
A Additional Related Work306

Structured MDPs. Many works have postulated that designing algorithms for structured MDPs will307

lead to improvements in sample efficiency and generalization over existing algorithms for the standard308

MDP formulation. The two closest types of MDP families to our work are factored MDPs [3, 4, 17],309

relational MDPs [37], and object-oriented MDPs [9]. Factored MDPs [3, 4, 17] assume that the310

environment can be represented by discrete attributes, and that transitions between these attributes311

can be modeled as a Bayesian network. Our work differs from these in that we do not assume access312

to these attributes and the dependency graph is also not assumed to be known. More importantly, the313

focus in this work is on using attributes to factorize a task into subcomponents; and in particular being314

able to generalize to new, more complex tasks at test time. Our approach is also related to Relational315

MDPs and Object-Oriented MDPs [1, 9, 12], where states are described as a set of objects, each of316

which is an instantiation of canonical classes, and each instantiated object has a set of attributes. Our317

work is especially related to [18], where the aim is to show that by using a relational representation of318

an MDP, a policy from one domain can generalize to a new domain through planning. However, we319

discover both objects (identities) and attributes (states), and achieve generalization through factorized320

planning, which grows linearly (rather than polynomially) in the number of factors.321

B Implementation Details322

This section details the implementation design decisions for each component of HA.323

B.1 Level 1: abstracting visual features into sets of entities324

Dynamic SLATE (dSLATE) maps a video demonstration to a sequence of transitions over sets of325

entities. It consists of two main components: SLATE [32] and a transformer [28, 35] dynamics model.326

Because SLATE itself also uses a transformer for generating image reconstructions, dSLATE uses327

two transformers: one to recover the observation model E and one to recover the dynamics model P328

of the structured MDP. We use SLATE
Q

k Hk ⇥O !
Q

k Hk to infer entities ht from observation329

ot and initial guess ĥt. The entity hk is also referred to as a slot in [25, 32] and is split in half as330

hk = (zk, sk). The first guess for each entity ĥk
1 is sampled independently and identically distributed331

from a unit Gaussian, whose parameters are also trained. The hyperparameters are given in Tab. 5.332

SLATE preprocesses the image with a discrete variational autoencoder [29] into a grid of image333

features, encodes these features into a grid of tokens, infers slots from this token grid with Slot334

Attention [25], which also produces an attention mask attn over the features each slot attends to.335

These slots are trained using a transformer decoder [28, 35] to autoregressively reconstruct the tokens336

using the slots as keys/values.337

We use the dynamics model
Q

k Sk ⇥A !
Q

k Sk to predict a guess for ŝt+1 given the action at and338

the inferred entities st from the previous time-step. This dynamics model is implemented also as a339

transformer decoder, taking the entity states as queries, and the entity states and action as keys/values.340

This enables us the dynamics model to model the future state of the slots as an equivariant function341

of how the action affects it and of how it interacts with other entity states.342

We trained dSLATE on an offline dataset of 5000 video demonstrations of length five, with each343

frame transition showing one of four objects being moved to a different location. We used five344

slots, one more than the number of objects, following the convention used in Van Steenkiste et al.345

[34], Veerapaneni et al. [36].346

B.2 Level 2: abstracting transitions over sets of entities into individual state transitions347

HA constructs a graph of state transitions from a buffer of transitions over entity sets produced by348

dSLATE, as described in Alg. 1. Each transition records the identity z, state s, and attn of each349

entity of the entity sets ht and ht+1. We also record the pre-condition of the transition, which we350

explain further in Appdx. B.3. Both s or attn can serve as the representation of the state. We found351

that we obtained better clusterings when we used attn as the state for the block-* tasks and s as352

the state for the robogym-rearrange task. We also empirically found that certain choices of distance353

metric used for K-means clustering and binding (implemented as nearest-neighbors) depended354
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Number of epochs 200
Episodes per epoch 5K
Episode length 5
Batch size 32
Peak LR (see caption)
LR warmup steps 30000
Dropout 0.1

