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Organization. In Section A, we provide additional empirical evaluations on the change of pairwise
distances for node embeddings as the number of layers increases. In Section B, we summarize the
existing theoretical results on over-smoothing and provide empirical validation on whether over-
smoothing happens in practice. In Sections C and D, we provide the proof of Theorem | (expressive
power) and Theorem 2 (convergence to global optimal and characterization of number of iterations),
respectively. In Section E, we provide more empirical results on the effectiveness of the proposed
algorithm. In Sections I, G, H, I, and J we provide the generalization analysis of GCN, ResGCN,
APPNP, GCNII, and DGCN, respectively. Code can be found at the following repository:

https://github.com/CongWeilin/DGCN.

A Empirical results on the pairwise distance of node embeddings

In this section, we provide additional empirical evaluations on the change of pairwise distance for
node embeddings. First we introduce a concrete definition of the intra- and inter-class pairwise
distances, then provide the experimental setups, and finally illustrate the results.

Definition of pairwise distance. To verify whether over-smoothing exists in GCNs, we define
the intra-class pairwise distance of H(®) as the average pairwise Euclidean distance of two-node
embeddings if they have the same ground truth label. Similarly, we define the inter-class pairwise
distance of H(®) as the average pairwise distance of two node embeddings if they have different
ground truth labels.
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Both intra- and inter-class distances are normalized using the Frobenius norm to eliminate the
difference caused by the scale of the node embedding matrix. By the definition of over-smoothing

in [35], the distance between intra- and inter-class pairwise distance should be decreasing sharply as
the number of GCN layers increases.
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Setup. In Figure 5 and Figure 6, we plot the training error in a 10-layer GCN [28], SGC [54],
and APPNP [29] models until convergence, and choose the model with the best validation score
for pairwise distance computation. The pairwise distance at the /th layer is computed by the node
embedding matrix H() generated by the selected model. We repeat each experiment 10 times and
plot the mean and standard deviation of the results.

Results. As shown in Figure 5 and Figure 6, when ignoring the weight matrices, i.e., sub-figures in
box (b), the intra- and inter-class pairwise distance are decreasing but the gap between intra- and
inter-class pairwise distance is increasing as the model goes deeper. That is, the difference between
intra- and inter-class nodes’ embeddings is increasing and becoming more discriminative. On the
other hand, when considering the weight matrices, i.e., sub-figures in box (a), the difference between
intra- and inter-class node embeddings is large and increasing as the model goes deeper. In other
words, weight matrices learn to make node embeddings discriminative and generate expressive node
embeddings during training.
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Figure 5: Comparison of the pairwise distance for intra- and inter-class node embeddings on Cora
dataset for different models by increasing the number of layers in the proposed architecture.
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Figure 6: Comparison of the pairwise distance for intra- and inter-class node embeddings on Citeseer
dataset for different models by increasing the number of layers in the proposed architecture.

B A summary of theoretical results on over-smoothing

In this section, we survey the existing theories on understanding over-smoothing in GCNs from [26,
41, 4] and illustrate why the underlying assumptions may not hold in practice. Finally, we discuss
conditions where over-smoothing and over-fitting might happen simultaneously.

Before processing, let first recall the notation we defined in Section 3. Recall that A € RV*V
denotes the adjacency matrix of the self-connected graph, i.e., A; ; = 1 if edge (4,j) € £ and
A; j = 0 otherwise, D € RN*N denotes the corresponding degree matrix, i.e., D; ; = deg(4) and
D; j = 0ifi # j, and the symmetric Laplacian matrix is computed as L = D~/2AD~1/2,

B.1 Expressive power based analysis [42, 26]
Proposition 1 (Proposition 1 in [41], Theorem 1 of [26]). Let A1 > ... > Ay denote the eigenvalues

of the Laplacian matrix L in descending order, and let e; denote the eigenvector associated with the
eigenvalue \;. Suppose graph has M < N connected components, then we have \y = ... = My =1
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and 1 > Apry1 > ... > An. Let E = {e; Ml € RMXN denote the stack of eigenvectors that

associated to eigenvalues A1, ..., Aar. Then for all i € [M), the eigenvector e; € RY is defined as
. . deg(j) if jth node is in the ith connected component
N
i = 16 i=1> €i . . @3
e; = {ei(h)}j=1, () o {0 otherwise 3)
Proof. The proof can be found in Section B of [41]. O

[41] proposes to measure the expressive power of node embeddings using its distance to a subspace
M that only has node degree information, i.e., regardless of the node feature information.

