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1 CONVERGENCE ANALYSIS

In this section, we give the detailed convergence analysis. First, we give several definitions used in
our analysis,

Definition 1 (Tangent coneClarke| (1990).) For a nonempty closed convex subset X of RY, the
tangent cone to W at w € W, denoted as Ty (w), is the set consisting of all tangent vectors, where
we call a vector v € R? a tangent vector to W at w, if there are a sequence {w"} in W converging
to w and a sequence {T*} of positive numbers converging to 0 such that
k
w” —w
= 1 _— l

o= i »
Definition 2 (Normal coneClarke|(1990).) We define the normal cone to VW at w by polarity with
T (w):

Nw(w) ={§ €W : (§,v) <0 forall v € Tyw(w)}, 2
where W* denotes the dual space of W.

Definition 3 (Clarke generalized directional derivativeClarke|(1990).) For the Lipschitz continuous
Sfunction ¢ over W, the Clarke generalized directional derivative at  is defined as

t —
@° (w;v; W) = lim sup o(w +tv) — P(w)
w— W, w E W t
tl0,y+tvew

3)

Definition 4 (Interior set.) The interior of a subset W, denoted by int(W), is defined as the set of
all interior points of W, where the point w is said to a interior point if there exists an open ball
centered at w which is completely contained in VV.

To solve the non-Lipschitz continuous term in our original problem, for a fixed point @w € W, we find
out which h; is not Lipschitz continuous at DiT w and use a Lipschitz continuous function to replace
it according to Bian & Chen| (2017). Specifically, define the index set where h; is not Lipschitz
continuous at D w as follows

To ={i €{1,2,--- ,n}: h;is not Lipschitz continuous at D} @}, 4)
and define a new function

hi(Df'w) id1g

w T -

which is Lipschitz continuous at DY, i = 1,2, --- ,n. Then, we have a new function hg(w) :=
(h¥ (DT w), k¥ (DI w), -+ ,h®(DEw)) , which has the same value as h(w) but different property.
For convenience, we define ¢ (w) = ¢(hg(w)) and ¢(w) = p(h(w)). Besides, we define the
vector set for the non-Lipschitz continuous index set as follows,

Vo ={v:D/v=0,ic€ly}, (6)

which means that v is perpendicular to all column vectors in D;, ¢ € Z5. Besides, we define

rint (Tyy(w)) = int(Toy, (w)) N Tow, (w).
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1.1 STATIONARY POINTS OF THE SINGLE-LEVEL PROBLEM
Now we prove that the conditions in definition 1 is necessary conditions for the stationary point of a
certain single-level problem.

First, we give the exact single-level problem of the original non-smooth problem. Recently, W.
Bian and X. Chen Bian & Chen|(2017) proposed a necessary condition of the general non-smooth
non-convex, even non-Lipschitz problem, which is shown as the lower-level problem in our original
bi-level problem. Specifically, if w* is the local minimizer and rint(7yy (w*)) N Vex # 0, we have

Vawg(w®, /_\)T'v + exp(A1)@° (w50, W) > 0,Vv € Toiy(w™) N V= 7)

where ¢°(w*; v; W) denotes the Clarke generalized directional derivative of ¢ (h(w)) at the local
minimizer w*. Then, we can replace the original non-smooth bi-level problem with above condition
and obtain the following single-level problem,

?J,iil flw,A) ®)

s.t. c(w, A) = Vg(w, XN)Tv + exp(A)é° (w; v; W) > 0 Vv € Tyy(w) NV,

if rint (T (w)) N Ve # 0 and ¢° (w; v; W) denotes the Clarke generalized directional derivative of
p(h(w)) at point w.

Based on our assumptions, we first give the following lemma.

Lemma 1 c(w, A) is Lipschitz continuous on both w and .

