PALM: A Dataset and Baseline for Learning Multi-Subject Hand Prior
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1. PALM Visualizations

Figure 3 shows several images from PALM dataset along
with the rendered meshes, MANO registrations and hand
masks.

2. Personalization with InterHand2.6M

Figures 4 and 5 show more qualitative results on the
InterHand2.6M dataset for the single-image personalization.
We show results with rendering in training (input image) en-
vironment and novel environment under novel poses. Notice
that the avatars from our method are more realistic than the
baseline methods.

3. PALM Content

We provide the following in the release of PALM dataset:
e Multi-view RGB images.

* 3D meshes for each pose.

* MANO registrations for each pose.

2D and 3D keypoint for each pose.

» Camera calibration for each subject.

* Mask and depth map renderings for each image.

4. Implementation Details

Training requirements: Training the PALM-Net prior takes
around 48 hours on 8 H200 GPUs. In particular, at each
step, we randomly pick 128 images from the training data
and evenly distribute the 128 images to the 8 GPUs for
computing the gradients. The personalization takes around
3.5 hours on a single H200 GPU and we randomly sample 8
images to train. To reduce training time, we select top 1848
images from our dataset to train based on the lowest fitting
errors. More images can be used to train our prior given
more computation resources.

Multi-stage prior training: We use a multi-stage approach
to train the PALM-Net prior. First, we pretrain the geometry
network of PALM-Net with only SDF derived from a high-
resolution MANO mesh using 7 subjects. This is to initialize
a hand-like shape of the geometry network to allow more
stable convergence before training on image data. Using
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Weights Apbr Asegm  Anormal Acikonal  ALPIPS  ALAP  Alatent
Prior training 02 0.1 0.5—0.1 1le-5 0.1 0.1 le-3
Personalization 0.2 0.1 0 0 0.1 0.1 le-3

Table 1. Loss term weights in prior training and personalization.
During prior training, Anormai drops from 0.5 to 0.1 linearly in the
first 24k steps.

this pretrained geometry network, we train on image data.
In particular, we freeze the geometry network in the first
6000 steps and unfreeze after to avoid the under-trained radi-
ance network affecting the hand geometry. We do random
sampling of 3D points along the ray at first and enable impor-
tance sampling at step 1000. We segment out the foreground
for training our model using segmentation masks and apply
random color to the background training images to avoid
hand models explaining the background pixels. We enable
physically-based rendering after step 12k. We stop the prior
training at step 24k. We use a learning rate of 1le-3 for all
networks by default. For the shape code, appearance code,
pose encoding layer, geometry, we use le-4.

Recall that the total loss £ for training our multi-subject
model is defined as

L= Erf + Apbrﬁpbr + )\segmﬁsegm + )\normal‘cnormal
+ Acikonal Leikonal + ALpips £LpIps (D
+ ALaPLLAP + AMatentLiatent- 2

To encourage smooth hand surface, we apply a Laplacian
loss [11] by sampling 3D points around the hand surface and
compute their normal values {n®}. We enforce these normal
values to be similar to nearby surface points {n?}:

Liap =) (n*-nf—1)% (3)

sES

The weights of the individual loss terms in prior training
and in personalization can be found in Table 1.
Personalization training: Given a pretrained prior model
and an input image, we perform personalization. In par-
ticular, we freeze the all weights except the shape code,
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Figure 1. Effects of PCA space on albedo and geometry and the
effect of modelling environment.
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appearance code and the spherical gaussian environment
map. We initialize PCA code as zeros. We train for 5200
steps in total, freeze the shape code from step 1500 to avoid
overfitting, and enable physically-based rendering at step
2000. We have the same total loss £ for personalization but
with different weights (see Table 1). Essentially disabling
normal supervision because it is not available in personaliza-
tion. We also disable eikonal loss as the geometry network
is not trained. For in-the-wild images, given an internet hand
image, we use HaMeR [9] to obtain MANO hand poses and
SAM [4, 5] to obtain hand segmentation using the language
prompt “hand.”. For InterHand2.6M images, we use the
prompt “foreground.” for SAM.