Definition 2 (Subspace and distance to subspace). We define subspace M as
M :={E'R e RV | R € RM*1}, @)

where E = {e;}}1, € RM*N js the orthogonal basis of Laplacian matrix L, and R is any random

matrix. The distance of a node embedding matrix HY) € RN*4 1o the subspace can be computed as
dpm(HO) = infy e [|[HO — Y||p, where | - ||r denotes the Frobenius norm of the matrix.

Subspace M is a d-dimensional subspace defined by orthogonal vectors {e;}}, that only captures

node degree information. Intuitively, a smaller distance daq (H(Z)) means that H(® is losing its
feature information but only carries the degree information.

In the following, we summarize the theoretical results of over-smoothing in [26] and extend their
results to SGC and GCNII, which will be used in our discussion below.

Theorem 6 (Theorem 2 of [26]). Let A\ = max;c|ar41,n] | \i| denote the largest absolute eigenvalue
of Laplacian matrix L which is bounded by 1, let s denote the largest singular-value of weight
parameter W) ¢ € [L], then we have

A (HY) — & <y (dag(HED) =), 5)
where v and € are functions of A and s that depend on the model structure.

GCN. For vanilla GCN model with the graph convolutional operation defined as
HO® = U(LH(Z*DW“)L HO — X, (6)
we have ygcny = As and egey = 0.

Under the assumption that ygcy < 1, i.e., the graph is densely connected and the largest singular
value of weight matrices is small, we have dM(H(e“)) < vYGen dM(H(E)). In other words, the
vanilla GCN model is losing expressive power as the number of layers increases.

However, if we suppose there exist a trainable bias parameter B(Y) = {b()}¥ ¢ RV*% in each
graph convolutional layer

HO — U(LH(Z—l)W(Z) + B“)), HO — X, )

we have ygcn = As and egen = da(BY)). When dp(B®) is considerably large, there is no
guarantee that GCN-bias suffers from losing expressive power issue.

ResGCN. For GCN with residual connection, the graph convolution operation is defined as
HO® = J(LH“)W“)) +HY, HO = xXw©), (8)

where we have Yresgen = 1 + As and eresgen = 0. Since Yresgen = 1, there is no guarantee that
ResGCN suffers from losing expressive power.

APPNP. For APPNP with graph convolution operation defined as

HY = oLHY + (1 — 0)H?, H® = XW©) )
we have yappnp = aA and eappnp = % Although vappnp < 1, because eappnyp can
be large, there is no guarantee that APPNP suffers from losing expressive power.
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GCNILI. For GCNII with graph convolution operation defined as
HY = a((aLH“) +(1-a)HO)(BW® + (1 - ﬂ)IN)), HO =XW® (10

_ (1—a)dumEHO)
- 1—~cenn
Yaeni < 1, because egenyr can be considerably large, there is no guarantee that GCNII suffers from
losing expressive power.

we have ygenn = (1 -1-p/01 - s))a)\, and egenn . Although we have

SGC. The result can be also extended to the linear model SGC [54], where the graph convolution is
defined as

HO® — LH(Fl)7 HO — XW(O), (11)
we have ysgc = A, and esgc = 0, which guarantees losing expressive power as the number of layers
increases.

Discussion on the result of Theorem 6. In summary, the linear model SGC always suffers from
losing expressive power without the assumption on the trainable parameters. Under the assumption
that the multiplication of the largest singular-value of trainable parameter and the largest absolute
eigenvalue of Laplacian matrix smaller than 1, i.e., A\s < 1, we can only guarantee that GCN suffers
from losing expressive power issue, but cannot have the same guarantee on GCN-bias, ResGCN,
APPNP, and GCNII. However, as we show in Figure 3, the assumption is not going to hold in practice,
and the distances are not decreasing for most cases.

Remark 2. [4]1] conducts experiments on Erdds-Rényi graph to show that when the graph is
sufficiently dense and large, vanilla GCN suffers from expressive lower loss. Erdds-Rényi graph is
constructed by connecting nodes randomly. Each edge is included in the graph with probability p
independent from every other edge. To guarantee a small )\, a dense graph with larger p is required.
For example, in the Section 6.2 of [41], they choose p = 0.5 (one node is connected to 50% of other
nodes) such that A = 0.063 and choose p = 0.1 (one node is connected to 10% of other nodes)
such that A = 0.195. However, real world datasets are sparse and have a X that is closer to 1. For
example, Cora has \ = 0.9964, Citeseer has A = 0.9987, and Pubmed has \ = 0.9905.

