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ABSTRACT

The Balanced Stable Marriage (BSM) problem aims to find a stable matching in a
two-sided market that minimizes the maximum dissatisfaction among two sides.
The classical Deferred Acceptance algorithm merely produces an unfair stable
marriage, providing optimal partners for one side while partially assigning pessimal
partners to the other. Solving BSM is NP-hard, thwarting attempts to resolve the
problem exactly. As the instance size increases in practice, recent studies have
explored heuristics for finding a fair stable marriage but have not found an exact
optimal solution for BSM efficiently. Nevertheless, in this paper we propose an
efficient algorithm, ISORROPIA, that returns the exact optimal solution to practical
BSM problem instances. ISORROPIA constructs two sets of candidate rotations
from which it builds three sets of promising antichains, and performs local search
on those three sets of promising antichains. Our extensive experimental study
shows that ISORROPIA surpasses the time-efficiency of baselines that return the
exact solution by up to three orders of magnitude.

1 INTRODUCTION

Given a two-sided market, where each agent (conventionally, man or woman) ranks those on the
other side by a strict order (Roth, 1984), the stable marriage problem (SMP) (Gale & Shapley, 1962)
seeks a stable matching between the two sides, such that no pair of agents in separate matchings
would both rather be matched with each other than with their assigned matches. SMP widely finds
real applications involving two-sided markets, such as assigning residents to hospitals (Gusfield &
Irving, 1989; Askalidis et al., 2013), students to universities (Gale & Shapley, 1962; Teo et al., 2001;
Baïou & Balinski, 2004; Saif et al., 2020), reviewers to papers (Long et al., 2013; Kou et al., 2015),
and jobseekers to jobs (Roth, 1984; Liebowitz & Simien, 2005).

Considering fairness in stable marriage problems, the celebrated Deferred Acceptance (DA) algo-
rithm (Gale & Shapley, 1962), offered an allocation optimal for each agent on the one side and
pessimal for each one on the other in O(n2) time (McVitie & Wilson, 1971; Irving & Leather,
1986). Since then, several stable marriage fairness objectives have been suggested (Gusfield & Irving,
1989; Iwama & Miyazaki, 2008). The regret cost objective (Gusfield, 1987) calls to minimize the
dissatisfaction of the worst-off individual among all agents, while it only caters for fairness among
individual agents, but not among sides. The egalitarian cost aims to minimize the sum of all agents’
dissatisfaction, but not the gap between two sides, which overly gratifies the preferences of one side.
The sex-equality cost (Kato, 1993) measures the gap among the two sides’ collective dissatisfaction,
yet therefore penalizes solutions in which both sides would be better off though the difference among
them would be higher. Most consequentially, the balance cost (Feder, 1992; Gupta et al., 2021) aims
to minimize the highest collective dissatisfaction among the two sides, raising the Balanced Stable
Marriage problem (BSM). Contrariwise, the BSM objective considers the incentives of both sides in
a balanced manner, endorsing a decrease in collective dissatisfaction, which renders both sides better
off even at the expense of fairness among the two.

Unfortunately, BSM is hard and calls for algorithms that efficiently explore the solution space (Irving,
2016; Roth, 2018; Dworczak, 2021). Technically, the minimization of the balance cost objective is
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an NP-hard problem (Kato, 1993; Feder, 1995; Gupta et al., 2021). Pragmatically, the set of possible
stable matchings can grow large in practice (Hassidim et al., 2017), while the problem instance size
is also usually large. In China, over 10 million students apply for admission to higher education
annually via a centralized process (Manlove, 2013). Similar schemes, in which students are ranked
by some score (Biró & Kiselgof, 2015), are used in several national schemes (Braun et al., 2010;
Biró, 2008; Romero-Medina, 1998; Balinski & Sönmez, 1999; Biró & Kiselgof, 2015; Ágoston et al.,
2016) and US school districts (Abdulkadiroğlu & Sönmez, 2003; Abdulkadiroğlu et al., 2005b;a).
Even when the problem instance size is small, the number of all stable matchings grows exponentially
in the worst case (Knuth, 1976; 1997). For some hard instances, the exact maximum number of
stable matchings an instance can have is known to be at least 2.28n and at most cn for some universal
constant c (Karlin et al., 2018). Mostly heuristic methods try to find a ‘fair’ stable marriage without
seeking a specific objective score but using unbiased proposal and acceptance strategies to search the
solution space (Viet et al., 2016b;a; Dworczak, 2016; 2021; Tziavelis et al., 2019). Tziavelis et al.
(2019) propose a local-search heuristic, HybridMultiSearch (HMS), that finds a stable marriage with
high equity in quadratic time, yet provide no guarantees with respect to any objective. As detailed in
Section 2, no previous study finds the exact solution to BSM in practice, while existing heuristics
focus on devising proposal-and-acceptance strategies.

In this paper, we propose ISORROPIA,1 an algorithm that effectively finds exact balanced stable
marriages in practical problem instances, via efficient local search and intensive pruning of the
solution space. The structure of all feasible stable marriages in a problem instance can be compactly
represented by a partially ordered set of rotation structures (Gusfield & Irving, 1989; Irving &
Leather, 1986), viewed as a directed acyclic graph (DAG), the rotation graph. Each stable marriage
corresponds to a set of rotations known as antichain. Contrariwise to previous heuristics, our solution
performs local search in a subset of promising antichains in the rotation graph. To facilitate this
search, we delimit and search three sets of promising antichains, built from two sets of candidate
rotations, by exploiting locally optimal constructs of the dissatisfaction function under a domination
relationship among stable marriages. Notably, ISORROPIA finds the exact solution, despite using local
search. We extend ISORROPIA to find the exact sex-equal stable marriage and show that it surpasses
the time-efficiency of baselines that return the exact solution by up to three orders of magnitude.

2 RELATED WORK

Fairness objectives and tractability. The Gale-Shapley algorithm (1962) finds a one-side optimal
stable marriage in O(n2) time, trading the satisfaction of one side in favor of the other. Several prob-
lem variants define different objectives, such as regret cost (Gusfield, 1987), egalitarian cost (Irving
et al., 1987), and sex-equality cost (Kato, 1993). Feder (1995) proves that BSM is NP-complete
and Gupta et al. (2021) give a parameterized complexity analysis. Let Pm (Pw) denote the indi-
vidual dissatisfaction of a man m (woman w) and CM (or CW ) the accumulated dissatisfaction
of men (women). Pa represents the individual dissatisfaction of an agent (i.e, man or woman)
and U = {µ1, µ2, . . .} the space of all stable marriages. Table 1 summarizes the fairness objectives.

BSM is approximable within a factor of 2 in O(υ log(ω2/υ + 2)) time (Feder, 1995), where υ is the
number of clauses and ω is the explicit width in the related balanced 2SAT problem. From the view-
point of parameterized complexity, a prior work (Gupta et al., 2021) gives two parameterizations of
BSM by two versions of the parameter t, i.e., t = k−min {CM , CW } and t = k−max {CM , CW })
such that the balance cost is not larger than k, where the first one has an FPT algorithm and another
one is W[1]-hard. Contrariwise, we find the exact solution to BSM in a manner that performs
efficiently in practical problem instances.

Existing methods that find a fair stable marriages (Table 1) follow one of these orientations:

• Proposal algorithms. These algorithms adopt a procedure similar to the Gale-Shapley algo-
rithm (1962), letting agents reach a stable matching by exchanging, accepting, and rejecting
proposals across the two sides. The randomized order mechanism (ROM) generates a finite chain
of matchings that terminates at a stable matching. In each iteration, it randomly introduces an indi-
vidual (Ma, 1996) or a pair (Roth & Sotomayor, 1990) into the proposal procedure. However, ROM
cannot enumerate all stable marriages and is inherently biased in favor of each randomly selected

1From Greek ἰσορροπία, balance, equipoise’.
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Table 1: Fairness objectives in the Stable Marriage (SM) Problem

Problem Objective Tractability

Minimum Regret SM (Gusfield, 1987) min
µ∈U

max
⟨m,w⟩∈µ

max {Pm(w), Pw(m)} O(n2)

Egalitarian SM (Irving et al., 1987) min
µ∈U

CM (µ) + CW (µ) O(n4)

Sex-equal SM (Kato, 1993; Iwama et al., 2010) min
µ∈M

|CM (µ)− CW (µ)| NP-hard

Balanced SM (Feder, 1992; Gupta et al., 2021) min
µ∈U

max{CM (µ), CW (µ)} NP-hard

individual (Tziavelis et al., 2020). Other works have proposed alternative orders of proposals to
enhance fairness via an unbiased treatment of the two sides. EROM (Romero-Medina, 2005) lets
agents propose to each other with progressive receptiveness. SWING (Everaere et al., 2013) and
ESMA (Giannakopoulos et al., 2015) let all individuals re-propose to others in iterations. Deferred
Acceptance with Compensation Chains (DACC) (Dworczak, 2016; 2021) reaches a practically fair
stable matching by compensating abandoned agents in O(n4) time, while PowerBalance (Tziavelis
et al., 2019) finds a fair stable matching in O(n2) by using a stricter proposal acceptance criterion.

