
Under review as a conference paper at ICLR 2022

SUPPLEMENT FOR “EFFICIENT BI-LEVEL OPTIMIZA-
TION FOR NON-SMOOTH OPTIMIZATION”

Anonymous authors
Paper under double-blind review

1 CONVERGENCE ANALYSIS

In this section, we give the detailed convergence analysis. First, we give several definitions used in
our analysis,

Definition 1 (Tangent coneClarke (1990).) For a nonempty closed convex subset X of Rd, the
tangent cone toW atw ∈ W , denoted as TW(w), is the set consisting of all tangent vectors, where
we call a vector v ∈ Rd a tangent vector toW at w, if there are a sequence {wk} inW converging
to w and a sequence {τk} of positive numbers converging to 0 such that

v = lim
k→∞

wk −w
τk

. (1)

Definition 2 (Normal coneClarke (1990).) We define the normal cone toW at w by polarity with
TW(w):

NW(w) = {ξ ∈ W∗ : 〈ξ,v〉 ≤ 0 for all v ∈ TW(w)}, (2)

whereW∗ denotes the dual space ofW .

Definition 3 (Clarke generalized directional derivativeClarke (1990).) For the Lipschitz continuous
function φ overW , the Clarke generalized directional derivative at w̄ is defined as

φ◦(w̄;v;W) = lim sup
w 7→ w̄,w ∈ W
t ↓ 0,y + tv ∈ W

φ(w + tv)− φ(w)

t
(3)

Definition 4 (Interior set.) The interior of a subsetW , denoted by int(W), is defined as the set of
all interior points ofW , where the point w is said to a interior point if there exists an open ball
centered at w which is completely contained inW .

To solve the non-Lipschitz continuous term in our original problem, for a fixed point w̄ ∈ W , we find
out which hi is not Lipschitz continuous atDT

i w̄ and use a Lipschitz continuous function to replace
it according to Bian & Chen (2017). Specifically, define the index set where hi is not Lipschitz
continuous atDT

i w̄ as follows

Iw̄ = {i ∈ {1, 2, · · · , n} : hi is not Lipschitz continuous atD
T
i w̄}, (4)

and define a new function

hw̄i (DT
i w) :=

{
hi(D

T
i w) i 6∈ Iw̄

hi(D
T
i w̄) i ∈ Iw̄

, (5)

which is Lipschitz continuous atDT
i w̄, i = 1, 2, · · · , n. Then, we have a new function hw̄(w) :=(

hw̄1 (DT
1 w), hw̄2 (DT

2 w), · · · , hw̄n (DT
nw)

)
, which has the same value as h(w) but different property.

For convenience, we define φw̄(w) = ϕ(hw̄(w)) and φ(w) = ϕ(h(w)). Besides, we define the
vector set for the non-Lipschitz continuous index set as follows,

Vw̄ =
{
v : DT

i v = 0, i ∈ Iw̄
}
, (6)

which means that v is perpendicular to all column vectors in Di, i ∈ Iw̄. Besides, we define
rint(TW(w)) = int(TW1(w)) ∩ TW2(w).
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1.1 STATIONARY POINTS OF THE SINGLE-LEVEL PROBLEM

Now we prove that the conditions in definition 1 is necessary conditions for the stationary point of a
certain single-level problem.

First, we give the exact single-level problem of the original non-smooth problem. Recently, W.
Bian and X. Chen Bian & Chen (2017) proposed a necessary condition of the general non-smooth
non-convex, even non-Lipschitz problem, which is shown as the lower-level problem in our original
bi-level problem. Specifically, if w∗ is the local minimizer and rint(TW(w∗)) ∩ Vw∗ 6= ∅, we have

∇wg(w∗, λ̄)Tv + exp(λ1)φ◦(w∗;v;W) ≥ 0,∀v ∈ TW(w∗) ∩ Vw∗ (7)

where φ◦(w∗;v;W) denotes the Clarke generalized directional derivative of ϕ(h(w)) at the local
minimizer w∗. Then, we can replace the original non-smooth bi-level problem with above condition
and obtain the following single-level problem,

min
w,λ

f(w,λ) (8)

s.t. c(w,λ) = ∇wg(w, λ̄)Tv + exp(λ1)φ◦(w;v;W) ≥ 0 ∀v ∈ TW(w) ∩ Vw
if rint(TW(w)) ∩ Vw 6= ∅ and φ◦(w;v;W) denotes the Clarke generalized directional derivative of
ϕ(h(w)) at point w.