In Figure 7 and Figure 8, we compare the testing set F1-score, expressive power metric d g (H(e))
before and after training. d,(H®)) is computed on the final output of a {-layer GCN model. The
“after training results” are computed on the model with the best testing score. We repeat each
experiment 10 times and report the average values. As shown in Figure 7 and Figure 8, the expressive
power metric d ¢ (H®) of the untrained vanilla GCN is decreasing as the number of layers increases.
However, the expressive power metric d((H(*)) of the trained vanilla GCN increases with more
layers. Besides, we observe that there is no obvious connection between the testing F1-score to
dq (H®) for other GCN variant. For example, the testing F1-score of APPNP is increasing while
its d ¢ (H®) is not changing much.

In Figure 9 and Figure 10, we compare the testing set F1-score, expressive power metric d g (H(g))
before and after training. d(H®)) is computed on the (th layer intermediate node embeddings of a
10-layer GCN model. The “after training results” are computed on the model with the best testing
score. We repeat experiment 10 times and report the average values. As shown in Figure 9 and
Figure 10, the expressive power metric d(H®)) of the untrained vanilla GCN is decreasing as the
number of layers increases. However, the expressive power metric d(H®)) of the trained vanilla
GCN increases as the number of layers increases.

B.2 Dirichlet energy based analysis [4]
Definition 3 (Dirichlet energy). The Dirichlet energy of node embedding matrix H®) is defined as
1

N (©) (&)
h; h: 2
DEHY) =" L;; (A R H
2 ij=1 ! \/deg(l) \/deg(])

12)

2.

Intuitively, the Dirichlet energy measures the smoothness of node embeddings. Based on the definition
of Dirichlet energy, they obtain a similar result as shown in [42] that

DE(H*V) < \s-DE(H®), (13)
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Figure 7: Comparison of F1-score, expressive power metric dM(H(E)) of GCN, GCN-bias, SGC,
ResGCN, APPNP, and GCNII before and after training on Cora dataset. The average “largest sigular
value” of weight matrices in graph convolutional layers are reported, where “nan” stands for no
weight matrices inside graph convolution layers. We only consider GCN model with depth from
2-layers to 10-layers. (Better viewed in PDF version)

Figure 8: Comparison of Fl-score, expressive power metric d(H®)) of GCN, GCN-bias, SGC,
ResGCN, APPNP, and GCNII before and after training on Citeseer dataset. The average “largest
singular value” of weight matrices in graph convolutional layers are reported, where “nan” stands for
no weight matrices inside graph convolution layers. We only consider GCN model with depth from
2-layers to 10-layers. (Better viewed in PDF version)

where ) is largest absolute eigenvalue of Laplacian matrix L that is less than 1, and s is the largest
singular-value of trainable parameter W©).

Remark 3. The Dirichlet energy used in [4] is closely related to the pairwise distance as shown in

Figure 2. In Figure 2, we measure the “smoothness” or “expressive power” of node embeddings using
. .. . . )
a normalized Dirichlet energy function, i.e., %
F
which refers to the real smoothness metric of graph signal as pointed out in the footnote 1 of [4].

for inner- and cross-class nodes respectively,

Intuitively, under the assumption that the largest singular-value of weight matrices less than 1, as
the number of layers increase, i.e., { — oo, the Dirichlet energy of node embeddings DE(H("))
is decreasing. However, recall that this assumption is not likely to hold in practice because the
real-world graphs are usually sparse and the largest singular value of weight matrices is usually larger
than 1.

Besides, generalizing the result to other GCN variants (e.g., ResGCN, GCNII) is non-trivial. For
example in ResGCN, we have

DE(H®) = DE(c(LH"VW®)) 4 HI-D)
< 2DE(o(LH"DW®)) 1 2pE(H D) (14)
< 2(\s + 1)DE(H D).
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Figure 9: Comparison of F1-score, expressive power metric d (H®)) of 10-layer GCN, GCN-bias,
SGC, ResGCN, APPNP, and GCNII before and after training on Cora dataset. The average “largest
singular value” of weight matrices in graph convolutional layers are reported, where “nan” stands for
no weight matrices inside graph convolution layers. (Better viewed in PDF version)

Figure 10: Comparison of F1-score, expressive power metric d(H®)) of 10-layer GCN, GCN-bias,
SGC, ResGCN, APPNP, and GCNII before and after training on Citeseer dataset. The average
“largest singular value” of weight matrices in graph convolutional layers are reported, where “nan”
stands for no weight matrices inside graph convolution layers. (Better viewed in PDF version)

The coefficient 2 on the right hand side of the inequality makes the result less meaningful.