Proof 1 We have
le(w, A) = c(w', X))
=| (Vawg(w, N) v + exp(M)¢° (w; ;W) — (Vawg(w', X)Tv + exp(M)o° (w';0; W) |
<|Vawg(w, )0 = Vag(w', \) o] + exp(A1)[¢° (w; v; W) — ¢°(w'; 0; W) )
According to Proposition 2.1.1 in|Clarke (1990) and g is Ly’-Lipschitz continuous , where Ly’ is
Lipschitz constant for w, we have V., g(w, X) v is L’ -Lipschitz continuous. Besides, we have

|6° (w; v; W) — ¢°(w'; v; W)
=|¢g (w; v; W) — ¢ (w'; 03 W)|. (10)

Since ¢ is Lg’-Lipschitz continuous, where L7 is the Lipschitz constant for w, we have ¢g, is
L -Lipschitz continuous according to Proposition 2.1.1 in|Clarke| (1990). Namely, we have

|65 (w3 ;W) — ¢ (w03 W) < LY |[w — w2 (11
Therefore, we have
le(w, A) = c(w’, N)| < (L7 + L, )llw — w'||2, (12)
which means that ¢(w, X) is Lipschitz continuous on w.
Then we prove c is Lipschitz continuous on X. We have
le(w, X) — c(w, X)]
=| (Vwg(w,N)Tv + exp(A)¢° (w; v; W) — (Vwg(w, X) o1 + exp(A)¢° (w; v W)) |

=|Vawg(w, X)"v = Vug(w, X) 0] + [exp(Ar) — exp(M)] - [¢° (w; v; W) (13)
According to the Proposition 2.1.1 in|Clarke|(1990), we have
|¢° (w; v; W)
=[¢g (w; v; W)
<Ly llv]l2 (14)

Thus, we obtain
le(w, A) — c(w, X)] < CIIX = X|z. (15)

where C'is a constant. That completes the proof.
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Since the objective f(w, A) and the constraint ¢(w, A) are both Lipschitz continuous, we have the
following lemma,

Lemma 2 (Necessary condition.) Let (w*, A*) be a stationary point of problem . Then (w*, A*)
together with £ > 0 satisfy the following conditions,

Ve f(w*, X)) vy — (v V24,,9(w*, X )v1 + exp(A])o°° (w*;v1,va; W) € >0 (16)
>0

Vaf(w*, X)) vg — (03VZ 59(w*, X*)v1 + v3 exp(A])o° (w*;v1; W) €F (17)

Vawg(w*, X*) w1 + exp(A])¢° (w"; v1; W) > 0 (18)

Sor all vi € Tyy(w*) N Vs, v2 € Tiy(w*), vy € Ty (N*) if rint( Ty (w*)) N Ve # 0, where
v = [vd, 9117 and

ot vW) = limsup SO FRs 0V ZGHion V) g

w wt,w e W S
sl 0,w+ svy €W

Proof 2 Since c(w, A) and f(w, X) are Lipschitz continuous, based on the theorem 1 in|Clarke
(1976), (w*, X*) is the stationary point of the following Lagrange function of problem

L(w, A, €) = f(w) — c(w,N\)"¢ (20)
where £ > 0. Thus, we have
0 € Oy L(w*, X", %) + Ny (w™) 1)
0 € OnL(w*, X*, &%) + Ny(A) (22)
Vawg(w*, X) o1 + A[¢° (w501, W) > 0 (23)

where Ny (w*) and Ny (N*) are the normal cones of VW and U.

Since c(w, X) and f(w, A) are Lipschitz continuous, we have

|IL(w, X, &) = L(w', X, §)]
<|f(w, ) = f(w', )] + Ele(w, A) — c(w’, N)]
<( }”+L;“+L};m)\|w—w’||2, (24)

where LY is the Lipschitz constant of [ on w. This means L(w, X\, ) is Lipschitz continuous. Thus,
condition 21 is equivalent to

Lo (w*, X", 55 v9; W) > 0, Vvg € Tyy(w™) (25)

where L, (w*, X", £%;v9; W) is the generalized clarke directional derivative at w* defined as
follows

(26)

E,?U(w*7A*,£*;v2,W> — hmsup ‘C("’U_|_S’02)A 7§ )_E(’u}7A 75 )

w— w*,weW S
s 0,w+ svg €W

Then, for all vy € Ty (w*), we have,
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Lo (w", A%, v W)
: L(w + sv, A", &) — L{w, A", ")
= lim sup

w— w* weWwW §
s 0,w+ svg €W

Y (Rt O e O

w— w,weWw s
sl 0,w+ svay €W

g(w + sv1, X*)va — g(w, X*)v;