Based on our assumptions, we first give the following lemma.

Lemma 1 c(w,λ) is Lipschitz continuous on both w and λ.

Proof 1 We have

|c(w,λ)− c(w′,λ)|
=|
(
∇wg(w, λ̄)Tv + exp(λ1)φ◦(w;v;W)

)
−
(
∇wg(w′, λ̄)Tv + exp(λ1)φ◦(w′;v;W)

)
|

≤|∇wg(w, λ̄)Tv −∇wg(w′, λ̄)Tv|+ exp(λ1)|φ◦(w;v;W)− φ◦(w′;v;W)| (9)

According to Proposition 2.1.1 in Clarke (1990) and g is Lwg -Lipschitz continuous , where Lwg is
Lipschitz constant for w, we have∇wg(w, λ̄)Tv is Lwg -Lipschitz continuous. Besides, we have

|φ◦(w;v;W)− φ◦(w′;v;W)|
=|φ◦w̄(w;v;W)− φ◦w̄(w′;v;W)|. (10)

Since φw̄ is Lw̄φ -Lipschitz continuous, where Lwφ is the Lipschitz constant for w, we have φ◦w̄ is
Lwφ -Lipschitz continuous according to Proposition 2.1.1 in Clarke (1990). Namely, we have

|φ◦w̄(w;v;W)− φ◦w̄(w′;v;W)| ≤ Lw̄φ ‖w −w′‖2 (11)

Therefore, we have

|c(w,λ)− c(w′,λ)| ≤ (Lwg + Lwφw̄
)‖w −w′‖2, (12)

which means that c(w,λ) is Lipschitz continuous on w.

Then we prove c is Lipschitz continuous on λ. We have

|c(w,λ)− c(w,λ′)|
=|
(
∇wg(w, λ̄)Tv + exp(λ1)φ◦(w;v;W)

)
−
(
∇wg(w, λ̄′)Tv1 + exp(λ′1)φ◦(w;v1;W)

)
|

=|∇wg(w, λ̄)Tv −∇wg(w, λ̄′)Tv|+ | exp(λ1)− exp(λ′1)| · |φ◦(w;v;W)| (13)

According to the Proposition 2.1.1 in Clarke (1990), we have

|φ◦(w;v;W)|
=|φ◦w̄(w;v;W)|
≤Lφw̄‖v‖2 (14)

Thus, we obtain

|c(w,λ)− c(w,λ′)| ≤ C‖λ− λ′‖2. (15)

where C is a constant. That completes the proof.
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Since the objective f(w,λ) and the constraint c(w,λ) are both Lipschitz continuous, we have the
following lemma,

Lemma 2 (Necessary condition.) Let (w∗,λ∗) be a stationary point of problem (8). Then (w∗,λ∗)
together with ξ∗ ≥ 0 satisfy the following conditions,

∇wf(w∗,λ∗)Tv2 −
(
vT2 ∇2

wwg(w∗, λ̄∗)v1 + exp(λ∗1)φ◦◦(w∗;v1,v2;W)
)
ξ∗ ≥ 0 (16)

∇λf(w∗,λ∗)Tv3 −
(
v̄3∇2

wλ̄g(w∗, λ̄∗)v1 + v13 exp(λ∗1)φ◦(w∗;v1;W)
)
ξ∗ ≥ 0 (17)

∇wg(w∗, λ̄∗)Tv1 + exp(λ∗1)φ◦(w∗;v1;W) ≥ 0 (18)

for all v1 ∈ TW(w∗) ∩ Vw∗ , v2 ∈ TW(w∗), v3 ∈ TU (λ∗) if rint(TW(w∗)) ∩ Vw∗ 6= ∅, where
v3 = [v13 , v̄