B.3 A condition to have over-smoothing and over-fitting happen simultaneously

As it has alluded to before, in this paper, we argue that the performance degradation issue is mainly
due to over-fitting, and over-smoothing is not likely to happen in practice. One might doubt whether
over-smoothing can happen simultaneously with over-fitting. In the following, we show that over-
smoothing and over-fitting might happen at the same time if a model can distinguish all nodes by
only using graph structure information (e.g., node degree) and ignoring node feature information.
However, such a condition is not likely in the practice.

For simplicity, let us assume that the graph contains only a single connected component. Let
first consider the over-smoothing notation as defined in [41]. We can write the node embedding

of node i at the /th layer as hz(.e) =eR;,+¢&; € R4, where e is the eigen vector associated
with the largest eigenvalue, R;, € RV*? is the random projection matrix, and €, , € R% is a

d-dimensional random vector such that d (hl(.é)) = ||&;,¢||2 corresponds to its distance to subspace
M. According to the notation in [41], we have ||&; ¢|]2 — 0 as £ — 400 for any ¢ € V. The
minimum training loss can be achieved by choosing the final layer weight vector w € R? such
that >, ), Loss(w ' (R, ¢ + €;¢), ;) is small. A small training error is achieved when eR,; ¢ is
discriminative. In other words, a model is under both over-smoothing and over-fitting conditions only
if it can make predictions based on the graph structure, without leveraging node feature information.

On the other hand, considering the over-smoothing notation as defined in [4], we know that over-
hing h ph b7
smoothing happens i L 2 4
EMAPPES T e Vaeg(d)
based on its node degree (only based on graph information without leveraging its feature information).

for any 4,7 € V, i.e., a classifier can distinguish any nodes
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C Proof of Theorem

Given a L-layer computation tree 7%, let vf denote the ith node in the /th layer of a L-layer
computation tree 7 7. Let suppose each node has at least d neighbors and each node has binary
feature.

Let P(v!) denote the parent of node v! and C(vf) denote the set of children of node v} with
|C(vf)| > d. By the definition of computation tree, we know that P(vf) € C(vf) for any £ > 1. As
a result, we know that C'(v!) has at least (d — 1) different choices since one of the node in C'(v)
must be the same as P(v?).

Therefore, we know that a L-layer computation tree 7~ has at least 2(d — 1)~ different choices,
where the constant 2 is because each root node has at least two different choices.

D Proof of Theorem

In this section, we study the convergence of L-layer deep GCN model, and show that a deeper
model requires more iterations 7" to achieve e training error. Before preceding, let first introduce
the notations used for the convergence analysis of deep GCN. Let G(V, £) as the graph of N = |V
nodes and each node in the graph is associated with a node feature and target label pair (x;,y;),
where x; € R% andy; € R+, Let X = {x;}¥, € RV*d and Y = {y,;}¥, € RVXdr+1 pe
the stack of node vector and target vector of the training data set of size N. Given a set of L matrices
0= {wW} L, we consider the following training objective with squared loss function to learn the
parameters of the model:

1 ~ —~
minimize £(6) = 2 Y(8) — Y2, Y(0) = HOWERD HO — o(LHYWO), (15)
where o(-) is ReLU activation.

D.1 Useful lemmas

The following lemma analyzes the Lipschitz continuity of deep GCNs, which characterizes the
change of inner layer representations by slight change of the weight parameters.

Lemma 2. Ler 6; = {Wge)}ge[LH] and 0y = {Wy)}gewﬂ] be two set of parameters. Let
e > max{[ W ||z, [WS7 I}, s > Lo, and A;-,; = TTi_; A, we have

¢
¢ ¢ - j j
IE — B e < s X e Y AT W = Wi, (16)
j=1
Proof of Lemma 2. Our proof relies on the following inequality

VA € R, B € R, ||AB| < |Al2|Blr and [|AB[r < [Ae|Bl2.  (17)

By definition of H(*), we have for ¢ € [L]

[HO] e = o (LHODWO) e
< [LHC WO
< Lo D W O
< Lo W [ LD

)4
< IXJie TT (1Ll W@l ).