• Linear programming and satisfiability. The matching problem with stability constraints can be
formulated as a linear programming problem under a set of linear inequality constraints (Rothblum,
1992) and by a SAT formula (Siala & O’Sullivan, 2017). LOTTO (Aldershof et al., 1999) follows a
similar formulation, eliminating redundant constraints in each iteration and assigning a random
agent to its best available preference, hence also exhibits bias (Tziavelis et al., 2019).

• Local search on the stable marriage lattice. In any SMP instance, the set of all possible stable
marriages forms a distributive lattice (Irving & Leather, 1986). SML2 (Gelain et al., 2013) starts
from a random matching and iteratively eliminates selected blocking pairs (i.e., pairs of agents
who would rather be matched with each other than with their assigned matches) to transform it
to a stable one by local search on the lattice. BiLS (Viet et al., 2016b;a) performs local search
on the lattice with a greedy strategy and a probability for random movement. Nevertheless, these
empirical methods are constrained by the size of stable matching lattice, which can grow up to
exponential size in n (Irving & Leather, 1986), while local search may get stuck in local optima.

• Rotation-based model. While computing and storing the distributive lattice structure may be
unattainable, a more compact structure, the rotations poset, i.e., a directed acyclic graph organizing
rotations (i.e., sub-matchings) (Irving & Leather, 1986; Gusfield & Irving, 1989) also represents
all stable solutions. To minimize egalitarian cost, it suffices to find a minimum cut on this graph
in O(n4) time (Gusfield & Irving, 1989). A recent work (Bozec-Chiffoleau et al., 2024) solves
the robust stable marriage problem via rotation-based model, which reduces the search space and
speed up the exploration on rotation graph. Nevertheless, some algorithms based on the rotation
graph are unclear. For example, an algorithm for sex-equal stable marriages by Romero-Medina
(2001) requires finding rotations that change signs, without suggesting an implementation.

Further, some hybrid methods embody more than one of these orientations. Deferred Local Search
(DLS) and HybridMultiSearch (HMS) generate additional fair stable marriages by pursuing local
search strategies starting from the output of PowerBalance (Tziavelis et al., 2019). However, these
algorithms are mostly heuristics, aiming for procedural fairness without targeting a specific equity
cost measure (e.g., sex-equality cost or balance cost). Contrariwise, our algorithm efficiently finds
the exact balanced stable marriage via local search on rotation graph.

3 PROBLEM STATEMENT AND PRELIMINARIES

A stable marriage instance is defined as I = (M,W,P ), where M and W are the two sets of
agents (conventionally exemplified as men and women) of the same size n, and P is a set of 2n
preference lists, list Pi for agent i, which rank in descending order those on the other side. An
example instance is provided in Appendix A.1. Pm(w) denotes the position of w in Pm and Pw(m)
that of m in Pw. In effect, Pi(j) also expresses the extent of i’s dissatisfaction with j. A matching µ
has n disjoint ⟨m,w⟩ pairs. We use µ(m) = w and µ(w) = m to denote that ⟨m,w⟩ is a pair in
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matching µ. If m prefers w to µ(m) and w prefers m to µ(w), then ⟨w,m⟩ is blocking pair in µ. A
stable marriage is a matching without blocking pairs.

Balanced Fairness. Given a stable matching µ, let CM (µ) and CW (µ) represent the sum of
preferences for the assigned matches on the two sides:

CM (µ) =
∑

⟨m,w⟩∈µ

Pm(w), CW (µ) =
∑

⟨m,w⟩∈µ

Pw(m) (1)

CM (µ) and CW (µ) reflect the cumulative dissatisfaction of all agents on the M -side and W -side,
respectively. The balanced stable marriage problem (Gupta et al., 2021) aims to find a stable
marriage µ∗ that minimizes the worst dissatisfaction of the disadvantage side:

C(µ∗) = min
µ∈U

max {CM (µ), CW (µ)} (2)

where U = {µ1, µ2, . . . , µN} is the set of all stable marriages, whose size N is exponential in the
worst case (Irving & Leather, 1986).

To facilitate the discussion, we introduce the function Worse(µ), which determines the disadvantaged
side in a stable marriage µ and hence yields the balance cost:

Worse(µ) =

{
W -side if CM (µ) ≤ CW (µ)

M -side if CM (µ) > CW (µ)
(3)

The Structure of All Stable Marriages. Given a stable marriage instance I, all stable marriages U
are composed of (1) two side-pessimal stable marriages (µW and µM ) and (2) other stable marriages.
First, two side-pessimal stable marriages can be generated by Deferred Acceptance (DA) algorithm
upon its first termination. Then, other stable marriages can be generated by re-assigning some
pairs from µW , and finally it can reach at µM . The re-assignment follows a set of DA procedures
(i.e., break stable marriages and apply DA algorithm for multiple times), which can be compactly
represented by a set of rotation nodes.2

The Deferred Acceptance (DA) algorithm (Gale & Shapley, 1962) lets each man m start from the first
preference and sequentially propose to the next most preferable woman in the order of Pm, as long as
the man finds itself being single. Each woman w accepts a (m,w) proposal if the woman is single or
prefers m to the current partner µ(w). The DA algorithm (Gale & Shapley, 1962) outputs a stable
marriage optimal for each agent on one side and pessimal for each agent on the other side (McVitie &
Wilson, 1971; Irving & Leather, 1986), i.e., we get µ0 if men propose to women and we get µ4 if
women propose to men. As shown in Table 2, we denote these two outputs as µW and µM , where the
subscript denotes the side that gets a pessimal outcome.

A stable marriage µ dominates another µ′, or µ ≺ µ′, if each agent on the M -side gets a no less
preferable partner in µ than in µ′, and, as stability implies, each agent on the W -side gets a no more
preferable partner in µ than in µ′. The set of all stable marriages forms a distributive lattice (Gusfield
& Irving, 1989), where µW dominates, and µM is dominated by, any other stable marriage.

To compactly represent the breakable pairs and the corresponding re-assigned pairs for each
DA process, we use the construct of rotation (Irving, 1985; Irving & Leather, 1986). A
rotation belonging to (or exposed in) µ is an ordered sub-list of matched pairs r =
{⟨mi, µ(mi)⟩ , ⟨mi+1, µ(mi+1)⟩ , . . . , ⟨mi+d, µ(mi+d)⟩}. Given a µ that exposes a rotation r,
we can break the marriage of mi in rotation r and apply the DA algorithm to let mi pro-
pose to the next most preferable woman, eventually being assigned with woman µ(mi+1) who
abandons man mi+1; likewise, mi+1 will then be matched with µ(mi+2), and so on until
we reach µ(mi) in full cycle. Intuitively, each of the men mi,mi+1, . . . ,mi+d is matched
to a woman less preferable to him, µ(mi+1), µ(mi+2), . . . , µ(mi) respectively, while each of
the woman µ(mi), µ(mi+1), . . . , µ(mi+d) is matched to a man more preferable to the woman,
mi+d,mi, . . . ,mi+d−1 respectively. Thus, the ensuing matching µ′ is still stable. We call this
re-coupling rotation elimination, denoted as µ/r → µ′. By eliminating the rotation r, we can obtain
a new stable marriage µ′. Certainly, µ dominates µ′.