Discrete VAE

Vocabulary Size 4096
Temp. Cooldown 1.0 to 0.1
Temp. Cooldown Steps 30000
LR (no warmup) 0.0003
Image Size (see caption)
Image Tokens Image Size / 4

transformer decoder
Layers 4
Heads 4
Hidden Dim. 192

Slot attention

Slots 5
Iterations 3
Slot Heads 1
Slot Dim. (hk) 192
Identity Dim. (zk) 96
State Dim. (sk) 96

transformer dynamics
Layers 4
Heads 4
Hidden Dim. 96

Table 5: Hyperparameters for training dSLATE These hyperparameters are almost identical to those found
in Singh et al. [32, Fig. 7], but because dSLATE operates on video demonstrations rather than static images, we
changed some hyperparameters to save memory cost. We changed the batch size from 50 to 32, the number of
transformer layers and heads from 8 to 4, the number of slot attention iterations from 7 to 3 without observing
a significant change in performance. We used a peak learning rate of 0.0002 and an image size of 64 for
*-rearrange. We used a peak learning rate of 0.0003 and an image size of 96 for block-stacking.

on which choice of state representation we used, and this is summarized in Table 6. The K-means355

implmentation is adapted from https://github.com/overshiki/kmeans_pytorch. We found356

that increasing the number of slot attention iterations improved the entities representations especially357

when generalizing to more numbers of objects, so even though we dSLATE trained with slot attention358

three iterations, for inferring the slots from the buffer we used seven iterations. Lastly, we found359

that the number of clusters used to for K-Means is the most important hyperparameter for creating360

a graph that reflected the state transitions. We swept over 16 to 50 clusters and report the optimal361

number of clusters we found in Table 7.362

State representation attn s

isolate distance metric d(·, ·) cosine cosine
cluster distance metric IoU squared Euclidean
bind distance metric cosine squared Euclidean

Table 6: Hyperparameters for constructing the transition graph with HA

block-rearrange robogym-rearrange block-stacking

number of clusters 30 45 47

Table 7: Number of clusters used for constructing the nodes of the transition graph.
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B.3 Action selection363

Using dSLATE and the transition graph from HA, HA returns which action to execute in the364

environment given a goal and current observation, as described in Alg. 2. It first infers goal constraints365

hg and current entities ht from the goal observation og and current observation ot. It then uses the366

align procedure to align the indices of the entities in hg and ht and uses the select-constraint367

to choose the index k of the entity to affect. It binds hk
t and hk

g to the graph and returns the action368

associated with the edge between their respective nodes. Because HA is a non-parameteric method, it369

could be the case the graph does not contain such an edge. In this case, we sample a random action in370

the environment, but future work will replace this step with a more sophisticated method.371

To implement align we use the scipy.optimize.linear_sum_assignment implementation of372

the Hungarian algorithm, with Euclidean distances between the zk’s as the matching cost.373

In select-constraint, we are given the set of current entities ht whose indices are aligned with the374

goal constraints hg and returns the index k of the goal constraint to satisfy next. By HA’ construction,375

the edge between the nodes that hk
t and hk

g are bound to is the state transition that would be executed376

if the action associated to the edge were taken in the environment. The select-constraint377

procedure consists of three steps: (1) filtering possible transitions from impossible transitions (2)378

ranking transitions (3) sampling a transition.379

Filtering The filtering step implements HA’ model of possibility and impossibility. In the filtering380

step, we consider, for each k, the transition between the nodes that hk
t and hk

g are bound to and mark381

the transition as possible or impossible. It then returns the indices k over ht and hg whose associated382

transition from hk
t and hk

g is possible.383

According to HA, a state transition between node [i] and node [j] is possible if its preconditions384

are met and there exists an edge for that state transition in the graph, and impossible otherwise. An385

intuitive example of an impossible transition is to place a block midair at some intended height, but386

this transition becomes possible if prior to the transition there already exists a stack of blocks that387

would support the block if the block were to be placed at that intended height. The existence of388

this supporting stack is thus the precondition for the transition to occur, rendering the stacked block389

dependent on the blocks supporting it.390

When there are no dependencies among the entities, as in the *-rearrange tasks where any object can391

be moved to any open location without considering where other objects are, any transition present in392

the graph is possible. When there are dependencies among the entities, as in block-stacking, we take393

the precondition of the transition into account. Although a precondition of a transition from node [i]394

to node [j] could be a function of both the source node [i] and destination node [j], for simplicity in395

this paper we consider preconditions as only a function of the destination node [j], which rules out396

the possibility of placing a block in midair like the above example.397

Because a precondition in general is a set of constraints that need to be satisfied for the transition to398

be possible, we represent the precondition of a transition into node [j] (denoting the state s[j]⇤ ) as the399

set of context states s[j
0]