& lim sup
w— w,wew S
sl 0,w+ svay €W

Cexp(A)E limsup LW svaivis W) = $P(wivi W)

w— w,weWw S
sl 0,w+ sva €W

=V f(w*, X)) vy — (UZTVi,wg('w*7 A vy + exp(A]) 0% (w*; vy, vo; W)) '
>0 (27

where

¢°°(w*;v1, v W) = lim sup ¢°(w + svo;v1; W) — ¢°(w; v1; W)

w— wr,wew S
sl 0,w+ svy €W

(28)

Using the same method, we can obtain condition (22)) is equivalent to

Vaf(w*, X)) vg — (B3V2 59(w*, X*)v1 + v exp(A])¢° (w*; 01, W)) €5 >0 (29)
for all vs € Ty ().
Therefore, conditions (I6)-(I8) is equivalent to conditions (21)-(23).

Then, based on Lemma 2} we have the following corollary ,

Corollary 1 (Sufficient condition.) (w*, X\*) is said to be a stationary point of problem , if it

satisfies the following conditions for all vi € Tyy(W*) N V=, v2 € Ty (w*) and vs € Ty (A*)
Vi f (", X) v — (03 Viug(w*, X)v1 + exp(A])o™ (w*; 01,02 W)) € 20 (30)
Vaf(w*, X*) Tvg — (03VZ 59(w*, X*)v1 + v3 exp(A])o° (w*;v1;W)) €5 >0 (31)

Vawg(w*, X) o1 + exp(A})¢° (w*;v1; W) > 0 (32)
where £* > 0 and vz = [vi,v1 " and
¢°°(w*; v, v9; W) = lim sup 7 (w + vas; v, W) — ¢°(w; w1 W)

w— wr,weW S
sl 0,w+4 svy €W

) (33)

According to[Dempe & Zemkoho|(2020), if the lower problem is convex, then the bilevel optimization
problem

In)in fw* A) s.t. w* € argmin g(w, A) + exp(A;)p(h(w)), (34)

is equivalent to the single level problem

r)r‘lin f(w,A) s.t.0 € Vyg(w, X) + exp(A1)dwp(h(w)), (35)

where Oy, (h(w)) is the subgradient. Then, according to Bian & Chen|(2017), we have
Vug(w", X)) 01 + exp(A)6° (w01, W) > 0, (36)
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is equivalent to

0 € Vuwg(w, A) + exp(A1)dwp(h(w)). (37)
This means that if a point is the stationary point of the problem
weltey S0 ) 9

st c(w,N) = Veg(w, X) v + exp(A)¢° (w; v; W) > 0Vv € Tyy(w) N Ve,  (39)

then, it is a stationary point of the above problem Thus, it means that such a point is the stationary
point of the original nonsmooth bilevel problem if the lower level problem is convex and nonsmooth.
In addition, if the lower-level problem is nonconvex, the conditions @]—@]are the necessary conditions
of the original bilevel problem. Therefore, we have the following definition,

Definition 5 (w*, A*) is said to be a stationary point of problem (??), if it satisfies the following
conditions for all vi € Tyy(W*) N Ve, v2 € Ty(w*) and vs € Ty (X*), where U = R™ and the
lower-level problem is convex,

wf(w*, AT (v;Viwg(w*, A1 + exp(A]) 0% (w*; vy, vo; )) & >0 (40)

VAf(w*, )\*) v3 — (1_)3V2 x9(w*, Aoy + vé exp(A])¢° (w*; vy; )) &>0 41)
wg(w*, X) vy + exp(A])e° (w*;v1; W) > 0 (42)

where  &* > 0, v3 = [vi, 01T, ¢°° (w*; vy, v2; W) =

: ¢° (w + vas;v1; W) — ¢°(w; v1; W)
imsup w o w*,we w
sl 0,w+svyg €W , s ,
N (21 R 1)
tl0o,w +tvew t
tional derivative of (h(w)) at point w. Note if the lower-level problem is nonconvex, conditions
[[6}{18)is the necessary conditions of the original nonsmooth, perhaps non-Lipschitz bilevel problem.

