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A CROSS ENTROPY AND KL-DIVERGENCE

Let S(x) and T (x) to be the softmax outputs of the substitute model and the target model. The
expressions of the KL-divergence loss and the cross entropy loss are shown in the following.
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In the black-box setting of this paper, 7’s model parameters are unavailable. Therefore T (z) is a
constant vector. In this case, we have
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But an interesting observation is that in white-box settings (7 is derivable) cross entropy won'’t suffer
from vanishing gradients but KL-divergence can suffer from vanishing gradients. The justification is
in the following. Taking the gradient over Lk, (), we have
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where ZL 1 87—1 = 0 because Zivzl’ﬁ = 1. When S converges to 7 we have T;(z) =
Si(x) (1 + e azg where ¢;(z) tends to 0 during the convergence process. When ¢;(x) tends to
0,log (1 + €;(x)) ~ €;(x). Then we have
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where we have applied Ziv 1 %‘i 0 because Z —1 S; = 1. According to Equation (EI) the gradient

of Lxi,(x) will gradually vanish after many iterations. Then taking the gradient over Lcog(x), we
have
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where the first term won’t vanish during the iterations. Therefore the cross entropy loss won’t suffer
from vanishing gradients. Note that we have applied Z
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B PROOF OF THEOREM 1

B.1 NOTATIONS AND LEMMAS

For simplicity, we use T(z;&f,t)) to denote T(g(z;éf,t))) and S (z;@_((,t)ﬁgt)) to denote
S (g (% Qét)); Hgt)). In order to prove Theorem 1, we firstly derive Lemma 1 according to the
assumptions in Section [3.3]

Lemma 1. After the training of G (line 11-14, Algorithm|[I) in round t, given z € Z, we have
CE(T (:05"), S(2: 04, 0.7)) < CE(T (305 "), S (=05, 0)).

Proof. After training G we have

Siv (2,0,00)) > S;- (2,007,601,

Tie (2,07,00) > Ti- (2, 9“ D gM)y,
where i* = arg max;S;(G(z; Gét 1)); 6(( )) = argmax;7;(G(z; 9§,t 2 )) Then we have
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B.2 COMPLETING THE PROOF

Theorem 1. Given z € Z. Let f <9§t)) =CE (’T (Q(z; 99)) ,S (g(z; 95’)); 92”)). Training the

substitute model by Algorithm 1, we have lim;_, . f(9£t)) = €*, where ¢* > 0.
Proof. We can simplify f ( ) as

f (9@) — CE (T (z; 0<t>) .S (z; e_gt),egt))) ,

where ¢ is used to index the training rounds. Using Lemma 1, We have

7 (600) < CB(T (2509 .8 (:60,00+D)) .
Since the cross entropy loss is the loss function of S, we have
f (9@“”) < CE (T (z Hg(t)) S (z 95”,0&”))
< CE (T (z,eg<t>) .S (z 6, 99))

=7 (o)

Therefore, we know that f (65) is monotone decreasing during the training. f (6s) = 0 if and only if

T (z00) =S (z; 95“,9@). Otherwise f (6,) > 0. Since f (65) > 0, it will converge. However

the outputs of S and 7 usually won’t be exactly the same. Then the convergence can be formally
: (O _ _* *

represented as lim;_, o, f(6s’) = €*, where €* > 0.
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C ADDITIONAL EXPERIMENTAL RESULTS
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Figure 4: Substitute model accuracy.
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