⇤ that are always present whenever the state s[j]⇤ is present. Concretely, a block400

at height 3 at location x is always accompanied by the presence of some block at height 2 and some401

block at height 1, both at location x; the states denoting (location x, height 2) and (location x, height402

1) are the context states of the state (location x, height 3) and therefore serves as its precondition. We403

thus implement the precondition of a transition into node [j] by recording the indices j0 of the nodes404

of states that are always present when node [j] is a destination node. To test whether a precondition is405

satisfied for a given scene, we check if all nodes in the precondition set have a corresponding concrete406

entity that can be bound to it.407

Ranking The filtering step removes the indices from the entities ht and goal constraints hg whose408

transitions are impossible, yielding a possibly smaller set of entities h̃t and constraints h̃g . That is, if409

|ht| = |hg| = K, then |h̃t| = |h̃g| = K̃  K.410

The goal of the ranking step is to compute a ranking among the indices of h̃t and h̃g for choosing411

which index k to actually select to affect with an action. Intuitively, we should rank indices k412
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according to how different skt and skg are because a difference indicates that the constraint hk
g is not413

satisfied. We reuse the distance metric d(·, ·) used for isolate to implement this ranking.414

Sampling The goal of the sampling step is to select a k 2 {1, ..., K̃} whose associated entity415

we will affect with an action, given our ranking. One way to do this is to simply choose k as416

k = argmaxk02{1,...,K̃} d(s
k0

t , sk
0

t+1) as in isolate, but we empirically found that sampling k from417

a Categorical distribution whose pre-normalized probabilities are given by d(sk
0

t , sk
0

t+1) resulted in418

better task performance so we used this stochastic sampling approach. One explanation for why using419

the argmax may be worse is that it relies on the distance metric d(·, ·), and the state representation s,420

to be such that the distance metric flawlessly assigns high value to entities k that need to be moved421

and low value to entities k that do not need to be moved. But because the state space S is learned422

through the dSLATE training process without explicit supervision on the geometry of the space, a423

pair of points that should be farther apart than another set of points may not be accurately reflected424

by using a fixed distance metric d(·, ·). Future work will investigate imposing explicit supervision on425

the geometry of S .426

C Baseline Implementation Details427

Random (Rand) The random policy takes actions using env.action_space.sample().428

Behavior cloning (BC) This approach trains a policy to output the actions directly taken in the429

provided dataset. We use an MSE loss to train the policy to imitate the actions.430

Implicit Q-learning (IQL) IQL is a simple, offline RL approach that uses temporal difference431

(TD) learning with the dataset actions and trains a behavior policy value function. To produce an432

optimal value function, IQL estimates the maximum of the Q-function using expectile regression433

with an asymmetric MSE using the following objectives:434

LV ( ) = E(s,a)⇠D[L
⌧
2(Q✓̂(s, a)� V (s))] where L⌧2(u) = |⌧ � (u < 0)|u2 (1)

LQ(✓) = E(s,a,s0)⇠D[(r(s, a) + �V (s
0)�Q✓(s, a))

2] (2)
L⇡(�) = E(s,a)⇠D[exp (�(Q✓̂(s, a)� V (s))) log ⇡�(a|s)]. (3)

The V (s) estimates are used for TD-backups and the optimal policy is extracted with advantage-435

weighted behavioral cloning.436

Model predictive control (MPC) This approach uses model predictive control with the cross437

entropy method (CEM) to select actions, using the transformer dynamics model of dSLATE to438

perform rollouts in latent space. This is similar to the approached used in OP3 [36], except that we439

use more recently proposed architectural components (slot attention [25] instead of IODINE [15], a440

transformer instead of a graph network [2, 7, 34]) so our MPC results are not directly comparable to441

that of OP3. We use the same dSLATE checkpoint that was used for HA.442

We implement this MPC baseline using the mbrl-lib library [27] with 10 CEM iterations, an elite443

ratio of 0.05, and a population size of 250 which was the best configuration we found that fit within a444

wall clock budget of two days for 8 objects and 100 test episodes. We swept over CEM iterations of445