2For more details, readers can refer to (Gusfield & Irving, 1989; Irving & Leather, 1986) and Appendix A.1.
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Table 2: Rotation elimination and balance costs for all stable marriages

µ Matches a s CM(µ) CW (µ) Worse(µ) Balance Cost

µ0(µW ) ⟨m1, w1⟩⟨m2, w5⟩⟨m3, w3⟩⟨m4, w4⟩⟨m5, w2⟩ ∅ ∅ 9 18 W -side 18

µ1 ⟨m1, w2⟩ ⟨m2, w5⟩⟨m3, w3⟩⟨m4, w4⟩ ⟨m5, w1⟩ {r1} {r1} 11 16 W -side 16

µ2 ⟨m1, w1⟩ ⟨m2, w3⟩⟨m3, w4⟩⟨m4, w5⟩ ⟨m5, w2⟩ {r2} {r2} 12 11 M -side 12

µ3 ⟨m1, w2⟩ ⟨m2, w3⟩⟨m3, w4⟩⟨m4, w5⟩ ⟨m5, w1⟩ {r1, r2} {r1, r2} 14 9 M -side 14

µ4(µM ) ⟨m1, w2⟩ ⟨m2, w3⟩⟨m3, w4⟩ ⟨m4, w1⟩⟨m5, w5⟩ {r3} {r1, r2, r3} 17 6 M -side 17
Figure 1: Rotation
Graph G

The set of all rotations R forms a partially ordered set (poset) (R,→) (Irving & Leather, 1986).
A partial order r → r′ indicates that r′ is only exposed after eliminating r. The poset (R,→) is
denoted by a directed acyclic graph G = (R,E), where nodes stand for rotations and an edge (r, r′)
for a direct partial order r → r′, i.e., ∄r∗|r → r∗ → r′, guaranteeing connectivity. Figure 1
shows an example of a rotation graph G. We denote the predecessors of r as Pred(r), i.e., for each
r′ ∈ Pred(r), r is reachable from r′. Finding all rotations and edges in G costs O(n2) time (Irving
et al., 1987; Gusfield, 1987); this construction is a preprocessing step beneath the core of our problem.

An antichain a is a subset of R such that no rotation in a is a predecessor of another. Given an
antichain a, we can construct a unique closed subset s =

⋃
r∈a{r} ∪ Pred(r), which contains all

rotations in a and their predecessors. For a = {r3} in Figure 1, we should eliminate rotations in its
closed subset, s = {r1, r2, r3}, according to partial order relationship starting from µW , so that each
rotation is exposed in the elimination process.

Let A be the set of antichains and S the set of closed subsets in G. Theorem 1 (Irving & Leather,
1986) provides a foundational fact on the structure of all stable marriages.
Theorem 1 (Relationship between antichains, closed subsets, and stable marriages). (Irving &
Leather, 1986) In any stable marriage instance there is a one-to-one relationship among antichains A,
closed subsets S and stable marriages U . Enumerating all stable marriages is #P-complete.

In other words, for any antichain a, we can find a corresponding closed subset s and stable marriage µ
via rotation elimination µW /s → µa. We refer to these concepts (i.e., µ, a, and s) interchangeably
without loss of clarity. As all stable marriages listed in Table 2, the balanced stable marriage is µ2.

4 LOCAL SEARCH ALGORITHM

In this section, we introduce our algorithm, ISORROPIA, which efficiently returns the exact solution
to the BSM problem by locally searching three sets of promising antichains, AI,AII,AIII build from
two sets of candidate rotations, R◁, R▷.

4.1 LOCAL OPTIMALITY

To find the balanced stable marriage µ∗ (cf. Equation 2), we exploit four properties of the variation
of CM and CW along the rotation elimination process from the extreme µW to µM . As rotation
elimination degrades the matches of the M -side and upgrades the matches on the W -side (Irving &
Leather, 1986; Gusfield, 1987), the following monotonicity property follows.
Property 1. Starting from µW , a rotation elimination µ/r → µ′, increases CM and decreases CW ,
i.e., CM (µ) < CM (µ′) and CW (µ) > CW (µ′).
Remark. Given a rotation r, the rotation elimination results in that each agent m in r gets a less
preferable partner and each agent w in r gets a more preferable partner (see Section 3), bringing to
the strict increase of CM and the strict decrease of CW respectively by Equation 1.

When eliminating a set of rotations, µ/R∗ → µ′, for each man m ∈ r and r ∈ R∗, µ(m) is a better
partner than µ′(m) to the agent m, while other agents in M follow that µ′(m) = µ(m). In effect,
the resulting matching µ′ is dominated by µ (i.e., µ ≺ µ′). From Property 1 we derive Property 2,
which determines the worse-off side of one stable marriage from the worse-off side of another stable
marriage via the domination relationship.
Property 2. For µ ≺ µ′, Worse(µ) = M -side ⇒ Worse(µ′) = M -side and Worse(µ′) =
W -side ⇒ Worse(µ) = W -side.
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Remark. The property holds because µ ≺ µ′ implies that CW (µ′) < CW (µ) and CM (µ) <
CM (µ′), while Worse(µ) = M -side implies that CW (µ) < CM (µ), hence CW (µ′) < CW (µ)
< CM (µ) < CM (µ′), therefore Worse(µ′) = M -side. The implication from Worse(µ′) = W -side
follows by analogous reasoning.

The local optimality properties follow from Property 2.
Property 3.1. If µ ≺ µ′, Worse(µ′) = W -side ⇒ CW (µ′) < CW (µ) (i.e., µ′ is better).
Property 3.2. If µ ≺ µ′, Worse(µ) = M -side ⇒ CM (µ) < CM (µ′) (i.e., µ is better).
Remark. If µ ≺ µ′, it follows that both µ and µ′ have W -side as the disadvantaged side (Property 2)
and CW (µ′) < CW (µ) (Property 1), where µ′ has a better balance cost as Property 3.1. The
implication from Property 3.2 follows by analogous reasoning.

4.2 MAIN IDEA

Given a rotation r, the r-related antichain contains only r, ar = {r}, while the r-related closed
subset is sr = {r} ∪ Pred(r). We derive the r-related stable marriage µr by rotation elimination
as µW /sr → µr. We divide all rotations in two subsets based on the side of the market on which
their r-related stable marriages are disadvantaged, i.e., the value of Worse(µr) by Equation 3.
Definition 1 (Side-Disadvantaged rotations, RM and RW ). The set of rotations disadvantaged on
the M -side is the set RM = {r|Worse(µr) = M -side} and the set of rotations disadvantaged on the
W -side is the set RW = {r|Worse(µr) = W -side}.

Clearly, it is RM ∪ RW = R and RM ∩ RW = ∅. Since an antichain is a set of rotations, we
distinguish three disjoint sets of antichains: (i) Antichains a ∈ AM that a only contains rotation(s)
in RM ; (ii) Antichains a ∈ AW that a only contains rotation(s) in RW ; (iii) Antichains a ∈ AMW

that a contains rotations in both RM and RW .

Figure 2 depicts the disjoint sets of the three types of antichains, where AM ∪ AW ∪ AMW = A.3

Since each stable marriage can be generated by its corresponding antichain (Theorem 1), the matching
problem is transformed into a graph searching problem that finds a set of rotations. Our algorithm,
ISORROPIA, reduces the search space by extracting and locally searching three sets of promising
antichains, namely AI ⊂ AW , AII ⊂ AW and AIII ⊂ AM , while discarding AMW .

4.3 MIN-MAX OPTIMIZATION

The BSM problems calls for a min-max optimization where the max operator in Equation 2 leads to a
non-convex objective function. To render the objective more manageable, we drop the max operator
in Equation 2, splitting it in two cases as follows:

µ∗ = argmin
µ∈U

{
CW (µ) if Worse(µ) = W -side
CM (µ) if Worse(µ) = M -side

(4)

Thereby, we aim to find the minimum CW (µ) when CM (µ) ≤ CW (µ) and the minimum CM (µ)
when CM (µ) > CW (µ), and return the stable marriage having the least score among these two.
Building upon it, We search the rotation graph G while minimizing the two possible manifestations
of the balance cost, that is, CM (µ) for Worse(µ) = M -side and CW (µ) for Worse(µ) = W -side.
Unfortunately, G is not neatly divided in two subgraphs such that Worse(µ) = M -side in one
and Worse(µ) = W -side in the other. As each stable matching corresponds to a closed subset (i.e.,
combination) of rotations, a rotation r exposed in one stable matching µ with Worse(µ) = W -side
may also be exposed in another stable marriage µ′ with Worse(µ′) = M -side. For example in
Table 5, both ar5 and ay have r5 while their worse-off sides are different. We achieve the above
purpose by exploring three sets of promising antichains, AI,AII, and AIII articulated in Table 4.
AI and AII. First, we consider antichains a ∈ AW , which only contain rotations in RW (pink area
in Figure 2). We partition antichains in AW in two blocks depending on the disadvantaged side in
their corresponding stable marriages µa:

3It should be AM ∪ AW ∪ AMW ∪ {∅} = A. In ISORROPIA, we have to check two extreme cases of µM

and µW , corresponding to s = ∅ and s = R, hence can ignore these two corresponding antichains in A.

6



Published as a conference paper at ICLR 2025

Local
Search

Figure 2: We first divide the search
space A into AM (blue area), AW

(pink area) and AMW (gray area).
ISORROPIA only locally searches
AI, AII and AIII (dotted box).