T
3 ]T and

φ◦◦(w∗;v1,v2;W) = lim sup
w 7→ w∗,w ∈ W

s ↓ 0,w + sv2 ∈ W

φ◦(w + v2s;v1;W)− φ◦(w;v1;W)

s
) (19)

Proof 2 Since c(w,λ) and f(w,λ) are Lipschitz continuous, based on the theorem 1 in Clarke
(1976), (w∗,λ∗) is the stationary point of the following Lagrange function of problem (8)

L(w,λ, ξ) = f(w)− c(w,λ)T ξ (20)

where ξ ≥ 0. Thus, we have

0 ∈ ∂wL(w∗,λ∗, ξ∗) +NW(w∗) (21)
0 ∈ ∂λL(w∗,λ∗, ξ∗) +NU (λ∗) (22)

∇wg(w∗, λ̄∗)Tv1 + λ∗1φ
◦(w∗;v1;W) ≥ 0 (23)

where NW(w∗) and NU (λ∗) are the normal cones ofW and U .

Since c(w,λ) and f(w,λ) are Lipschitz continuous, we have

|L(w,λ, ξ)− L(w′,λ, ξ)|
≤|f(w,λ)− f(w′,λ)|+ ξ|c(w,λ)− c(w′,λ)|
≤(Lwf + Lwg + Lwφw̄

)‖w −w′‖2, (24)

where Lwf is the Lipschitz constant of f on w. This means L(w,λ, ξ) is Lipschitz continuous. Thus,
condition 21 is equivalent to

L◦w(w∗,λ∗, ξ∗;v2;W) ≥ 0, ∀v2 ∈ TW(w∗) (25)

where L◦w(w∗,λ∗, ξ∗;v2;W) is the generalized clarke directional derivative at w∗ defined as
follows

L◦w(w∗,λ∗, ξ∗;v2;W) = lim sup
w 7→ w∗,w ∈ W

s ↓ 0,w + sv2 ∈ W

L(w + sv2,λ
∗, ξ∗)− L(w,λ∗, ξ∗)

s
. (26)

Then, for all v2 ∈ TW(w∗), we have,
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L◦w(w∗,λ∗, ξ∗;v2;W)

= lim sup
w 7→ w∗,w ∈ W

s ↓ 0,w + sv2 ∈ W

L(w + sv2,λ
∗, ξ∗)− L(w,λ∗, ξ∗)

s

= lim sup
w 7→ w∗,w ∈ W

s ↓ 0,w + sv2 ∈ W

f(w + sv2,λ
∗)− f(w,λ∗, ξ∗)

s

− ξ∗ lim sup
w 7→ w∗,w ∈ W

s ↓ 0,w + sv2 ∈ W

g(w + sv1,λ
∗)v2 − g(w,λ∗)v1
s

− exp(λ∗1)ξ∗ lim sup
w 7→ w∗,w ∈ W

s ↓ 0,w + sv2 ∈ W

φ◦(w + sv2;v1;W)− φ◦(w∗;v1;W)

s

=∇wf(w∗,λ∗)Tv2 −
(
vT2 ∇2

wwg(w∗, λ̄∗)v1 + exp(λ∗1)φ◦◦(w∗;v1,v2;W)
)
ξ∗

≥0 (27)

where

φ◦◦(w∗;v1,v2;W) = lim sup
w 7→ w∗,w ∈ W

s ↓ 0,w + sv2 ∈ W

φ◦(w + sv2;v1;W)− φ◦(w;v1;W)

s
(28)

Using the same method, we can obtain condition (22) is equivalent to

∇λf(w∗,λ∗)Tv3 −
(
v̄3∇2

wλ̄g(w∗, λ̄∗)v1 + v13 exp(λ∗1)φ◦(w∗;v1;W)
)
ξ∗ ≥ 0 (29)

for all v3 ∈ TU (λ).