Jj=1

(18)
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Let 6 = {W&”}ZG[HH and 0, = {Wg)}ge[LH] be two set of parameters, we have
¢ ¢ £—=1)xxr(£ 1) xx7 (£
18— B [lp = [l (LH} VWA — o (LH W) s
< LE Wi - LYYW |
(@)

{—1 4 {— 14
< L) H W —H W g

{—1 4 14 {—1 {—1 14
= L2 (VWL - W) 4 (Y - )W)

(19)
—1 L 4 —1 —1 P4
< L (S e W = W + Y — B WL )
-1
4 14 4
< I | TT (s Wik ) | Wi = Wi
j=1
4 /—1 —1
+ LW [l HS Y — B,
where (a) is due to o(+) is 1-Lipschitz continuous, (b) is due to Eq.
Let Ay > max{|W? |2, [W? |2}, s > ||L||2. and Aiy; = [T, Ae. » we have
¢ ¢ Y4 ¢ {—1 (—1
S — HE [l < s A X R [ WE? = W 5 + sAofHY Y — HY Vg
¢ . , (20)
< sl Xl | D0 IWE W
j=1
O

The following lemma derives the upper bound of the gradient with respect to the weight parameters,
which plays an important role in the convergence analysis of deep GCN.

Lemma 3. Ler 0 = {W(Z)}ZE[LH] be the set of parameters, Ny > Inax{||W§é)H2, ||Wé£)||2},
s > ||L -

9, and Ni—,; = [T}_; Ae, we have

sEX L (4)

0L(0 ~
’avé@)) = 5y IX[ellY =Y. 1)
F
Proof of Lemma 3. By the definition of g\féz)) , we have
ov \ '
Havw@ (aww ) Y -Y)
F
oy ® (WEFD) T vec(HWE)) ~
= e (WD) vec(Y —Y) )
dvec(HW)) dvec(HW) N
— i WL+ T Y_v
[ N ®( ) ]ave(:(H(Z)) avec(w(@)VeC( ) )

LHZC-DwW(&) LH¢-DW® ~
Ovec( W) dvec( w )vec(Y—Y)

< \[IN & (WEH)T]

(a) aveC(H(Z)) 8vec(W(€)) )
dvec(L @ (WEN) Tyvec(HED) gILHCD @ I, ]vec(W®)) o
— (L+1)N\T ¢
Iy ® (W )] Ovec(HO) Bvec(W D) vec(Y

= ||[Iy ® (WEHD) Tyec (LL_Z ® (WED .W(L))T) LHD @ Idz]vec(? - Y)H2

~

_ (LL7£+1H(€71)) ® (W(ZJrl) o W(L+1))T VCC(Y _ Y)

RNAL 11 xdg_1dg

F
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_ H WD WD)y - Y)TLL—eHH(Z—l)H

< s N Y = Yle[HD g,
where (a) is due to ||o(z)||2 < [|z]|2.

2

Using similar proof strategy, we can upper bound HH(Z*U |lr by
H Y g = [lo(LHDWED)|I
< [LH WD (22)
SIS ey X g

By combining the above two equations, we have

SL)‘IH(L#»I)

< XY - Y (23)
L

e, -

D.2 Main result

In the following, we provide the convergence analysis on deep GCNs. In particular, Theorem 7 shows
that under assumption on the weight initialization (Eq. 24) and the width of the last layer’s input
dimension (d;, > N), the deep GCN enjoys linear convergence rate. Recall our discussion in Section
that \; > 1 (by Gordon’s Theorem for Gaussian matrices) and ||L|y = 1 for L = D~Y/2AD~1/2,
we know that s\y > 1, thus deeper model requires a smaller learning rate 1 according to Eq.
Since the number of training iteration 7' is reverse proportional to learning rate n, which explains
why a deeper model requires more training iterations than the shallow one.

Theorem 7. Consider a deep GCN with ReLU activation (defined in Eq. 15) where the width of the
last hidden layer satisfies dr, > N. Let {Cy}ocir11) be any sequence of positive numbers and define

L (¢
00 = Amin(H), Ao = W[+ Co Aisj =TT A
Assume the following conditions are satisfied at the initialization:

ol > 1652 || X||p H[l x] 1_>(L+1)\/2£ 6),
AeCl

2
1

L
od > 322X |2 A 41 Z

=1

L 2
ap > 165°" | X[|EAZ +1Z 1_>L-

QL 00) (24)

Let the learning rate satisfies

(Zra?)