Table 3: The exact solution can be found in
the local search space by Theorem 2, 3 and 4.
For each theorem, an antichain in unpromis-
ing antichains cannot yield a better result in
terms of balance cost than the optimal result
found in promising antichains.

Theorem Promising
Antichains

Unpromising
Antichains

Theorem 2 AI ∪ AII AW \ (AI ∪ AII ∪ {aℓW })
Theorem 3 AIII AM \ AIII

Theorem 4 AIII AMW

W M

Has a parent in 

M

W

W

W

W

W

W

M

M M M

W

Figure 3: R◁ and R▷

Table 4: Three sets of promising antichains

Promising
Antichains

Contained
Rotations Worse(µa)

AI a = {r|∀r ∈ RW ∧ ∃r ∈ R◁} W -side
AII a = {r|∀r ∈ RW ∧ ∃r ∈ R◁} M -side
AIII a = {r|r ∈ R▷}, |a| = 1 M -side

Table 5: Examples of stable marriages.

µ a s CM(µ) CW (µ) Worse(µ) Balance Cost
µr4 {r4} {r1, r2, r4} 19 35 W -side 35
µx {r3, r4} {r1, · · · , r4} 25 31 W -side 31
µr5 {r5} {r1, r2, r3, r5} 26 30 W -side 30
µy {r4, r5} {r1, · · · , r5} 28 26 M -side 28
µr7 {r7} {r1, · · · , r5, r7} 33 24 M -side 33

• {a∈AW |Worse(µa) =W -side}; Some antichains in AW derives W -disadvantaged stable mar-
riages. For example, in Figure 3 and Table 5, both r3 and r4 are W -disadvantaged rotations.
µr4 is disadvantaged on W -side, and µx, corresponding to antichain {r3, r4}, also derives a
W -disadvantaged stable marriage.

• {a∈AW |Worse(µa) = M -side}; Some antichains in AW derives M -disadvantaged stable mar-
riages 4. For example, both r4 and r5 are in RW . µr4 and µr5 are both disadvantaged on W -side,
but µy corresponds to antichain {r4, r5} deriving a M -disadvantaged stable marriage.

It follows that, for the former antichains, our objective is particularized as minimizing CW , while for
the latter antichains, it turns to minimize CM . Next, we characterize the rotations contained in these
antichains to delimit the search space i.e., we prune the pink hatched area in Figure 2 and extract AI

and AII, as Table 4
Definition 2 (Layer rotations, R[ℓ]). Let the layer of r, denoted as L(r), be the length of longest path
from µW to rotation r on G. The set of layer-ℓ rotations is R[ℓ] = {r|L(r) = ℓ}.
In particular, we can find the largest layer ℓW = argmax a=R[ℓ],

Worse(µa)=W -side
{ℓ}, such that the antichain

formed with layer-ℓW rotations derives a stable marriage disadvantaged on W -side.

Nonetheless, G is not neatly divided in two subgraphs by Worse(µ) (Equation 3). We exploit AI

and AII with candidate rotations by ℓW .
Definition 3 (Candidate rotations, R◁). We define that antichain as aℓW = R[ℓW ] and the set of
candidate rotations after layer ℓW that are still in RW as R◁ = {r|L(r) > ℓW ∧ r ∈ RW }.
For example, in Figure 3 and Table 5, Worse(µa)=W -side with a={r1, r2, r3} and Worse(µa)=
M -side with a= {r4, r5, r6}. As a result, ℓW = 1 and aℓW = {r1, r2, r3}. µr4 , µr5 and µr6 all
have Worse(µr) = W -side. By Definition 3, we have R◁ = {r4, r5, r6}.

We delimit the antichain sets AI and AII to antichains a that contain at least one rotation r ∈ R◁. By
the following theorem, it suffices to search in AI ∪ AII ∪ {aℓW }, hence we can eschew searching in
the rest of AW , i.e., AW \ (AI ∪ AII ∪ {aℓW }) (i.e., the pink hatched area in Figure 2).
Theorem 2 (Sufficiency of AI ∪ AII ∪ {aℓW }). An antichain in AW \ (AI ∪ AII ∪ {aℓW }) cannot
yield a better result in terms of balance cost than the optimal result found in AI ∪ AII ∪ {aℓW }.

Proof. By definition, any antichain a′ ∈ AW \ (AI ∪ AII ∪ {aℓW }) avoids rotations in layer ℓW
and beyond, hence µa′ ≺ µaℓW

. By the definition of ℓW and R◁, Worse(µaℓW
) = W -side. By

Property 3.1, it is CW (µaℓW
) < CW (µa′), hence µaℓW

has better balance cost than µa′ .

4These antichains correspond to stable marriages resulting from rotation elimination µr/R∗ → µa,
where r ∈ RW and R∗ ⊂ RW ; by Property 1, starting with CM (µr) < CW (µr), eliminating the rotations
in R∗ increases CM (µr) to CM (µa) and decreases CW (µr) to CW (µa), where it may be CM (µa) > CW (µa).
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By Theorem 2, it suffices to search in AI and AII to generate any stable marriage better than µaℓW
.

AIII Next, we consider antichains a that only contain rotations in RM , a ∈ AM in Figure 2 (blue
area). Given such an antichain a, its corresponding stable marriage µa is either identical to, or
may be derived from, an µr with5 r ∈ RM by rotation elimination, µr/R∗ → µa. By Property 2,
since Worse(µr) = M -side and µr ≺ µa, it follows that Worse(µa) = M -side. Thus, we need
only find the minimum CM in AM . We also delimit the rotations contained in these antichains to
delimit AIII, i.e., prune the blue hatched area in Figure 2 and extract AIII as Table 4.
Definition 4 (Candidate rotations R▷). We define the set of candidate rotations in RM with all
parents in RW as R▷ = {r|r ∈ RM ∧ Parents(r) ⊆ RW }.

For example, in Figure 3, we first focus on rotations in RM and then extract R▷ = {r7, r8}. R▷
does not contain r9 and r10, since both have a parent in RM .

We delimit the antichain set AIII to antichains a that contain only a single rotation, which is in R▷,
i.e., a = {r|r ∈ R▷}, |a| = 1.

The following Theorem shows that it suffices to search in AIII as defined.
Theorem 3 (Sufficiency of AIII). An antichain in AM \ AIII cannot yield a better result in terms of
balance cost than the optimal result found in AIII.

Proof. Any antichain a ∈ AM \AIII contains a rotation with a parent in RM or more than one rotation
in RM . Thus, we can generate µa by µr/R∗ → µa with r ∈ R▷. Since Worse(µr) = M -side and
µr ≺ µa, Property 3.2 implies that CM (µr) < CM (µa). Thus, we can derive a more well-balanced
stable marriage from antichains in AIII.

Other antichains. The remaining antichains, AMW , contain rotations in both RM and RW , i.e., the
gray area in Figure 2. By virtue of Theorem 4, we ignore AMW in the search process.
Theorem 4 (AIII dominates AMW ). The antichain set AMW cannot yield a stable marriage of
better balance cost than the best stable marriage derived from AIII.

Proof. Any stable marriage µ corresponding to an antichain a ∈ AMW derives as µr/R∗ → µa

with r∈R▷. By Property 3.2, CM (µa)>CM (µr), while Worse(µr) =M -side and Worse(µa) =
M -side. Thus, an antichain in AIII yields a stable marriage more balanced than µ.

In effect, AI, AII and AIII suffice to find the exact solution to BSM, summarized in Table 3.

4.4 LOCAL SEARCH ALGORITHM

Naïve approach (ENUM). A naïve way to find the balanced stable marriage µ∗ is to enumerate all
stable marriages and apply Equation 2. An efficient algorithm for enumerating stable marriages,
ENUM (Gusfield & Irving, 1989), expands a closed subset with a rotation in each step; its time
complexity is O(n2 + nN). The pseudocode is detailed in Appendix A.2. As N can be extremely
large in some instances (Irving & Leather, 1986), we design an efficient and practical algorithm that
reduces the search space.