Therefore, conditions (16)-(18) is equivalent to conditions (21)-(23).

Then, based on Lemma 2, we have the following corollary ,

Corollary 1 (Sufficient condition.) (w∗,λ∗) is said to be a stationary point of problem (8), if it
satisfies the following conditions for all v1 ∈ TW(w∗) ∩ Vw∗ , v2 ∈ TW(w∗) and v3 ∈ TU (λ∗)

∇wf(w∗,λ∗)Tv2 −
(
vT2 ∇2

wwg(w∗, λ̄∗)v1 + exp(λ∗1)φ◦◦(w∗;v1,v2;W)
)
ξ∗ ≥ 0 (30)

∇λf(w∗,λ∗)Tv3 −
(
v̄3∇2

wλ̄g(w∗, λ̄∗)v1 + v13 exp(λ∗1)φ◦(w∗;v1;W)
)
ξ∗ ≥ 0 (31)

∇wg(w∗, λ̄∗)Tv1 + exp(λ∗1)φ◦(w∗;v1;W) ≥ 0 (32)

where ξ∗ ≥ 0 and v3 = [v13 , v̄
T
3 ]T and

φ◦◦(w∗;v1,v2;W) = lim sup
w 7→ w∗,w ∈ W

s ↓ 0,w + sv2 ∈ W

φ◦(w + v2s;v1;W)− φ◦(w;v1;W)

s
) (33)

According to Dempe & Zemkoho (2020), if the lower problem is convex, then the bilevel optimization
problem

min
λ

f(w∗,λ) s.t. w∗ ∈ arg min
w

g(w, λ̄) + exp(λ1)ϕ(h(w)), (34)

is equivalent to the single level problem

min
λ,w

f(w,λ) s.t. 0 ∈ ∇wg(w, λ̄) + exp(λ1)∂wϕ(h(w)), (35)

where ∂wϕ(h(w)) is the subgradient. Then, according to Bian & Chen (2017), we have

∇wg(w∗, λ̄∗)Tv1 + exp(λ∗1)φ◦(w∗;v1;W) ≥ 0, (36)
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is equivalent to

0 ∈ ∇wg(w, λ̄) + exp(λ1)∂wϕ(h(w)). (37)

This means that if a point is the stationary point of the problem

min
w∈W,λ∈U

f(w,λ) (38)

s.t. c(w,λ) = ∇wg(w, λ̄)Tv + exp(λ1)φ◦(w;v;W) ≥ 0 ∀v ∈ TW(w) ∩ Vw, (39)

then, it is a stationary point of the above problem 35. Thus, it means that such a point is the stationary
point of the original nonsmooth bilevel problem if the lower level problem is convex and nonsmooth.
In addition, if the lower-level problem is nonconvex, the conditions 16-18 are the necessary conditions
of the original bilevel problem. Therefore, we have the following definition,

Definition 5 (w∗,λ∗) is said to be a stationary point of problem (??), if it satisfies the following
conditions for all v1 ∈ TW(w∗) ∩ Vw∗ , v2 ∈ TW(w∗) and v3 ∈ TU (λ∗), where U = Rm and the
lower-level problem is convex,

∇wf(w∗,λ∗)Tv2 −
(
vT2 ∇2

wwg(w∗, λ̄∗)v1 + exp(λ∗1)φ◦◦(w∗;v1,v2;W)
)
ξ∗ ≥ 0 (40)

∇λf(w∗,λ∗)Tv3 −
(
v̄3∇2

wλ̄g(w∗, λ̄∗)v1 + v13 exp(λ∗1)φ◦(w∗;v1;W)
)
ξ∗ ≥ 0 (41)