Modelling details: Unlike [12], which uses a temporal oc-
cupancy grid for empty space skipping [1], maintaining such
a temporal grid is infeasible for a large amount of poses. To
this end, we simply apply empty space skipping on points
that are more than 1.5cm from the MANO mesh. This does
not require us to maintain a memory-intensive occupancy
grid and to scale to training on thousands of poses.
InterHand2.6M sequences: We use InterHand2.6M [6]
to evaluate hand personalization on seen environment and
novel poses for the baseline and ours. For each sequence,
we uniformly select 20 images for our experiments. The
first image is used for personalization and all images are for
novel pose evaluation. The sequence names can be found in
Table 2.

5. Additional Experiments

Effects of the PCA space: During prior learning, our
method disentangle multiple subjects by optimizing on a
latent vector for each subject. We empirically found that
optimizing on the PCA space (obtained from a PCA decom-
position of the subject latent codes) has more reasonable
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Figure 2. Personalization results on synthetic dataset. The first
column shows the image used for personalization. The environment
map for the training and evaluation images are different.

colored albedos and have fewer artifacts on the geometry
(see Figure 1).

Synthetic results: Figure 2 shows the reconstructed hand
avatars in the novel environments. Our method provides
more plausible relighting results compared to the baselines
even in very challenging biased lightings.

6. Baselines

We compare with Handy [10], UHM [7], HARP [3] in this
paper. However, only HARP models lighting (using a single
point light). For the seen environment and novel poses ex-
periment on InterHand2.6M [6], we use the trained lighting
to render HARP and use a white environment map to render
the others as they do not support rendering with novel lights.
For unseen environment experiments, for example, on in-the-
wild sequences, we use the given environment map to render
all baseline and ours. The rendering is done using the Cycles
engine of Blender.

Handy [10]: Handy leverages a prior model trained on
3dMD hand scans from 1,200 subjects. It learns a tex-
ture prior using StyleGAN [2] from the texture maps of
these scans, and a PCA-based geometry model from the
corresponding hand meshes. To obtain the personalized tex-
ture, we optimize the latent code of the StyleGAN model to
fit the input RGB images. Additionally, for synthetic and
InterHand2.6M datasets, we incorporate a 3D keypoint loss
based on ground-truth annotations.

HARP [3]: HARP does not use a prior model and performs
personalization by optimizing the mesh vertices and texture
map based on the MANO hand model. They also optimize a
single light source to account for the shadow effects. We use
the HARP personalization code for personalization.

UHM [7]: UHM provides a mesh based geometry prior
model for the hand and obtains hand texture by copying
the RGB image values to the texture map after registration.
We use the official code for personalization and additionally
include 3D keypoints for optimization.



Sequence Name

Image IDs

¢0_ROMO3_RT_No_Occlusion_400262 12966, 13080, 13194, 13308, 13422, 13536, 13650, 13764, 13878, 13992, 14106, 14220, 14334, 14448, 14562, 14676, 14790, 14904, 15018, 15132
c0_ROMO3_RT_No_Occlusion 400451 12966, 13080, 13194, 13308, 13422, 13536, 13650, 13764, 13878, 13992, 14106, 14220, 14334, 14448, 14562, 14676, 14790, 14904, 15018, 15132

c0_ROMO04_RT_Occlusion_400275
c0_ROMO04 _RT_Occlusion_400418
c0_ROMO5_RT_Wrist ROM_400270
c0_ROMOS5_RT_Wrist ROM_400488