Algorithm 1 ISORROPIA

Input: Rotation Graph G
Output: Balanced Stable Marriage µ∗

1: if CM (µW ) ≥ CW (µW ) then return µW ※ check µW

2: if CW (µM ) > CM (µM ) then return µM ※ check µM

3: for r ∈ R do Caculate CM (µr) and CW (µr)

4: Collect candidate rotation subsets R◁, R▷ ※ Definitions 3 and 4
5: µ∗

▷ ←LOCAL SEARCH IN R▷ ※ find the minimum CM in AIII

6: µ∗
◁ ←LOCAL SEARCH IN R◁ ※ find the minimum CW in AI and the minimum CM in AII

7: return µ∗ ← µ∗
◁ or µ∗

▷ by Equation 2

Our algorithm (ISORROPIA). By the analysis in Section 4.3, ISORROPIA gathers two sets of candi-
date rotations R◁ and R▷ and searches three sets of promising antichains (Table 4) corresponding

5Note that R∗⊆RM is not necessary, since r′∈a\{r} may have predecessors in RW that are needed in R∗.
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to a subset of all stable marriages to find the exact solution µ∗. Algorithm 1 shows the pseudocode
of ISORROPIA. First, Lines 1–2 check µM and µW for extreme cases. If CM (µW ) ≥ CW (µW ),
we directly return µW as the optimal cost µ∗, since, by Property 2, CM (µW ) < CM (µ) for any
other stable matching µ (i.e., µW is pessimal for W -side and optimal for M -side). Symmetrically,
if CW (µM ) > CM (µM ), we return µM . Otherwise, in the general case, we calculate CM (µr)
and CW (µr) for all rotations, and collect the subsets R◁ and R▷ (Lines 3–4) and find the locally
optimal stable marriages µ∗▷ in AIII and µ∗◁ in AI ∪ AII ∪ {aℓW } via local search on R▷ and R◁.
The pseudocode of local search can be found in Appendix A.3.

Overall, the time complexity is O
(
(|R|+ ℓW ) · n2 + nN◁

)
, where N◁ is the number of stable

marriages enumerated in local search. While potentially exponential, as the problem is NP-hard,
ISORROPIA reduces the search space N to N◁ + |R|+ ℓW . The details of time cost can be found in
Appendix A.3.

We extend ISORROPIA to find the exact sex-equal stable marriage, which calls to minimize the
difference of satisfaction among two sides, detailed in Appendix A.4.

5 EXPERIMENTS

We compare the runtime and balance cost of ISORROPIA to those of baselines: (1) ENUM−, our
revised version of ENUM (Gusfield & Irving, 1989) (Section 4.4 and Appendix A.2), an enumeration
algorithm on the rotation graph that returns the exact solution; (2) BILS (Viet et al., 2016b;a), a
greedy local search method on the stable marriage lattice; we set the probability of random movement
to p = 0.05; (3) DACC (Dworczak, 2016; 2021), Deferred Acceptance with Compensation Chains,
a heuristic that finds a fair stable marriage by allowing proposals from both sides and ensuring the
compensation of abandoned partners; (4)POWERBALANCE (Tziavelis et al., 2019), a heuristic that
goes through a series of proposal iterations from both sides by strongly deferred acceptance, whereby
unmatched agents only accept proposals more preferable than their own target, with the maximum
number of proposal rounds fixed to t =

⌈
n log22 n/10

⌉
; (5) HMS (Tziavelis et al., 2019), a heuristic

that improves upon the results of POWERBALANCE by an m-step local search over k rounds, with
complexity O(tn+ kmn2). We emphasize that ENUM− and ISORROPIA (our algorithms) find the
exact solution to BSM, while BILS, DACC, POWERBALANCE and HMS are only heuristics.

We use synthetic and real datasets in our assessment, as follows: (i) Following a prior work (Tziavelis
et al., 2020), we construct a dataset, Uniform, with preference lists drawn from the uniform distribu-
tion. (ii) We use the settings in (Siala & O’Sullivan, 2017) to generate Hard instances by the method
outlined in (Irving & Leather, 1986), which yields feasible stable marriages growing exponentially
with n, hence instances of this family become unnaturally hard as n grows; to ameliorate this hardness,
we randomly pick 10% of individuals in each preference list and reshuffle their positions. (iii) Taxi
reflects the two-sided market of taxis and users, drawn from the NYC Taxi dataset6; we define
preferences for the two sides using distances and amounts. (iv) Adm captures a two-sided market
of university admissions; we employ university rankings7 and GRE and TOEFL scores to define8

preferences on two sides. Table 6 presents the parameters and statistics of these datasets.

Table 6: Data sets: size n, rotations |R| and edges |E| in the rotation graph.

Uniform Hard Taxi Adm

n |R| |E| n |R| |E| n |R| |E| n |R| |E|
2.5k 321 12,107 128 100 478 2k 181 1,646 1k 107 451
5k 516 34,103 256 140 1,597 3k 294 4,354 1.5k 168 1,296

7.5k 673 60,235 512 229 4,780 4k 452 9,945 2k 229 2,444
10k 820 92,236 1024 362 13,834 5k 579 15,761 2.5k 318 4,806

We ran experiments on an Intel i5-13500H machine @2.60 GHz with 32G memory running Windows.
All methods were implemented in C++; the code is available in our Github repository.9

Figure 4 presents our results on runtime and balance cost. As the brute-force method, ENUM−,
enumerates all feasible stable matchings N , to ensure termination we let it enumerate at most 107

6https://www.nyc.gov/site/tlc/about/data.page
7https://kaggle.com/datasets/mylesoneill/world-university-rankings
8https://kaggle.com/datasets/akshaydattatraykhare/data-for-admission-in-the-university
9https://github.com/Asuka54089/Isorropia

9

https://www.nyc.gov/site/tlc/about/data.page
https://kaggle.com/datasets/mylesoneill/world-university-rankings
https://kaggle.com/datasets/akshaydattatraykhare/data-for-admission-in-the-university
https://github.com/Asuka54089/Isorropia
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stable marriages per instance. All methods are terminated after a time limit of 600 seconds. As
POWERBALANCE and HMS perform very similarly in both balance cost and time, we report results
for POWERBALANCE only for the sake of readability.

ENUM BiLS DACC PowerBalance ISORROPIA ENUM BiLS DACC PowerBalance ISORROPIA
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Figure 4: Time and balance cost (only ISORROPIA guarantees the exact solution.)
We observe the hardness of instances with different perferences. Instances in Uniform inherently
have fewer feasible stable matchings than those in Hard, hence the brute-force enumeration on
the rotation graph is time-consuming on hard instances. ISORROPIA decreases the search space
by a factor of about 101 to 104 (detailed in Appendix A.5), improving runtime by a factor of 1 to
ENUM−(Figure 4(e)) and a factor of 2 to heuristics (Figure 4(a)). Further, ISORROPIA can be faster
than DACC and BILS, but it is slower than heuristic algorithms. Even though instance sizes are
only up to 1024 in these data sets, the number of stable matchings increases to 106, yet ISORROPIA
manages this increase in a scalable manner. For instances in the real spatial dataset, Taxi, the number
of feasible stable matchings grows up to 106, yet ISORROPIA improves runtime by a factor of up
to 103 (Figures 4(e)). For instances in Adm, the improvement is about a factor of 101.

We compare the balance costs of stable matchings by ISORROPIA and baselines, by the percentage
of balance cost over the optimal, in Figure 4. As we show in Section 4, ISORROPIA finds the exact
solution to BSM. In the instances where ENUM− terminates naturally (i.e., N ≤ 107) and returns
the exact solution, ISORROPIA finds the stable marriage with same balance cost as ENUM−. In
instances where ENUM− terminates by the enumeration constraint (i.e., N > 107) and may not
return the exact solution, ISORROPIA finds the best balance cost. The three heuristics, BILS, DACC
and POWERBALANCE do not guarantee the balance cost, having a gap of at worst 9 times from
the exact balance cost (Figure 4(b) and 4(h)). These heuristics may suffer heavy losses on the
worst-off side satisfaction as n increases, as the range of balance cost is [n, n2]. For example, in
Adm, n = 2500, the balance costs generated by ISORROPIA, BILS, DACC and POWERBALANCE
are 273353, 300159(+26806), 718918(+445565), and 556764(+283411), respectively. ISORROPIA
finds a stable marriage of optimal balance cost and also exhibits competitive time performance. To
understand the internal workings of the search (discussed in Section 4.3), we report statistics on its
operation in Appendix A.5.