∇wg(w∗, λ̄∗)Tv1 + exp(λ∗1)φ◦(w∗;v1;W) ≥ 0 (42)

where ξ∗ ≥ 0, v3 = [v13 , v̄
T
3 ]T , φ◦◦(w∗;v1,v2;W) =

lim sup w 7→ w∗,w ∈ W
s ↓ 0,w + sv2 ∈ W

φ◦(w + v2s;v1;W)− φ◦(w;v1;W)

s
). and φ◦(w;v1;W) =

lim sup w′ 7→ w,w′ ∈ W
t ↓ 0,w′ + tv ∈ W

ϕ(h(w′ + tv))− ϕ(h(w′))

t
denotes the Clarke generalized direc-

tional derivative of ϕ(h(w)) at point w. Note if the lower-level problem is nonconvex, conditions
16-18 is the necessary conditions of the original nonsmooth, perhaps non-Lipschitz bilevel problem.

1.2 CONVERGE TO THE STATIONARY POINT

In this subsection, we show our method will finally converge to the stationary point of problem (8).

Theorem 1 Suppose {εi,k}∞k=1 (i = 1, 2, 3) are positive and convergent (limk→∞ εi,k = 0) se-
quences, {µk}∞k=1 is a positive and convergent (limk→∞ µk = 0) sequence, and βk is increasing
and divergent (β1 < β2 < · · · ). Then any limit point of the sequence points generated by SPNBO
satisfies the conditions (16)-(18).

Proof 3 In our method, we solve the following smoothed single level problem for each given µk

min
w∈W,λ∈U

f(w,λ) (43)

s.t. cµ
k

(w,λ) := ∇wg(w, λ̄) + exp(λ1)∇wϕ(h̃(w, µk)) = 0,

where∇wϕ(h̃(w, µk)) = ϕ′(z)h(w,µk)∇wh(w, µk) and µk is the smoothing parameter.

Its corresponding augmented Lagrangian function can be rewritten as follows,

L̂(w,λ,α, β, µ) = f(w,λ) +
1

d

d∑
j=1

(
αjc

µk

j (w,λ) +
βk

2
cµ

k

j (w,λ)2
)

(44)

where α denotes the Lagrangian multipler, βk > 0 dentoes the penalty parameter and αj and

cµ
k

j (w,λ) is the j-th element of α and cµ
k

(w,λ).

Based on the tolerance condition, we have

1

d
‖cµ

k

(w,λ)‖22 ≤ ε23,k (45)
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Multplying ‖v1‖22, where v1 ∈ TW(w∗) ∩ Vw∗ , on both sides of above equality, we have

‖cµ
k

(w,λ)‖2‖v1‖2 ≤ ε3,k
√
d‖v1‖2 (46)

According to |ab| ≤ ‖a‖2‖b‖2, we have

|cµ
k

(w,λ)Tv1| ≤ ε3,kv
√
d‖v1‖2. (47)

Thus, we have

cµ
k

(w,λ)Tv1 ≥ −ε3,k
√
d‖v1‖2. (48)

Then, taking the limit on both sides (i.e., k →∞), we have

lim
k→∞

cµ
k

(w,λ)Tv1 ≥ 0 (49)

Then, according to the Theorem 2 in Bian & Chen (2017), we have

lim
k→∞

cµ
k

(w,λ)Tv1 = ∇wg(w∗, λ̄∗)Tv1 + exp(λ∗1)φ◦(w∗;v1;W) (50)

Thus, we have

∇wg(w∗, λ̄∗)Tv1 + exp(λ∗1)φ◦(w∗;v1;W) ≥ 0 (51)

Let α̂k = −αk − βcµk

(wk,λk). Then, we have

|cµ
k

(wk,λk)T α̂k| ≤ ε22,k (52)

Assume the limitation of cµ
k

exists. Taking the limit on both sides, we have

lim
k→∞

|cµ
k

(wk,λk)T α̂k| ≤ 0 (53)

It means that

lim
k→∞

cµ
k

(wk,λk)T α̂k = 0. (54)