[5, 10, 20], elite ratio of [0.05, 0.1, 0.2], and population sizes of [250, 500, 1000], and found that the446

elite ratio was the most important hyperparameter.447

The cost function is computed by first aligning the predicted slots hT and goal constraints hg using448

the same align procedure in B.3, and then adding up the squared Euclidean distance between slots449

as cost =
P

k(h
k
T � hk

g)
2.450

Monolithic graph search (MGS) This approach is an ablation to HA that does not construct a451

graph over state transitions of individual entities but instead constructs a graph over state transition452

over entity sets, i.e. each transition is (s, a, s0) rather than (sk, a, sk0). As with MPC, we use the453

same dSLATE checkpoint that was used for HA.454

The purpose of this ablation is to elucidate the benefit of factorizing the transition graph over entities455

rather than entity sets. Because nodes in this transition graph represent a set of entity states rather456
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Figure 5: An example of solving a task in the robogym rearrange environment used in this paper.

Figure 6: The original Robogym rearrange setup

than individual entity states, we use Dijkstra’s algorithm, as in [10, 38, 39] to plan a unbroken path457

from the node the initial observation is bound to to the node a goal observation is bound to. For each458

time-step, we plan a path along the nodes using Dijkstra’s algorithm, then return the action associated459

with the first edge along that path. Like HA, MGS is a non-parametric model, which means that for a460

set of entities to be bound to a node in the graph, that node must contain the exact set of entity states461

corresponding to the states of the entities. If we do not successfully bind to the graph, or if we do not462

find a path between the current node and the goal node, we sample a random action as HA does.463

D Environment Details464

Block-rearrange is our simplest environment, and robogym-rearrange and block-stack each add465

complexity along different axes. States and identities correspond to object locations and appearance466

respectively. In block-rearrange (Fig. 2a), all objects are the same size, shape, and orientation.467

S covers 16 locations in a grid. Z is the continuous space of red-green-blue values from 0 to 1.468

robogym-rearrange (fig. 2b) adapts the rearrange environment from OpenAI [26] and removes the469

assumption from block-rearrange that all objects are the same size, shape, orientation, and the470

assumption of predefined locations. block-stack (fig. 2c) adds preconditions and postconditions on471

whether objects can be moved: blocks can only be picked if from the top of a stack, and blocks472

can only be placed at a given height if there is an object beneath to support it (otherwise it falls).473

Block-rearrange and Block-stack are implemented in PyBullet [8] while Robogym-rearrange is474

implemented in Mujoco [33].475

Environments In block-rearrange, all objects are the same size, shape, and orientation and can476

exist in any one of 16 locations in a grid. Colors are sampled in a continuous space of red-green-blue477

values in [0, 1].478

The robogym-rearrange environment (see figures 5 and 6) is adapted from the rearrange environment479

in OpenAI’s Robogym simulation framework [26] and removes the assumption from block-rearrange480

that all objects are the same size, shape, and orientation and the assumption of predefined locations.481

Furthermore, due to 3D perspective, the objects can look slightly different in different locations. The482

objects are uniformly sampled from a set of 94 meshes consisting of the YCB object set [5] and a483

set of basic geometric shapes, with colors sampled from a set of 13. The camera angle is a bird’s484

eye view over the table, and the size of each object is normalized by its longest dimension, so tall485
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Figure 7: The performance of our method as the number of initialized clusters and batches from the training set
used to construct the graph, and the number of slots are varied.

thin objects appear smaller. The objects’ target positions are randomly sampled such that they don’t486

overlap with each other or any of the initial positions, and the target orientation is set to be unchanged.487

Due to the continuous nature of this environment, we define a match threshold of at most 0.05 for488

both the initial pick position and the goal placement (the table dimensions are 0.6 by 0.8).489

The block-stack environment adds preconditions and postconditions on whether objects can be moved:490

blocks can only be picked if they are at the top of a stack, and blocks can only be placed at a given491

height if there is already an object beneath to support it (otherwise it falls).492