6 CONCLUSION

We addressed the NP-hard problem of finding a fair stable matching that balances the satisfaction
levels of both parties involved. As in real-world two-sided markets, the number of stable matchings
can be large, an efficient traversal of the search space is imperative. We proposed an exact algorithm,
ISORROPIA, that locally searches a reduced search space of three sets of antichains on the rotation
graph. Our extensive experimental study demonstrates that ISORROPIA not only performs efficiently
on synthetic and real datasets, including hard instances, but also, quite remarkably, outperforms in
terms of time-efficiency heuristics that, as we also show, do not return an optimal balance cost.
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Atila Abdulkadiroğlu and Tayfun Sönmez. School choice: A mechanism design approach. American economic
review, 93(3):729–747, 2003.
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A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 THE STRUCTURE OF ALL STABLE MARRIAGES

Given a stable marriage instance I, all stable marriages U are composed of (1) two side-pessimal stable marriages
(µW and µM ) and (2) other stable marriages. Figure 5 shows a conceptual framework of the structure of all
stable marriages. First, two side-pessimal stable marriages can be generated by Deferred Acceptance (DA)
algorithm upon its first termination. Then, other stable marriage can be generated by re-assigning some pairs
from µW , and finally it can reach at µM . The re-assignment follows a set of DA procedures (i.e., break stable
marriages and apply DA multiple times), which can be compactly represented by a set of rotation nodes.

Table 7: Notations
Notation Description
µM , µW [M ]-pessimal and [W ]-pessimal stable marriages
CM , CW dissatisfactions of side [M ] and [W ](Equation 1)

R rotation poset
G rotation graph

Pred(r) predecessors of r
a, s, µ an antichain, a closed subset and a stable marriage
A,S,U sets of all antichains, closed subsets and stable marriages

n instance size, i.e., size of agent sets M and W
N number of all stable marriages, i.e., size of U
µa a stable marriage derived from the antichain a

ar, sr, µr r-related antichain, closed subset and stable marriage
RM , RW the [M ]/[W ]-disadvantaged rotations (Definition 1)

AM ,AW ,AMW three subsets of a divided by disadvantaged rotations
AI,AII,AIII three sets of promising antichains (Table 4)

Dout out-degree list of all rotations
R0 double-ended queue of rotations in running closed subset

µ∗◁, µ
∗
▷ two local optimal stable marriages (Table 4)

Eliminate a rotation

Eliminate a closed subset of rotations

* Re-assign pairs from 

* pessimal
on W-side

* pessimal on M-side
* eliminate all rotations

Figure 5: The structure of all stable marriages

DA algorithm. The Deferred Acceptance (DA) algorithm (Gale & Shapley, 1962) lets each man m start from
the first preference and sequentially propose to the next most preferable woman in the order of Pm, as long as
the man finds itself being single. Each woman w accepts a (m,w) proposal if the woman is single or prefers m
to the current partner µ(w).
Example 1 (All stable marriages). Given the instance in Table 8, we discuss four DA procedures that generates
all stable marriages in Table 10. The corresponding re-assigned pairs of each DA procedure are highlighted
respectively with black, green, red and blue boxes in Table 8 and Table 10.

• First, we start the proposal sequence: (1) m1 to w5 (accepts m1); (2) m2 to w2 (accepts m2); (3) m3 to w5

(accepts m3, abandons m1); (4) m1 to w1 (accepts m1), etc. When the DA algorithm first terminates (i.e.,
each man gets assigned), we get the stable marriage µ0 in Table 10 and the placements on preference lists are
highlighted with the black box in Table 8.

• Next, if we break ⟨m1, w1⟩ (or ⟨m5, w2⟩) in µ0, and then apply DA algorithm that makes m1 proposes to w2

(or m5 proposes to w2), we re-assign pairs (highlighted with the green box) from µ0 and get a new stable
matching µ1. If we break any pair of ⟨m2, w5⟩⟨m3, w3⟩⟨m4, w4⟩ in µ0, and then apply DA algorithm, we
re-assign pairs (highlighted with the red box) from µ0 and get the stable marriage µ2.

• We can re-assign pairs highlighted with red and green box together from µ0 and get the stable marriage µ3.
Further, based on µ3, by breaking ⟨m4, w5⟩ or ⟨m5, w1⟩, and then applying DA algorithm, we can re-assign
pairs (highlighted with the blue box) from µ3 and get the stable marriage µ4. We can no longer apply DA
algorithm for µ4, since each woman has no better choices. In other words, woman are unwilling to accept
new proposals.

The DA algorithm (Gale & Shapley, 1962) outputs a stable marriage optimal for each agent on one side and
pessimal for each agent on the other side (McVitie & Wilson, 1971; Irving & Leather, 1986), i.e., we get µ0

if men propose to women and we get µ4 if women propose to men. Shown in Table 10, we denote these two
outputs as µW and µM , where the subscript denotes the side that gets a pessimal outcome.

Domination relationships. A stable marriage µ dominates another stable marriage µ′, or µ ≺ µ′, if each
agent on the M -side gets a no less preferable partner in µ than in µ′, and, as stability implies, each agent on
the W -side gets a no more preferable partner in µ than in µ′. The set of all stable marriages forms a distributive
lattice (Gusfield & Irving, 1989), where µW dominates, and µM is dominated by, any other stable marriage.
Meanwhile, no stable marriage can achieve a better choice ahead of the black boxes for men and a worse choice
afterwards the black boxes for women.

Rotation elimination. To compactly represent the breakable pairs and the corresponding re-assigned pairs
for each DA process, we use the construct of rotation (Irving, 1985; Irving & Leather, 1986). A rotation
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Table 8: Preference lists

Preference lists of men
Pm1

w5 w1 w2 w4 w3

Pm2
w2 w5 w3 w4 w1

Pm3 w5 w3 w4 w2 w1

Pm4
w4 w5 w3 w1 w2

Pm5 w4 w2 w1 w5 w3

Preference lists of women
Pw1

m2 m4 m3 m5 m1

Pw2
m1 m5 m3 m4 m2

Pw3 m2 m4 m1 m5 m3

Pw4
m3 m1 m4 m5 m2

Pw5 m5 m4 m2 m3 m1

Table 9: Rotations

r After elimination ∗ → r

r1= ⟨m1, w1⟩⟨m5, w2⟩ ⟨m1, w2⟩⟨m5, w1⟩
r2= ⟨m2, w5⟩⟨m3, w3⟩⟨m4, w4⟩ ⟨m2, w3⟩⟨m3, w4⟩⟨m4, w5⟩
r3= ⟨m4, w5⟩⟨m5, w1⟩ ⟨m4, w1⟩⟨m5, w5⟩ r1, r2 Figure 6: G, Rotation Graph

Table 10: Rotation elimination and balance costs for all stable marriages

µ Matches a s CM(µ) CW (µ) Worse(µ) Balance Cost

µ0(µW ) ⟨m1, w1⟩⟨m2, w5⟩⟨m3, w3⟩⟨m4, w4⟩⟨m5, w2⟩ ∅ ∅ 9 18 W -side 18

µ1 ⟨m1, w2⟩ ⟨m2, w5⟩⟨m3, w3⟩⟨m4, w4⟩ ⟨m5, w1⟩ {r1} {r1} 11 16 W -side 16

µ2 ⟨m1, w1⟩ ⟨m2, w3⟩⟨m3, w4⟩⟨m4, w5⟩ ⟨m5, w2⟩ {r2} {r2} 12 11 M -side 12

µ3 ⟨m1, w2⟩ ⟨m2, w3⟩⟨m3, w4⟩⟨m4, w5⟩ ⟨m5, w1⟩ {r1, r2} {r1, r2} 14 9 M -side 14

µ4(µM ) ⟨m1, w2⟩ ⟨m2, w3⟩⟨m3, w4⟩ ⟨m4, w1⟩⟨m5, w5⟩ {r3} {r1, r2, r3} 17 6 M -side 17

belonging to (or exposed in) µ is an ordered sub-list of matched pairs r = {⟨mi, µ(mi)⟩ , ⟨mi+1, µ(mi+1)⟩ ,
. . . , ⟨mi+d, µ(mi+d)⟩}. Given a µ that exposes a rotation r, we can break the marriage of mi in rotation r
and apply the DA algorithm to let mi propose to the next most preferable user, eventually being assigned with
user µ(mi+1) who abandons task mi+1; likewise, mi+1 will then be matched with µ(mi+2), and so on until we
reach µ(mi) in full cycle. Intuitively, each of the tasks mi,mi+1, . . . ,mi+d is matched to a user less preferable
to it, µ(mi+1), µ(mi+2), . . . , µ(mi) respectively, while each of the user µ(mi), µ(mi+1), . . . , µ(mi+d) is
matched to a task more preferable to the user, mi+d,mi, . . . ,mi+d−1 respectively. Thus, the ensuing match-
ing µ′ is still stable. We call this re-coupling rotation elimination, denoted as µ/r → µ′. By eliminating the
rotation r, we can obtain a new stable marriage µ′. Certainly, µ dominates µ′.