Therefore, we have α̂∗ ∈ TW(w∗). If α̂∗ /∈ Vw∗ , the limitation doesn’t exist, since φ is not lipschitz
continuous. This means that we have α̂∗ ∈ TW(w∗) ∩ Vw∗ . Let α̂∗ = ξ∗v1 ∈ TW(w∗) ∩ Vw∗ and
ξ∗ ≥ 0, such that

lim
k→∞

cµ
k

(wk,λk)T α̂k

=cµ
∗
(w∗,λ∗)T ξ∗v1

=ξ∗
(
∇wg(w∗, λ̄∗)Tv1 + exp(λ∗1)φ◦(w∗;v1;W)

)
=0 (55)

We also have

‖∇wf(wk,λk)−∇wcµ
k

(wk,λk)α̂k‖22 ≤ ε21,k (56)

Assmue that we have a vector v2 ∈ TW(w∗). Multiplying ‖v2‖22 on the both side of the above
inequality, we have

‖∇wf(wk,λk)−∇wcµ
k

(wk,λk)α̂k‖2‖v2‖2 ≤ ε1,k‖v2‖2. (57)

According to |〈a, b〉| ≤ ‖a‖2‖b‖2, we have

|〈∇wf(wk,λk)−∇wcµ
k

(wk,λk)α̂k,v2〉| ≤ ε1,k‖v2‖2 (58)

Obviously, we have

〈∇wf(wk,λk)−∇wcµ
k

(wk,λk)α̂k,v2〉 ≥ −ε1,k‖v2‖2 (59)
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Besides, we have

∇w
(
f(wk,λk)− cµ

k

(wk,λk)α̂k
)

=∇w
(
f(wk,λk)− 〈∇wg(w, λ̄), α̂k〉 − exp(λ1)〈∇ψ(z)z=h̃(wk,µk),∇wh̃(wk, µk)T α̂k〉

)
(60)

where

∇wh̃(wk, µk)T α̂k

=
(
∇wh̃1(D1w

k, µk)T α̂k,∇wh̃2(D2w
k, µk)T α̂k, · · · ,∇wh̃n(Dnw

k, µk)T α̂k)
)T

(61)

Let α̂k = ξkv1 ∈ Vwk and ξ ≥ 0. For i ∈ Iwk , we obtain DT
i α̂

k = 0, then
∇wh̃i(Diw

k, µk)T α̂k = ∇zh̃i(z, µk)T
z=DT

i w
kD

T
i α̂

k = 0. Besides, we define the smoothing
function

h̃w̄i (Diw, µ) :=

{
h̃i(D

T
i w, µ) i 6∈ Iw̄

h̃i(D
T
i w̄, µ) i ∈ Iw̄

(62)

and h̃w̄(w, µ) =
(
h̃w̄1 (D1w, µ), h̃w̄2 (D2w, µ), · · · , h̃w̄n (Dnw, µ)

)T
. We can obtain the smoothing

function φ and φw̄ as φ̃(wk, µk) = ϕ(hw̄(w, µk)) and φ̃w̄(wk, µk) = ϕ(hw̄(w, µk)). Then, we
have

∇wh̃(wk, µk)T α̂k = ∇wh̃w̄(wk, µk)T α̂k (63)

Thus, coming back to (50), we obtain

f(wk,λk)− cµ
k

(wk,λk)α̂k

=f(wk,λk)− 〈∇wg(w, λ̄), α̂k〉 − exp(λ1)〈∇ψ(z)z=h̃(wk,µk),∇wh̃w̄(wk, µk)T α̂k〉

=f(wk,λk)− 〈∇wg(w, λ̄), ξkv1〉 − exp(λ1)〈∇ψ(z)z=h̃(wk,µk),∇wh̃w̄(wk, µk)T ξkv1〉

=f(wk,λk)− 〈∇wg(w, λ̄), ξkv1〉 − exp(λ1)ξkφ̃◦w̄(wk, µk;v1;W)

where φ̃◦w̄(wk, µk;v1;W) is the directional derivative of φ̃w̄(wk, µk). Then, we can calculate
directional derivative on v2 as follows,〈