Sensorimotor interface Each observation is a tuple of an initial image displaying the current493

observation and a goal image displaying constraints to be satisfied – the goal locations of the objects.494

Each action is a tuple (w,�w), where w is a three-dimensional Cartesian coordinate (x, y, z) in the495

environment arena.496

For the ⇤-rearrange tasks, objects are initialized at random non-overlapping locations that also do not497

overlap with their goal locations. For these tasks the z (height) coordinate is always fixed. For the498

block-stack task, the goal locations are generated by randomly picking objects from the tops of stacks499

and placing them on other stacks. For this task the y (depth) coordinate is always fixed.500

An object is picked if w is within a certain threshold of its location. For block-⇤ where object locations501

are fixed points in a grid the object is snapped to the nearest grid location to w +�w. Constraints502

are considered satisfied if objects are placed within a certain threshold of their target location.503

E Additional Results504

This section presents additional results and analyses of HA. We first analyze the sensitivity of task505

performance to several hyperparameters used in HA from creating the graph: the number of clusters,506

number of buffer size, and the number of slots used in slot attention. We next tested whether giving507

our model-based baselines more computation time compared to HA would improve their performance508

to be comparable to HA’s.509

E.1 Analysis of key hyperparameters510

In this section, we analyze the sensitivity of our method to various hyperparameters, evaluated in511

the robogym environment with four objects in the complete goal specification. As Fig. 7 shows,512

performance depends on the number of initialized clusters and the number of batches from the513

training set used to construct the graph. With too few clusters, the clusters are too coarse-grained514

to differentiate objects in significantly different positions, while with too many the performance515

deteriorates as the data is needlessly split into duplicate clusters. Performance improves with more516

data, as the graph has better coverage. Although our model performs worse when there are insufficient517

slots to represent all objects present in the environment plus one empty slot, performance is barely518

impacted by having double the number of necessary slots. Our method can thus still work in519

environments with an unknown but upper-bounded number of objects.520

E.2 More challenging evaluation settings521

We analyzed HA in more challenging settings that reflect the noisy nature of real-world robotics. As522

Fig. 8 (left) shows, HA is robust to the addition of Gaussian noise to the action at every time step,523

up until the noise variance is comparable to the maximum distance for successful picking and goal524

placements. The performance also remains high given significantly fewer steps (Fig. 8, right).525
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Figure 8: The performance of HA on robogym-rearrange as we vary the amount of noise added to the actions,
and the interaction horizon (as a multiple of the minimum steps needed to complete the task).

E.3 More computation time for model-based baselines526

We tested whether doubling the computation time for the model-based baselines would improve their527

performance to be comparable to HA’s. For the results in the main paper, we capped the length of528

the episode as 4x the minimum number of actions required to solve the task. In Fig. 9, we vary this529

interaction horizon multiplier from 1x to 8x. HA degrades less with shorter interaction horizons530

compared to the baselines. We find that MGS performs similar to the random baseline. Since MGS531

takes a random action if it cannot bind the given entity set to its graph, this result suggests that the532

space of subsets of entities is so combinatorially large that MGS does not successfully bind to the533

graph most of the time. We verified that this is the case by inspecting when MGS takes random534

actions. MPC performs the worst out of all the methods, performing worse than random. We tested535

that the cost function described in C ranks latents that match the goal constraint with lower cost than536

randomly sampled latents, which suggests that the main source of error is due to the inaccuracy in the537

prediction rollouts. This can be expected, as learned models suffer from compounding errors when538

rolled out [20] and prior methods that use MPC for object-centric methods only roll out for very short539

horizons [36].540

(a) Rand (b) MGS (c) MPC (d) HA

Figure 9: Varying interaction horizon. The performance of the MGS (b) and MPC (c) baselines compared
to HA (d, reproduced from Fig. 8) and the random baseline (a) on robogym-rearrange as we vary the interaction
horizon (as a multiple of the minimum steps needed to complete the task). Note that the scale of the y-axis is not
the same. While a longer horizon improves performance, HA still achieves at least 50x better accuracy with an
interaction horizon multiplier of 1 than the performance obtained by increasing the interaction horizon multiplier
for the model-based baselines to 8.
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