). and  ¢°(w;vi; W) =

denotes the Clarke generalized direc-

1.2 CONVERGE TO THE STATIONARY POINT
In this subsection, we show our method will finally converge to the stationary point of problem (§g).

Theorem 1 Suppose {¢; ;}72, (i = 1,2,3) are positive and convergent (limy_,o €; 1 = 0) se-
quences, {,u s =1 is a positive and convergent (limy_, k= 0) sequence, and B* is increasing
and divergent (31 < 3% < ---). Then any limit point of the sequence points generated by SPNBO
satisfies the conditions ([I6)-(8).

Proof 3 In our method, we solve the following smoothed single level problem for each given ¥

i 4
welin flw,A) (43)

st " (w, A) 1= Veg(w, X) + exp(A1) Veo(h(w, %)) = 0,
where Vo (h(w, 1)) = " (2) h(w,uh) Vwh(w, u¥) and p* is the smoothing parameter.

Its corresponding augmented Lagrangian function can be rewritten as follows,

o 1 d ﬂk
Lw,\ o, B, 1) = gZ (aj ¢ (w,A) +—c (w,)\)z) (44)

where a denotes the Lagrangian multipler, 3% > 0 dentoes the penalty parameter and a; and
k 3
i (w, A) is the j-th element of o and * (w, ).

Based on the tolerance condition, we have

1.k
Sl (w, M]3 < €5 (45)
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Multplying ||v1||3, where v1 € Tyy(w*) N V=, on both sides of above equality, we have

i
[ (w, A [l2[lv1]l2 < €5 1Vd||v1 ]2 (46)
According to |ab| < ||al|2||b||2, we have
k
e (w, A) vy | < es V| vy |2 (47)
Thus, we have
k
 (w, ) o1 > —e3 xVd||v1 2. (48)
Then, taking the limit on both sides (i.e., k — 00), we have
lim " (w,\)Tv; >0 49)
k—o0

Then, according to the Theorem 2 in Bian & Chen|(2017), we have

khm o (w, \)Tv1 = Vg(w*, X*) vy + exp(A])o° (w*; v1; W) (50
— 00
Thus, we have
Vwg(w*, X*)Tvl + exp(A])o° (w*;v1; W) >0 (51
Let &% = —ak — Bei" (w, AF). Then, we have
e (wh, ATk < &, (52)

k
Assume the limitation of ¢ exists. Taking the limit on both sides, we have

Jim " (wh, AT &k < 0 (53)
—00
It means that
lim " (w, AT &k = 0. (54)
—00

Therefore, we have &* € Ty (w™). If &* ¢ V=, the limitation doesn’t exist, since ¢ is not lipschitz
continuous. This means that we have &* € Tyy(w*) N V. Let &* = £*v1 € Tyy(w™) N Vo= and
&* >0, such that

lim " (w®, AT ak
k—o0
:cp," (’LU*, )\*)Té—*vl
=& (Vwg(w*, X*) vy 4 exp(A])° (w*; v1; W))
. (55)

We also have
Voo f (w0, AF) = Ve (wh, AV)GF|3 < 3, (56)

Assmue that we have a vector vo € Tyy(w*). Multiplying ||vs||3 on the both side of the above
inequality, we have

IV f (0", AF) = Ve (w", )& | 0a]2 < €1 4l[va]l2. (57)
According to |{a, b)| < ||al|2]|b]|2, we have
[(Vauf (w0, AF) = Vo (wh, X)&F, 03)] < €1 fvalla (58)
Obviously, we have
k ~
(Vo f(w", AF) = Ve (wF, XNF) &5, va) > —e1 1|02l (59)
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Besides, we have

Ve (f(w’“,)\k) (w”, A\*)é& )
=Vuw (f(wka )‘k) <v’wg( X) k> - eXp()\l)<V’(/}(z>z=;i(wk7“k)7 vwh(wky Mk)Tdk>)
(60)
where

vwﬁ(wk7uk)Tdk:
- - - T
= (Vaohs (Dywk, 1" &, Vopha(Dyw®, j)T &, -+ Vopha(Dyw®, 1)7&5)) " (61)
Let & = ¢*vy € Ve and € > 0. For i € I,k we obtain DI&* = 0, then
Vwhi(Dyw*, P T&F = Vzhi(z,ﬂk)Z:D_kaD;fo?k = 0. Besides, we define the smoothing
function '
hi(Dfw,p) i ¢ Ig

