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A CROSS ENTROPY AND KL-DIVERGENCE

Let S(x) and T (x) to be the softmax outputs of the substitute model and the target model. The
expressions of the KL-divergence loss and the cross entropy loss are shown in the following.

LKL(x) =
NX

i=1

Ti(x) log
✓
Ti(x)
Si(x)

◆

LCE(x) = �
NX

i=1

Ti(x) logSi(x)

In the black-box setting of this paper, T ’s model parameters are unavailable. Therefore T (x) is a
constant vector. In this case, we have

rxLKL(x) = rxLCE(x) = �
NX

i=1

Ti(x)r [logSi(x)]

But an interesting observation is that in white-box settings (T is derivable) cross entropy won’t suffer
from vanishing gradients but KL-divergence can suffer from vanishing gradients. The justification is
in the following. Taking the gradient over LKL(x), we have

rxLKL(x) =
NX

i=1

@Ti
@x

log
Ti
Si

+
@Ti
@x

� @Si

@x

Ti
Si

=
NX

i=1

@Ti
@x

log
Ti
Si

� @Si

@x

Ti
Si

,

where
PN

i=1
@Ti
@x = 0 because

PN
i=1 Ti = 1. When S converges to T we have Ti(x) =

Si(x) (1 + ✏i(x)) where ✏i(x) tends to 0 during the convergence process. When ✏i(x) tends to
0, log (1 + ✏i(x)) ⇡ ✏i(x). Then we have

rxLKL(x) ⇡
NX

i=1

@Ti
@x

✏i �
@Si

@x
(1 + ✏i)

⇡
NX

i=1

✏i

✓
@Ti
@x

� @Si

@x

◆
,

(3)

where we have applied
PN

i=1
@Si
@x = 0 because

PN
i=1 Si = 1. According to Equation (3), the gradient

of LKL(x) will gradually vanish after many iterations. Then taking the gradient over LCE(x), we
have

rxLCE(x) = �
NX

i=1

@Ti
@x

logSi +
@Si

@x

Ti
Si

⇡ �
NX

i=1

@Ti
@x

logSi �
NX

i=1

@Si

@x
�

NX

i=1

✏i
@Si

@x

= �
NX

i=1

@Ti
@x

logSi �
NX

i=1

✏i
@Si

@x

where the first term won’t vanish during the iterations. Therefore the cross entropy loss won’t suffer
from vanishing gradients. Note that we have applied

PN
i=1

@Si
@x = 0.
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B PROOF OF THEOREM 1

B.1 NOTATIONS AND LEMMAS

For simplicity, we use T
⇣
z; ✓(t)g

⌘
to denote T

⇣
G(z; ✓(t)g )

⌘
and S

⇣
z; ✓(t)g , ✓(t)s

⌘
to denote

S
⇣
G(z; ✓(t)g ); ✓(t)s

⌘
. In order to prove Theorem 1, we firstly derive Lemma 1 according to the

assumptions in Section 3.3.

Lemma 1. After the training of G (line 11-14, Algorithm 1) in round t, given z 2 Z, we have

CE(T (z; ✓(t)g ),S(z; ✓(t)g , ✓(t)s ))  CE(T (z; ✓(t�1)
g ),S(z; ✓(t�1)

g , ✓(t)s )).

Proof. After training G we have

Si⇤(z, ✓
(t)
g , ✓(t)s ) � Si⇤(z, ✓

(t�1)
g , ✓(t)s ),

Ti⇤(z, ✓(t)g , ✓(t)s ) � Ti⇤(z, ✓(t�1)
g , ✓(t)s ),

where i⇤ = argmaxiSi(G(z; ✓(t�1)
g ); ✓(t)s ) = argmaxiTi(G(z; ✓

(t�1)
g )). Then we have

CE(T (z; ✓(t)g ),S(z; ✓(t)g , ✓(t)s )) = �
NX

i=1

Ti(z; ✓(t)g ) logSi(z; ✓
(t)
g , ✓(t)s )

 �
NX

i=1

Ti(z; ✓(t�1)
g ) logSi(z; ✓

(t)
g , ✓(t)s )

 �
NX

i=1

Ti(z; ✓(t�1)
g ) logSi(z; ✓

(t�1)
g , ✓(t)s )

= CE(T (z; ✓(t�1)
g ),S(z; ✓(t�1)

g , ✓(t)s ))

B.2 COMPLETING THE PROOF

Theorem 1. Given z 2 Z. Let f
⇣
✓(t)s

⌘
= CE

⇣
T
⇣
G(z; ✓(t)g )

⌘
,S

⇣
G(z; ✓(t)g ); ✓(t)s

⌘⌘
. Training the

substitute model by Algorithm 1, we have limt!1 f(✓(t)s ) = ✏⇤, where ✏⇤ � 0.

Proof. We can simplify f
⇣
✓(t)s

⌘
as

f
⇣
✓(t)s

⌘
= CE

⇣
T
⇣
z; ✓(t)

⌘
,S

⇣
z; ✓(t)g , ✓(t)s

⌘⌘
,

where t is used to index the training rounds. Using Lemma 1, We have

f
⇣
✓(t+1)
s

⌘
 CE

⇣
T
⇣
z; ✓g(t)

⌘
, S

⇣
z; ✓(t)g , ✓(t+1)

s

⌘⌘
.

Since the cross entropy loss is the loss function of S , we have

f
⇣
✓(t+1)
s

⌘
 CE

⇣
T
⇣
z, ✓g(t)

⌘
,S

⇣
z, ✓(t)g , ✓(t+1)

s

⌘⌘

 CE
⇣
T
⇣
z, ✓g(t)

⌘
, S

⇣
z, ✓(t)g , ✓(t)s

⌘⌘

= f
⇣
✓(t)s

⌘

Therefore, we know that f (✓s) is monotone decreasing during the training. f (✓s) = 0 if and only if
T
�
z; ✓(t)

�
= S

⇣
z; ✓(t)g , ✓(t)s

⌘
. Otherwise f (✓s) > 0. Since f (✓s) � 0, it will converge. However

the outputs of S and T usually won’t be exactly the same. Then the convergence can be formally
represented as limt!1 f(✓(t)s ) = ✏⇤, where ✏⇤ � 0.
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C ADDITIONAL EXPERIMENTAL RESULTS

(a) Probability-only:MNIST

(b) Label-only:MNIST

(c) Label-only:Fashion-MNIST

(d) Probability-only:Fashion-MNIST

Figure 4: Substitute model accuracy.
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