) 8
17 < min pve preaeel B (25)
0 82L)‘?—>(L+1 ||X||%( =1 N )

Then deep GCN can achieve L(01) < € for any T satisfied
T>—1 (E(eo)) (26)

nad €

Proof of Theorem 7. The proof follows the proof of Theorem 2.2 in [40] by extending result from
MLP to GCN. The key idea of the proof is to show the followings hold by induction:

W, < A forall ¢ € [L], r € [0, 1],
)\min(HgL)) > 5 for all r € [0, ], (27)
L£(0,) < (1 —na2/8)L(0y) forallr € [0,1].
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Clearly, Eq. 27 holds for t = 0. Let assume Eq. 27 holds up to iteration ¢, and let show it also holds

for (¢ + 1)th iteration.

Let first prove the first inequality holds in Eq. 27. By the triangle inequality, we can decompose the

distance between Wg ) to W(()é) by

t
¢ ¢ 4 ¢
W WP lle <3S IWE, - W
k=0

t

>

t
< 05" Mo A X D I1Y R = Y e

aw(@

k=0
< s AL Ay \XHFZ V2L(65)
¢ a2\ k72
< s Xl Y (1- n;) 300,
@ k=0
where inequality (a) follows the induction condition.
Letu = /1 — na? /8 we have n = 8(1 — u?) /a3 and
t o\ k/2 t t+1
of PR )
1-p=2) = ==
S(1-0) ==
k=0 k=0
Then, plugging the result into Eq. 28, we have
Y YA _ 8(1 — UQ 1-— u“‘l
WL~ Wl < A AT XK S 2L(0y),
of 1—-u
16
< —s" AL e A X e V2L (60),
(a) &
where (a) is due to u € (0, 1). Let Cy as a positive constant that
16
Coz s M A X e v/2L(60).
Qg
By Wely’s inequality, we have
WAl < W67 12 + Co = Ao
To prove the second inequality holds in Eq. 27, we first upper bound ||H1(HLF)1 — H(()L) |l by
L L ¢ ¢
e S Wi, - Wil
=1
16 _
< A X S (B0 Xl 2@
=1
16
=2 Ea oA s X7 V/2L(60) Z A°
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() 2
where (a) is due to Lemma 2, (b) is due to Eq. 30, and (c) is due to the second condition in Eq.
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By Weyl's inequality, this implies [Amin (H\)) — Amin (HS™)| = Amin (HI)) — o] < 22 and

o]

Amin (H{Y)) = . (34)

Let G = HEL)W&TI), then we have

2L(0i11) = |Yir1 — Y|}
= Y1 - Y+ Y, - Y|}
= 1Y = YR+ 1Yo — Yol +20Y, - Y, Y1 — Yo)p

=2000)+ Y1 — Y2 +2(Y, - Y, Y1 —Gp+2(Y, - Y,G - Y,)r.
(35)

We can upper bound ||?t+1 — i}t”% in Eq. 35 by
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L L1 L+1 L L L1
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=05 A (X (Z >‘e2> Y =Y,
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where (a) is due to Eq. 18 and Lemma 2, and (b) follows from Lemma 3.

(36)

We can upper bound (Y; — Y, Y1 — G)y in Eq. 35 by
Y=Y, Y11 - G)r
<Y = Y[p[Yerr — Gllr

<> L L L+1
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L
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where (a) is due to Lemma 2, and (b) follows from Lemma 3.
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We can upper bound (S?t -Y,G - S?t)F by

<?t -Y, G- ?t>F = <?t -Y, H,(tL) (W(L+1) — W(L+1))>F

t+1 t
S r)_0L(6)
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g 2
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()
where (a) is due to (A, B) = tr(ATB), (b) is because of the cyclic property of the trace, (c) is due
to tr(AB) > Apin (A)tr(B) for any symmetric matrices A, B € S and B is positive semi-definite,

(d) is due to tr(AAT) = ||A||Z, (e) requires the d;, > N assumption’, and (f) is due to Eq.

L — L _
Let A= s2EX2 IR (002 A7) and B = 52203, ) L I3 (202, A7) we have

2
L(6141) < (1 — n% + n2A2 + nB) £(6,)

ag
£ (-l )

where (a) requires choosing 7 such that n < B/A?, and (b) holds due to the first condition in Eq.

