., 2023)
further enhance efficiency by adaptively allocating computational resources across tokens. Efficient reward-model-based (Wu
et al., 2024; Snell et al., 2024; Sun et al., 2024b) test-time scaling algorithms are also comprehensively studied.
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Figure 23. Correlation between Generation Length and Number of Trials. Longer generations correlate strongly with the optimal
number of trials (Nop¢ ), serving as a proxy for problem difficulty. (a) shows this trend for top-k and block top-k attention on the AIME24
dataset using the Qwen3-8B model.
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F Limitations, Future Scope, and Broader Impact

Limitations. Our experiments primarily focus on Qwen3 (Yang et al., 2025) and DeepSeek-R1-Distilled-Qwen (Guo
et al., 2025), two state-of-the-art pretrained reasoning model series, evaluated from the inference perspective. However,
the effects of training and post-training strategies are not fully explored and may influence the performance gaps and
robustness to sparse attention mechanisms. In addition, our cost analysis assumes a cloud-based serving environment, where
computational resources are typically sufficient and large batch sizes are feasible. In contrast, local deployment scenarios,
such as those using Ollama*, often face limited VRAM where access to model parameters can dominate inference costs.
Smaller models may be more appropriate in such settings, and our findings may not fully extend to these use cases.

Future Scope. Our sparse scaling law offers valuable insights for enriching the applications of sparse attention algorithms
and the design space of test-time scaling strategies. On one hand, except for top-k, currently we only discuss a simple
variant, i.e., block top-k, and have already demonstrated strong scalability. More advanced sparse attention algorithms (Tang
et al., 2024; Chen et al., 2024; Yuan et al., 2025; Lin et al., 2025) are emerging these days. We do believe they can eventually
push the scalability of test-time scaling to a much higher boundary. On the other hand, test-time scaling algorithms are
proposed to adaptively allocate computation to tasks, or even to tokens (Arora & Zanette; Mohtashami et al., 2023; Ma et al.,
2025b;a). Extending them towards to new resource allocation problems in sparse attention is critical to reach the limit of
Kinetics sparse scaling law. For instance, since generation length strongly correlates with the optimal number of trials under
sparse attention (as shown in Figure 23), it can be used as a dynamic signal to adjust the number of trials and KV budget.
Moreover, sparse attention drastically reduces inference cost, enabling more reasoning trials and longer generations. This
unlocks greater flexibility in configuring TTS strategies within a fixed resource budget.

Broader Impact. This work aims to contribute to the understanding of efficiency and scalability challenges in the test-time
scaling era, spanning model architecture, system-level implementation, and hardware design. We highlight the central role
of sparsity in addressing these challenges. Our study is algorithmic in nature and does not target specific applications. While
large language models can be misused in harmful ways, this work does not introduce new capabilities or risks beyond those
already present in existing systems. Test-time scaling can consume a substantial amount of energy, raising concerns about
the environmental sustainability of widespread deployment. By promoting sparse attention, our work hopes to help to reduce
the carbon footprint and energy consumption of inference systems and support the broader goal of sustainable Al

*nttps://github.com/ollama/ollama
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