D) = {]

62

B o ~ o T
and hg(w, p) = (h?’(Dlw 1), h® (Dow, ), - - -, h® (D, w, u)) . We can obtain the smoothing

function ¢ and g as p(w”, 1iF) = o(hg(w, 1*)) and pg(w*, 1*) = p(hg(w, u*)). Then, we
have

Vwh(w®, (F)T 6" = Vpheg(w, 1F)T &k (63)
Thus, coming back to (50), we obtain
Fwb AF) — " (wh AF)é
=F (W, A*) = (Vag(w, X), &%) — exp(M) (Vi (2) ot ok Vol (w0, ") " &%)
=f(w*, X¥) = (Vapg(w, X), €5 v1) — exp(M) (VY (2) .y (uoh oty » Ve (W, 117) T €M)
=f(w*, X¥) = (Vapg(w, X), 5 v1) — exp(M1)EF dg, (w”, 15 v1; W)

where ¢ (W, u¥:v1; W) is the directional derivative of ¢g(w", u*). Then, we can calculate
directional derivative on vs as follows,

<v'w (f(wka )‘k) - C#k (wk7 Ak)dk) ,1)2>
:V“’f(wk’ )‘k)TvQ - gkvgvi)wg(wk7 S‘k)vl

0% (W + Va5, P13 W) — 0% (w, 1k v W)
S

— &P lim sup
w wh wew
sl 0,w+ svy €W

=V f(w" A vy — Fol V2 g(wh, X))o,
To k. . _ Jo k.o, .
_)\1516 limsup ¢ ('LU+’UQS,/L 1v13W) ¢ ('LU,ILL ,'Ul,W)

w»—>wk,w€W s

sl 0,w+4 svy €W

(64)
Let k — 0o and v1 € Tyy(w*) N Ve~ , we obtain

. kE vk ko k ykyak
kli)n;o<vw (f('w JAY) = (w”, A& ),v2>
:klim (Vo f (wF, XY vy — R0l V2 g(wh, AF)v,

— 00

$° ke —&° k. g -
7exp(>\1)£k limsup QS (’UJ+'U287M ,’Ul,W) ¢ (w7p“ ath)

w»—>wk,w€W §

sl 0, w4 svy €W
=V f(w*, X)) vy — £ 0IV2 | g(w*, X )v1 — exp(A)E%¢°° (w*; vy, vo; W)
>0 (65)

)
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Figure 1: Test accuracy of data re-weight on dataset with different 5.(Note the inner iteration number
T is fixed.)

0.99
0.88 osss 0.685
B = 2 U =
£ 086 Z0.98 ) 2 0.68
£ ] £ £
S04 g 2 oss 2 065
go. 2007 g 2o
7 — B=0.01 z — =001 z — p=0.01 7 — B=0.01
S 082 —p=0.1 & —p=0.1 & 0.845 —p=0.1 & 0.67 —p=0.1
B=1.0 0.96 B=1.0 - B=10 B=1.0
08 —=10.0 " —3=10.0 —=10.0 0.665 — B=10.0
1 10 20 1 10 20 1 10 20 1 10 20
T T T T
(a) Fashion (b) Mnist (c) Svhn (d) Cifarl0

Figure 2: Test accuracy of data re-weight with different 7".(Note the penalty parameter /3 is fixed.)

where
¢00(w*;v1,v2;w> — limsup ¢ (w+028;1)1;W) _¢ (’UJ;’Ul;W)) (66)
w— wt,w e W S
s 0,w+ svy €W
By using the same method, we can obtain
Vaf(w M) w5 = (3592 5g(w”, X )wy + vheM @ (w' o W) ) €20 (67)

Jorall vs € Ty ().
That completes the proof.

This means that our method can converge to the stationary point the single-level problem 8] Mean-
while, it also means that our method will finally converge to the stationary point of the original
bi-level problem.