Therefore, we have

2\ T 2
£(0r) < (1 - 772”) £(80) < exp <—77TO§)> L(60) = e. (40)
By taking log on both side, we have
T> 2 log (£(9°)> : 1)
nog €

The equality (e) follows from the fact that given a fat matrix A € RV *? with d > N, all the eigenvalues
of AAT are just the square of the singular values of A. However, note that this is no longer true when d < N
since in this case we have AA T being a low rank matrix, hence its smallest eigenvalue is zero, whereas the
smallest singular value of A (i.e., the min(N, d)-th singular value of A) can be strictly positive if A is full rank,
hence (e) does not hold.
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E Additional empirical results

In this section, we report additional empirical results to illustrate the correctness of our theoretical
analysis and the benefits of decoupled GCN structure.

E.1 Comparison of generalization error on the real-world datasets.

We empirically compare the generalization error of different GCN structures on the real-world
datasets, where the generalization error is measured by the difference between validation loss and
training loss.

Setups. We select hidden dimension as 64, a; = 0.9 for APPNP and GCNII, 3, ~ %2 for GCNII,
and without any weight decay ({2 regularization on weight matrices) or dropout operators. Note that
although in our theoretical analysis we suppose [, is a constant that does not change with respect
to the layers, in this experiment we follow the configuration in [6] by selecting 3, = log(%? + 1),
which guarantees a small generalization error on most small scale datasets. The same setup is also

used for the results on synthetic dataset in Figure 4.

Results. As shown in Figure || and Figure 12, ResGCN has the largest generalization gap due to the
skip-connections, APPNP has the smallest generalization error by removing the weight matrices in
each individual layers. On the other hand, GCNII achieves a good balance between GCN and APPNP
by balancing the expressive and generalization power. Finally, DGCN enjoys a small generalization
error by using the decoupled GCN structure.
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Figure 11: Comparison of generalization error and training F1-score on the Cora dataset. The curve
stops early at the largest training accuracy iteration.

E.2 Effect of hyper-parameters in GCNII.

In the following, we first compare the effect of a,y on the generalization error of GCNII. We select
the hidden dimension as 64, and no dropout or weight decay is used for the training. As shown in
Figure 13 and Figure 14, increasing «, leads to a smaller generalization error but a slower convergence
speed, i.e., GCNII trades off the expressiveness for generalization power by increasing oy from 0 to
1. In practice, oy = 0.9 is utilized in GCNII [6] for empirical evaluations.'’

Then, we compare the effect of 5, on the generalization error of GCNII. Similar to the previous
experiments, we choose hidden dimension as 64, without applying dropout or weight decay during
training. As shown in Figure 15 and Figure 16, decreasing (3, leads to a smaller generalization error.
In practice, 3, = log(% + 1) is utilized in GCNII [6] for empirical evaluations, which guarantees a
small generalization error.

Note that the definition of «y we use in this paper is different from the definition in [6], where oy = 0.9 in
this paper stands for the selection of alphaas 1 — ay = 0.1 in [6].
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Figure 13: Comparison of oy on the generalization error on Cora dataset. The curve stops early at
the largest training accuracy iteration.

E.3 Effect of DropEdge on generalization

In the following, we explore the effect of node embedding augmentation technique DropEdge [47]
on the generalization of GCNs. Recall that DropEdge proposes to randomly drop a certain rate of
edges in the input graph at each iteration and compute node embedding based on the sparser graph.
The forward propagation rule of this technique can be formulated as H(~1) = o(LH(Z DWw©))

where L is constructed by the adjacency matrix of the sparser graph with supp(L) < supp(L).

Again, we choose hidden dimension as 64, without applying dropout or weight decay during training.
As shown in Figure 17 and Figure 18, DropEdge reduces the generalization error by restricting
the number of nodes used during training. Besides, we observe that both training accuracy and
generalization error decrease when the fraction of remaining edges in the graph decreases, which
implies that edge dropping is impacting the generalization of GCN rather than the discriminativeness

of node representations.

E.4 Effect of PairNorm on generalization

In the following, we explore the effect of node embedding augmentation technique PairNorm [61]
on the generalization of GCNs. PairNorm proposes to normalized node embeddings by H() =
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Figure 14: Comparison of cy on the generalization error on Citeseer dataset. The curve stops early at
the largest training accuracy iteration.
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Figure 15: Comparison of 3, on the generalization error on Cora dataset. The curve stops early at the
largest training accuracy iteration.