∇w
(
f(wk,λk)− cµ

k

(wk,λk)α̂k
)
,v2

〉
=∇wf(wk,λk)Tv2 − ξkvT2 ∇2

wwg(wk, λ̄k)v1

− λ1ξk lim sup
w 7→ wk,w ∈ W

s ↓ 0,w + sv2 ∈ W

φ̃◦w̄(w + v2s, µ
k;v1;W)− φ̃◦w̄(w, µk;v1;W)

s

=∇wf(wk,λk)Tv2 − ξkvT2 ∇2
wwg(wk, λ̄k)v1

− λ1ξk lim sup
w 7→ wk,w ∈ W

s ↓ 0,w + sv2 ∈ W

φ̃◦(w + v2s, µ
k;v1;W)− φ̃◦(w, µk;v1;W)

s

(64)

Let k →∞ and v1 ∈ TW(w∗) ∩ Vw∗ , we obtain

lim
k→∞

〈
∇w

(
f(wk,λk)− cµ

k

(wk,λk)α̂k
)
,v2

〉
= lim
k→∞

(∇wf(wk,λk)Tv2 − ξkvT2 ∇2
wwg(wk, λ̄k)v1

− exp(λ1)ξk lim sup
w 7→ wk,w ∈ W

s ↓ 0,w + sv2 ∈ W

φ̃◦(w + v2s, µ
k;v1;W)− φ̃◦(w, µk;v1;W)

s
)

=∇wf(w∗,λ∗)Tv2 − ξ∗vT2 ∇2
wwg(w∗, λ̄∗)v1 − exp(λ1)ξ∗φ◦◦(w∗;v1,v2;W)

≥0 (65)

7



Under review as a conference paper at ICLR 2022

10
-2

10
-1

10
0

10
1

0.6

0.7

0.8

0.9

1

T
es

t 
a
cc

u
ra

cy

T=1

T=10

T=20

(a) Fashion

10
-2

10
-1

10
0

10
1

0.6

0.7

0.8

0.9

1

T
es

t 
a
cc

u
ra

cy

T=1

T=10

T=20

(b) Mnist

10
-2

10
-1

10
0

10
1

0.6

0.7

0.8

0.9

1

T
es

t 
a
cc

u
ra

cy

T=1

T=10

T=20

(c) Svhn

10
-2

10
-1

10
0

10
1

0.6

0.7

0.8

0.9

1

T
es

t 
a
cc

u
ra

cy

T=1

T=10

T=20

(d) Cifar10

Figure 1: Test accuracy of data re-weight on dataset with different β.(Note the inner iteration number
T is fixed.)
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Figure 2: Test accuracy of data re-weight with different T .(Note the penalty parameter β is fixed.)

where

φ◦◦(w∗;v1,v2;W) = lim sup
w 7→ w∗,w ∈ W

s ↓ 0,w + sv2 ∈ W

φ◦(w + v2s;v1;W)− φ◦(w;v1;W)

s
) (66)

By using the same method, we can obtain

∇λf(w∗,λ∗)Tv3 −
(
v̄3∇2

wλ̄g(w∗, λ̄∗)v1 + v13e
λ∗1φ◦(w∗;v1;W)

)
ξ∗ ≥ 0 (67)

for all v3 ∈ TU (λ).

That completes the proof.

This means that our method can converge to the stationary point the single-level problem 8. Mean-
while, it also means that our method will finally converge to the stationary point of the original
bi-level problem.

2 IMPACT OF PENALTY PARAMETER AND INNER ITERATION NUMBER

In this section, we evaluate the impact of different initial values for penalty parameter β and the
inner iteration number T in three applications. In data re-weight and training data poisoning, we use
the deep neural network which has 3 convolution-maxpooling-relu layers and 3 dense layers. We
randomly sample 3 layers to update w and λ and data batch is fixed at 128. We run our method for
10 epochs. For meta-learning, we run our method for 1000 iterations. We present all the results in
Figure 1, Figure 2, Figure 3, Figure 4, Figure 5, Figure 6, Figure 7, Figure 8 and Figure 9. From
Figure 1, Figure 4 and Figure 7, we can find that the results do not change much when β is different
and T is fixed. This means that our method is not insensitive to the initial value of β. We also present
the running time and test accuracy in Figure 2,Figure 3, Figure 5, Figure 6, Figure 8 and Figure 9. In
most cases, using a larger inner iteration number, we will get a better result. However, it needs a long
running time for the large inner iteration number. In addition, when the number of inner iterations
reaches a certain level, the accuracy improvement brought by increasing the number of iterations
decreases.