17746, 17788, 17830, 17872, 17914, 17956, 17998, 18040, 18082, 18124, 18166, 18208, 18250, 18292, 18334, 18376, 18418, 18460, 18502, 18544
17746, 17788, 17830, 17872, 17914, 17956, 17998, 18040, 18082, 18124, 18166, 18208, 18250, 18292, 18334, 18376, 18418, 18460, 18502, 18544
19583, 19607, 19631, 19655, 19679, 19703, 19727, 19751, 19775, 19799, 19823, 19847, 19871, 19895, 19919, 19943, 19967, 19991, 20015, 20039
19583, 19607, 19631, 19655, 19679, 19703, 19727, 19751, 19775, 19799, 19823, 19847, 19871, 19895, 19919, 19943, 19967, 19991, 20015, 20039

¢1_ROMO3_RT_No_Occlusion 400456 21646, 21760, 21874, 21988, 22102, 22216, 22330, 22444, 22558, 22672, 22786, 22900, 23014, 23128, 23242, 23356, 23470, 23584, 23698, 23812
c¢1_ROMO3_RT_No_Occlusion 400486 21646, 21760, 21874, 21988, 22102, 22216, 22330, 22444, 22558, 22672, 22786, 22900, 23014, 23128, 23242, 23356, 23470, 23584, 23698, 23812

c1_ROM04 _RT_Occlusion_400266
c¢1_ROMO04_RT_Occlusion_400439
c¢1_ROMO5_RT_Wrist ROM_400314
¢1_ROMO5_RT_Wrist ROM_400469

17468, 17510, 17552, 17594, 17636, 17678, 17720, 17762, 17804, 17846, 17888, 17930, 17972, 18014, 18056, 18098, 18140, 18182, 18224, 18266
17468, 17510, 17552, 17594, 17636, 17678, 17720, 17762, 17804, 17846, 17888, 17930, 17972, 18014, 18056, 18098, 18140, 18182, 18224, 18266
24004, 24028, 24052, 24076, 24100, 24124, 24148, 24172, 24196, 24220, 24244, 24268, 24292, 24316, 24340, 24364, 24388, 24412, 24436, 24460
24004, 24028, 24052, 24076, 24100, 24124, 24148, 24172, 24196, 24220, 24244, 24268, 24292, 24316, 24340, 24364, 24388, 24412, 24436, 24460

Table 2. InterHand2.6M sequences and image IDs in experiments. “c0” denotes capture 0; The number at the end of each sequence name
is the camera ID; The image IDs are the basenames of the images without the postfix. The image ID in bold is used for personalization.

7. Metrics

We use the peak signal-to-noise ratio (PSNR), structural sim-
ilariry index (SSIM), and Learned Perceptual Image Patch
Similarity (LPIPS) [13] between the rendered images using
the personalized avatar, and the ground-truth RGB images
to quantify the accuracy of reconstructed hand avatars.

8. Discussion and Future Work

Since we leverage a multi-subject prior for hand personal-
ization, our method does not support hands with tattoo and
accessories. Future work can consider capturing subjects
with tattoo and accessories to bridge this gap. Our current
method is memory intensive due to the use of hash grid [8].
Future work can explore more light-weight representations
such as Gaussian Splatting.
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Figure 3. We present several examples from our PALM dataset under different hand shapes and skin tones. The images in this figure show
RGB, normal, MANO registrations, and segmentation masks in that order.
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Figure 4. We provide qualitative comparison between the baseline methods and our method for single-image personalization on
InterHand2.6M images. The first column shows the image used for personalization. Columns 2-5 represent reconstructed hand avatars
rendered with training (input image) environment and novel pose. The last 4 columns represent the reconstructed hand avatars rendered with
novel environment and poses.
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Figure 5. We provide qualitative comparison between the baseline methods and our method for single-image personalization on Inter-
hand2.6M iamges. The first column shows the image used for personalization. Columns 2-5 represent reconstructed hand avatars rendered
with training (input image) environment and novel pose. The last 4 columns represent the reconstructed hand avatars rendered with novel
environment and poses.
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