Example 2 (Rotation Elimination). Table 9 shows the breakable pairs and the corresponding re-assigned pairs
of rotations r2, exposed in the W -pessimal stable marriage µW . It is computed by DA algorithm and follows the
movements from black boxes to red boxes in Table 8. For m2,m3,m4, each of them gets a less preferable choice
(i.e., the movement of boxes are from high to low), while each of w5, w3, w4 gets a more preferable choice (i.e.,
the movement of boxes are from low to high). As shown in Table 10, after eliminating r2 from µW , µW /r2, we
get a new stable marriage µ2.

Eliminating a set of rotations. The set of all rotations R constitutes a partially ordered set (poset) (R,→
) (Irving & Leather, 1986). A partial order r → r′ indicates that r′ is only exposed after eliminating r. The
poset (R,→) is represented by a directed acyclic graph G = (R,E), where nodes stand for rotations and an
edge (r, r′) denotes a direct partial order r → r′, i.e., ∄r∗|r → r∗ → r′, guaranteeing connectivity. We denote
the predecessors of r as Pred(r), i.e., for each r′ ∈ Pred(r), r is reachable from r′.

Finding all rotations and all edges in G cost O(n2) time (Irving et al., 1987; Gusfield, 1987); this construction is
a preprocessing step beneath the core of our problem.

Example 3 (Poset and Rotation Graph). Figure 6 shows an example of rotation graph G with partial order
relationships representing a rotation poset. As rotations r1 and r2 are not predecessors of each other, we
may eliminate them in an arbitrary order, as µW /{r1, r2} or µW /{r2, r1}. However, as both r1 and r2 are
predecessors of r3, we expose r3 only after we eliminate both r1 and r2, i.e., r3 is exposed in stable marriage µ3

but not in µ1 and µ2, as shown in Table 10.

Antichains and Closed Subsets. An antichain a is a subset of R such that no rotation in a is a predecessor
of another. Given an antichain a, we can construct a unique closed subset s =

⋃
r∈a{r} ∪ Pred(r), which

contains all rotations in a and their predecessors. Recall that for a = {r3} in Example 3, we should eliminate
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rotations in its closed subset, s = {r1, r2, r3}, according to partial order relationship starting from µW , so that
each rotation is exposed in the elimination process.

Example 4 (Antichain and Closed Subset). As shown in Figure 6 and Table 10, {r1, r2} is an antichain and
{r1, r2} is its corresponding closed subset. A single rotation also forms an antichain, e.g., a = {r3} corresponds
to s = {r1, r2, r3}. A counterexample of an antichain is {r1, r3}, where r1 is a predecessor of r3.

All Stable Marriages. Let A be the set of antichains and S the set of closed subsets in G. Theorem 1 (Irving &
Leather, 1986) provides a foundational fact on the structure of all stable marriages.

Theorem 5 (Relationship between antichains, closed subsets, and stable marriages). (Irving & Leather, 1986)
In any stable marriage instance there is a one-to-one relationship among antichains A, closed subsets S and
stable marriages U . Enumerating all stable marriages is #P-complete.

In other words, for any antichain a, we can find a corresponding closed subset s and stable marriage µ via
rotation elimination µW /s → µa. For simplicity, we refer to these concepts (i.e., µ, a, and s) interchangeably
without loss of clarity. As all stable marriages listed in Table 10, we can calculate the side dissatisfactions (CM

and CW ), the worse-off side (Worse(µ)) and the balance cost by Equation 1, 3 and 2 respectively. The balanced
stable marriage is µ2.

A.2 NAÏVE APPROACH (ENUM AND ENUM−)

A naïve way to find the balanced stable marriage µ∗ is to enumerate all stable marriages and apply Equation equa-
tion 2. An efficient algorithm for enumerating stable marriages, ENUM (Gusfield & Irving, 1989), expands a
closed subset with a rotation in each step; its time complexity is O(n2 + nN). As N can be extremely large in
some instances (Irving & Leather, 1986), we design an efficient and practical algorithm that reduces the search
space.

Unfortunately, we cannot use ENUM to find promising antichains either, as it enumerates closed subsets in an
order from ∅ to R (i.e., from µW to µM ). Intuitively, the enumeration has a tendency from dominating stable
marriages to dominated stable marriages. By Property 3.1, unpromising antichains will be enumerated before
promising antichains. To overcome this problem, we reverse the enumeration order of ENUM to craft ENUM−,
which enumerates closed subsets from R to ∅ (i.e., from µM to µW ), thus benefits from pruning AM to AIII

(i.e., by Table 4, AIII only consists the antichains of length 1), and devise our approach based on ENUM−. In
this process, we say that a rotation node r having out-degree 0 in a subgraph is a terminal node therein; the set
of terminal nodes within a closed subset s is the antichain corresponding to s.

Algorithm 2 ENUM−

Input: Rotation Graph G
Output: Balanced Stable Marriage µ∗

1: Initialize Dout, R0, s := R
2: ENUMERATE(s,Dout, R0) ※ start enumeration from G
3: return µ∗ ※ return the exact BSM solution
4: function ENUMERATE(s,Dout, R0)
5: if R0 ̸= ∅ then
6: r := R0.pop_front
7: s.remove(r), s rotation−−−−−→

elimination
µ ※ a new closed subset s \ {r}

8: Update µ∗ to µ by Equation 2
9: for r′ ∈ parents(r) do

10: Dout(r
′) := Dout(r

′)− 1 ※ out-neighbor of r′ removed
11: if Dout(r

′) = 0 then R0.push_back(r′)
12: ENUMERATE(s,Dout, R0) ※ recursive call (i)
13: for r′ ∈ parents(r) do
14: Dout(r

′) := Dout(r
′) + 1

15: if Dout(r
′) = 1 then R0.pop_back

16: s.add(r)
17: ENUMERATE(s,Dout, R0) ※ recursive call (ii)
18: R0.push_front(r)

Algorithm 2 shows the pseudocode of ENUM−. Using an array Dout to record the out-degree of all rotations in
a shrinking rotation graph and a double-ended queue R0 to store the running terminal nodes in closed subset s,
ENUM− recursively performs two operations: (i) it removes a terminal node r ∈ R0 from the running closed
subset s (Line 7), reduces the out-degrees Dout of parent nodes and enters them to R0 if they become terminal
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nodes thereby (Lines 9–11), and proceeds recursively (Line 12); and (ii) it restores the out-degrees Dout and any
corresponding terminal nodes from R0 to s (Lines 13–15) and the previously removed r to s (Line 16), proceeds
to recursively remove from s other terminal nodes in R0 (Line 17), and eventually restores r to R0 (Line 18).

A.3 LOCAL SEARCH IN ISORROPIA

The pseudocode of local search strategies of ISORROPIA is shown in Algorithm 3. In particular:

• Local Search in R▷. As Theorem 3 shows and Table 4 illustrates, to find the locally optimal stable marriage µ∗
▷

in AIII that minimizes CM , we only need to consider all µr with r ∈ R▷.

• Local Search on R◁. First, we set µ∗
◁ to µaℓW

and update the balance cost by Equation equation 4 (Line 4).
Then we create the subgraph of G induced by RW (Lines 5–6), which corresponds to AW , and starting
with s = RW , enumerate closed subsets s, hence stable marriages µ, while keeping track of their corre-
sponding antichains a. This enumeration proceeds while the antichain a contains at least one rotation in R▷

(Line 10), hence belongs to AI ∪ AII. The enumeration removes rotations from s, progressively generating
a stable marriage µ′ from another s, such that µ′ ≺ µ. Thus, if Worse(µ) = W -side, by Properties 3.1,
it is CW (µ) < CW (µ′) and µ′ is better. In effect, it terminates when it reaches a stable marriage µa

with Worse(µa) = W -side while the best solution at hand is better than µa (Line 11).