Here we also discuss the effect of the different initial values of ηλ in three applications. In data
re-weight and training data poisoning attack, we use the deep neural network which has 3 convolution-
maxpooling-relu layers and 3 dense layers. We randomly sample 3 layers and 64 data samples to
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Figure 3: Running time of data re-weight with different T .(Note the penalty parameter β is fixed.)
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Figure 4: Test accuracy of training data poisoning with different β.(Note the inner iteration number
T is fixed.)
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Figure 5: Test accuracy of training data poisoning with different T .(Note the penalty parameter β is
fixed.)
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Figure 6: Running time of training data poisoning with different T .(Note the penalty parameter β is
fixed.)

calculate the stochastic gradient. We run our method for 20 epochs. For meta-learning, we run our
method for 1000 iterations. We set µ = 0.001, ηw = 0.0001, T = 10 and β = 0.01. The results of
using different ηλ are given in the following Tables 1, 2 and 3. Here we discuss the effect of different
initial values of µ in three applications. We set ηλ = 0.1, ηw = 0.0001, T = 10 and β = 0.01. The
results of using different µ are given in the following Tables 4, 6 and 5.

From our results, we can find that our method is not sensitive to the initial values of the learning rate
ηλ or the smoothing parameter µ.
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Table 1: Results of all the methods in data-reweighgt with different ηλ.

Name 0.1 0.01 0.001
Cifar10 0.683 0.682 0.685
Svhn 0.844 0.845 0.842
Mnist 0.984 0.983 0.984

Fashion 0.881 0.879 0.878

Table 2: Results of all the methods in attack with different ηλ.

Name 0.1 0.01 0.001
Cifar10 0.494 0.503 0.493
Svhn 0.777 0.773 0.774
Mnist 0.959 0.961 0.959

Fashion 0.829 0.828 0.831

Table 3: Results of all the methods in data-reweighgt with different ηλ.

Name Setting 0.1 0.01 0.001
Omnglot 5way-1shot 0.961 0.963 0.963

Miniimagenet 5way-1shot 0.448 0.447 0.448

Table 4: Results of all the methods in data reweight with different µ.

Name 0.01 0.001 0.0001
Cifar10 0.683 0.683 0.685
Svhn 0.842 0.844 8.842
Mnist 0.983 0.984 0.982

Fashion 0.878 0.881 0.878

Table 5: Results of all the methods in data meta-learning with different µ.

Name Setting 0.01 0.001 0.0001
Omnglot 5way-1shot 0.962 0.961 0.963

Miniimagenet 5way-1shot 0.449 0.448 0.448

Table 6: Results of all the methods in data attack with different µ.

Name 0.01 0.001 0.0001
Cifar10 0.501 0.494 0.503
Svhn 0.788 0.777 0.795
Mnist 0.958 0.959 0.958

Fashion 0.827 0.829 0.829
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Figure 7: Test accuracy of meta-learning with different β.(Note the inner iteration number T is fixed.)

1 10 20

T

0.3

0.35

0.4

0.45

T
es

t 
a
cc

u
ra

cy

=0.01

=0.1

=1.0

=10.0

(a) Miniimagenet 5-way 1-shot

1 10 20

T

0.965

0.97

0.975

0.98

0.985

T
es

t 
a
cc

u
ra

cy

=0.01

=0.1

=1.0

=10.0

(b) Omnglot 5-way 1-shot

Figure 8: Test accuracy of meta-learning with different T .(Note the penalty parameter β is fixed.)
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Figure 9: Running time of meta-learning with different T .(Note the penalty parameter β is fixed.)
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