2 IMPACT OF PENALTY PARAMETER AND INNER ITERATION NUMBER

In this section, we evaluate the impact of different initial values for penalty parameter 5 and the
inner iteration number 7" in three applications. In data re-weight and training data poisoning, we use
the deep neural network which has 3 convolution-maxpooling-relu layers and 3 dense layers. We
randomly sample 3 layers to update w and A and data batch is fixed at 128. We run our method for
10 epochs. For meta-learning, we run our method for 1000 iterations. We present all the results in
Figurel% Figure[2] Figure [3] Figure [d} Figure[5] Figure[6] Figure[7] Figure[8]and Figure[0] From
Figure (1] Figure 4] and Figure[7] we can find that the results do not change much when § is different
and 7 is fixed. This means that our method is not insensitive to the initial value of 5. We also present
the running time and test accuracy in Figure 2} Figure [3] Figure [5] Figure[6] Figure[§]and Figure 0] In
most cases, using a larger inner iteration number, we will get a better result. However, it needs a long
running time for the large inner iteration number. In addition, when the number of inner iterations
reaches a certain level, the accuracy improvement brought by increasing the number of iterations
decreases.

Here we also discuss the effect of the different initial values of 7, in three applications. In data
re-weight and training data poisoning attack, we use the deep neural network which has 3 convolution-
maxpooling-relu layers and 3 dense layers. We randomly sample 3 layers and 64 data samples to
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Figure 3: Running time of data re-weight with different 7".(Note the penalty parameter [ is fixed.)
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with different T".(Note the penalty parameter 3 is

calculate the stochastic gradient. We run our method for 20 epochs. For meta-learning, we run our
method for 1000 iterations. We set . = 0.001, n,, = 0.0001, 7" = 10 and S = 0.01. The results of
using different 7, are given in the following Tables[T} 2]and[3] Here we discuss the effect of different
initial values of y in three applications. We set 1, = 0.1, 1, = 0.0001, 7" = 10 and 5 = 0.01. The
results of using different y are given in the following Tables 4] [6] and [3]

From our results, we can find that our method is not sensitive to the initial values of the learning rate

7 or the smoothing parameter p.
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Table 1: Results of all the methods in data-reweighgt with different 7).

Name 0.1 0.01 0.001
Cifar10 0.683 0.682 0.685
Svhn 0.844 0.845 0.842
Mnist 0984 0.983 0.984
Fashion 0.881 0.879 0.878

Table 2: Results of all the methods in attack with different 7.

Name 0.1 0.01 0.001
Cifarl0 0.494 0.503 0.493
Svhn  0.777 0.773 0.774
Mnist  0.959 0.961 0.959
Fashion 0.829 0.828 0.831

Table 3: Results of all the methods in data-reweighgt with different 7).

Name Setting 0.1 0.01  0.001
Omnglot Sway-Ishot 0.961 0.963 0.963
Miniimagenet Sway-Ishot 0.448 0.447 0.448

Table 4: Results of all the methods in data reweight with different .

Name 0.01 0.001 0.0001
Cifar10 0.683 0.683 0.685

Svhn  0.842 0.844 8.842

Mnist  0.983 0.984 0.982
Fashion 0.878 0.881 0.878

Table 5: Results of all the methods in data meta-learning with different .

Name Setting 0.01  0.001 0.0001
Omnglot Sway-1shot 0.962 0.961 0.963
Miniimagenet Sway-1shot 0.449 0.448 0.448

Table 6: Results of all the methods in data attack with different p.

Name 0.01 0.001 0.0001
Cifar10  0.501 0.494 0.503

Svhn  0.788 0.777 0.795

Mnist  0.958 0.959 0.958
Fashion 0.827 0.829 0.829

10



Under review as a conference paper at ICLR 2022

e
%

Test accuracy
e
>

S
=

10”2

(a) Miniimagenet 5-way 1-shot

107! 10° 10!

B

e
®

Test accuracy
2
>

e
=

—T=1
—T=10
T=20

10”2

107! 10° 10!
B

(b) Omnglot 5-way 1-shot

Figure 7: Test accuracy of meta-learning with different 5.(Note the inner iteration number 7' is fixed.)
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Figure 8: Test accuracy of meta-learning with different 7".(Note the penalty parameter [ is fixed.)
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Figure 9: Running time of meta-learning with different 7".(Note the penalty parameter 3 is fixed.)
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