Algorithm 3 Local Search Strategies
1: function LOCAL SEARCH IN R▷

2: return min
r∈R▷

CM (µr) ※ |a| = 1 for a ∈ AIII

3: function LOCAL SEARCH IN R◁

4: Update µ∗
◁ using µaℓW

5: Initialize Dout, R0 for RW ※ the subgraph of G corresponding to AW

6: ENUMERATE(RW , R0, Dout, R0) ※ AI ∪ AII

7: return µ∗
◁

8: function ENUMERATE(s, a, Dout, R0)
9: if R0 ̸= ∅ then

10: if a ∩R◁ = ∅ then return ※ antichain must contain r ∈ R◁

11: if Worse(µa) = W -side and CW (µa) ≥ C(µ∗
◁) then return

12: r := R0.pop_front
13: s.remove(r), a.remove(r), s → µ ※ new closed subset s \ {r}
14: Update µ∗

◁ using µ
15: for r′ ∈ parents(r) do
16: Dout(r

′) := Dout(r
′)− 1

17: if Dout(r
′) = 0 then R0.push_back(r′), a.add(r′)

18: ENUMERATE(s, a,Dout, R0) ※ recursive call (i)
19: for r′ ∈ parents(r) do
20: Dout(r

′) := Dout(r
′) + 1

21: if Dout(r
′) = 1 then R0.pop_back, a.remove(r′)

22: s.add(r), a.add(r), s → µ
23: ENUMERATE(s, a,Dout, R0) ※ recursive call (ii)
24: R0.push_front(r)

Time Cost. The time cost of ISORROPIA is dominated by (i) gathering candidate rotations subsets R◁ and R▷

and (ii) searching in those. First, we gather RM and RW by calculating µr for all rotations in O(|R| · n2). We
avoid calculating all r-related stable marriages, since a rotation is in RM if its parent is in RM (Property 2).
In practice, we calculate about 50% of µr constructs, as detailed in Section 5. In R◁, we find the maximal
layer ℓW in O(ℓW · n2) deriving a = R[1], R[2], . . . , R[ℓW ], R[ℓW + 1]. Since there are no more layers than
rotations, it is ℓW ≤ |R|. In R◁, we check at most n/2 parents of each rotation in RM in O(|RM | · n). Thus,
this step requires O

(
(|R|+ ℓW ) · n2

)
in total, where |R| + ℓW ≪ N in most cases. Then, the local search

in R▷ only scans r-related stable marriages µr in R▷, already calculated in the previous step (to collect RM

and RW ), in O(|R▷|). By definition, |R▷| cannot be larger than n/2, the width of G. On the other hand, for
local search in R◁ we apply ENUM− with time complexity O(n2 + nN◁), where N◁ is the number of stable
marriages enumerated in that local search. Overall, the time complexity is O

(
(|R|+ ℓW ) · n2 + nN◁

)
. While

potentially exponential, as the problem is NP-hard, ISORROPIA reduces the search space N to N◁ + |R|+ ℓW ,
with N◁ < 50%N in practice.

17



Published as a conference paper at ICLR 2025

A.4 APPLICATION TO SESM

Here we apply ISORROPIA to the sex-equal stable marriage problem (SESM) (Kato, 1993). As Table 1 shows,
the SESM and BSM problems have different objectives defined in terms of CM and CW .

Cse(µ) = min
µ∈U

|CM (µ)− CW (µ)| (5)

We rewrite the sex-equality cost using the notation of Equation 4 as:

µ∗
se = argmin

µ∈U

{
CW (µ)− CM (µ) if Worse(µ) = W -side
CM (µ)− CW (µ) if Worse(µ) = M -side

(6)

This minimization problem is also non-convex and NP-hard (Tziavelis et al., 2019). Yet we can apply ISORROPIA
to SESM using the objective function in Equation 6, to find the exact solution for SESM. The following result
ensures the correctness of ISORROPIA for SESM, namely that AI, AII and AIII remain promising antichains.

Theorem 6 (AI, AII and AIII for SESM). Theorems 2, 3, and 4 apply to SESM.

Proof. In the proof of Theorem 2, we have µa′ ≺ µaℓW
. By Property 1 and Property 2, it is Worse(µa′) =

W -side, Worse(µaℓW
) = W -side, CW (µa′) > CW (µaℓW

), and CM (µa′) < CM (µaℓW
). Therefore,

CW (µa′) − CM (µa′) > CW (µaℓW
) − CM (µaℓW

), hence µaℓW
has better sex-equality cost than µa′ . In

the proof of Theorems 3 and 4, we infer that µr ≺ µa, Worse(µr) = M -side, Worse(µa) = M -side,
and CM (Mr) < CM (µa). Thanks to Property 1, it is CW (µr) > CW (µa), hence CM (µa) − CW (µa) >
CM (µr)− CW (µr).

A.5 STATISTICS ON ISORROPIA

To understand the internal working of the search (detailed in Section 4.3), we also report statistics on the
operation of ISORROPIA. Table 11 reports statistics on rotations and stable marriages, as the following average
percentages scores per instance size:

• |U(M)|/N, |U(W )|/N : percentage of stable matchings having Worse(µ) = M -side and Worse(µ) = W -side
as the worst case.

• #µ/N : #µ is the number of stable matchings explored by ISORROPIA. Clearly, #µ > N◁.

• |AI|/|µ(W )|, |AII|/|µ(M)| and |AIII|/|µ(M)|: percentage of AI among µ(W ), AII among µ(M), and AIII

among µ(M). (Table 4)

• |RM |/|R|, |RW |/|R|: percentage of the two sets of disdavantaged rotations among all rotations. (Definition 1)

• |R◁|/|RW |, |R▷|/|RM |: percentage of candidate rotations R◁ among RW and R▷ among RM .(Definition 3
and 4)

Table 11: Statistics of rotations and stable marriages
Dataset n |R| |RW |/|R| |RM |/|R| |R◁|/|RW | |R▷|/|RM | N |U(M)|/N |U(W )|/N #µ/N |AI|/|µ(W )| |AII|/|µ(M)| |AIII|/|µ(M)|

Uniform

2.5k 322 49.92% 50.08% 0.52% 0.31% 3,436 55.74% 44.26% 3.25% 5.54% 0.12% 0.06%
5k 516 50.09% 49.91% 0.44% 0.21% 7,243 50.97% 49.03% 4.07% 9.47% 0.19% 0.04%

7.5k 673 50.25% 49.75% 0.36% 0.15% 10,534 45.04% 54.96% 3.21% 5.60% 0.19% 0.02%
10k 821 49.83% 50.17% 0.33% 0.17% 13,420 48.21% 51.79% 3.76% 6.77% 0.06% 0.02%

Hard

128 100 50.51% 49.49% 0.65% 1.30% 648 49.18% 50.82% 3.66% 6.06% 0.00% 0.42%
256 140 49.32% 50.68% 1.01% 0.74% 1,241 50.99% 49.01% 0.88% 1.39% 0.08% 0.26%
512 229 48.78% 51.22% 1.68% 0.44% 13,227 40.58% 59.42% 0.30% 0.55% 0.15% 0.03%

1024 362 50.78% 49.22% 0.96% 0.36% 3,426,000 35.40% 64.60% 0.18% 0.20% 5.00E-06 0.02%

Taxi

2k 181 55.05% 44.95% 2.82% 0.75% 74,804 51.08% 48.92% 19.79% 37.91% 0.69% 0.05%
3k 294 46.35% 53.65% 10.74% 0.40% 445,819 49.01% 50.99% 14.66% 30.16% 1.52% 0.01%
4k 453 52.39% 47.61% 2.37% 0.27% 1,572,916 45.27% 54.73% 38.58% 47.76% 2.73% 3.14E-05
5k 580 52.78% 47.22% 7.15% 0.29% 1,977,611 36.81% 63.19% 48.91% 66.13% 3.37% 9.79E-06

Adm

1k 108 54.03% 45.97% 4.38% 1.08% 17,826 40.68% 59.32% 18.39% 31.84% 0.47% 0.12%
1.5k 169 50.96% 49.04% 4.23% 0.70% 97,949 50.20% 49.80% 21.64% 34.60% 6.83% 0.02%
2k 230 51.94% 48.06% 7.11% 0.52% 339,197 32.77% 67.23% 14.87% 22.34% 0.82% 8.33E-05

2.5k 319 53.76% 46.24% 2.39% 0.35% 1,256,356 47.25% 52.75% 24.38% 40.56% 3.42% 2.25E-05

In accordance with the analysis of time cost in Section 4.4, the number of rotations is smaller than the number
of all stable marriages, i.e., |R|+ ℓW ≪ N . We note that the two sets of disadvantaged rotations are almost
equal-sized. ISORROPIA filters out most rotations to extract the candidate rotations R◁ and R▷, which are
about 0.1% to 10% of all rotations.
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On the other hand, among stable matchings, the two worst cases are not so evenly shared as the two sets of
rotations in Hard and Adm. Further, the sets of promising antichains comprise only a small subset of all stable
matchings (Table 11, columns 12, 13, 14). In effect, ISORROPIA drastically reduces the search space and thereby
improves upon efficiency. In effect, based on the compact representation of a rotation graph, we extract hidden
relationships among stable matchings than would have been require to explore the stable matching lattice (Irving
et al., 1987). Notably, we stop the enumeration of stable matchings in ENUM and ENUM− when their number
exceeds 107, hence do not report the results of these instances in Table 11.
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