PN(HY)) = 7% where the average node embedding is computed as p(H®) =

Ly h”, the variance of node embeddings is computed as o2(H®)) = LV I —
p(H®)|13, and v > 0 controls the scale of node embeddings.

We choose hidden dimension as 64, and no dropout or weight decay is used during training. As
shown in Figure 19 and Figure 20, a larger scale ratio v can improve the discriminativeness of node
embeddings, but will hurt the generalization error. A smaller scale ratio leads to a small generalization
error, but it makes the node embeddings harder to discriminate, therefore over-smoothing happens
(e.g., using v = 0.1 can be think of as creating over-smoothing effect on node embeddings).

E.5 Tllustrating the gradient instability issue during GCN training

Gradient instability refers to a phenomenon that the gradient changes significantly at every iteration.
The main reason for gradient instability is because the scale of weight matrices is large, which causes
the calculated gradients become large. Notice that the gradient instability issue is more significant on
vanilla GCN than other sequential GCN structures such as ResGCN and GCNII, which is one of the
key factors that impacts the training phase of vanilla GCNs.
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Figure 16: Comparison of 3, on the generalization error on Citeseer dataset. The curve stops early at
the largest training accuracy iteration.
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Figure 17: Comparison of generalization error of DropEdge on Cora dataset. The curve stops early
at the largest training accuracy iteration.

To see this, let W) «— W) — nG® denote the gradient descent update of the /th layer weight

matrix, where G is the gradient with respect to the /th layer weight matrix W(). The upper
bounds of the gradient for GCN, ResGCN, and GCNII are computed as

1G], = o((max{L \/&Bw})L), GCN (Eq. 71)
IGO]|, = 0((1 ¥ \/EBw)L), ResGCN (Eq. 105) (42)
GO, = O(B(max{l,a\/ng})L)7 GCNII (Eq. 160)

where d is the largest number of node degree, L is the number of layers, and |[W ()|, < B, is the
largest singular value of weight matrix. Details please refer to the derivative of Eq. 71, Eq. 105, and
Eq. 160.

From Eq. 42, we know that the largest singular value of weight matrices is the key factor that affects
the scale of the gradient. However, upper bound can be vacuous if we simply ignore the impact of
network structure on B,,,.

From Figure 21 and Figure 22, we can observe that the residual connection has implicit regularization
on the weight matrices, which makes the weight matrices in ResGCN has a smaller largest singular
values than GCN. As a result, the ResGCN does not suffer from gradient instability even its gradient
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Figure 18: Comparison of generalization error of DropEdge on Citeseer dataset. The curve stops
early at the largest training accuracy iteration.
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Figure 19: Comparison of generalization error of PairNorm on Cora dataset. The curve stops early at
the largest training accuracy iteration.

norm upper bound in Eq. 42 is larger than GCN. Furthermore, although the largest singular value of
the weight matrices for GCNII is larger than GCN, by selecting a small enough 3,, GCNII can be
less impacted by gradient instability than vanilla GCN.

E.6 TIllustrating how more training leads to high training F1-score

As a compliment to Figure |, we provide training and validation F1-score of the baseline models.
During training, we chose hidden dimension as 64, Adam optimizer with learning rate 0.001, without
any dropout or weight decay. Please note that removing dropout and weight decay is necessary
because both operations are designed to prevent neural networks from overfitting, and will hurt the
best training accuracy that a model can achieve. As shown in Figure 23 and Figure 24, all methods
can achieve high training F1-score regardless the number of layers, which indicates node embeddings
are distinguishable.

E.7 Effect of number of layers on real-word datasets

In the following, we demonstrate the effect of the number of layers and hyper-parameters on the
performance of the model on OGB Arxiv [24]. We follow the default hyper-parameter setup of GCN
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Figure 20: Comparison of generalization error of PairNorm on Citeseer dataset. The curve stops
early at the largest training accuracy iteration.
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Figure 21: Comparison of gradient norm on Cora dataset. The curve stops early at the largest training
accuracy iteration.

on the leaderboard,'’ i.e., we choose hidden dimension as 128, dropout ratio as 0.5, Adam optimizer
with learning rate as 0.01, and applying batch normalization after each graph convolutional layer. As
shown in Table 3, the number of layers and the choice of hyper-parameters can largely impact the
performance of the models. Since DGCN can automatically adjust the o, and [, to better adapt to
the change of model depth, it achieves a comparable and more stable performance than most baseline
models.

F Generalization bound for GCN

In this section, we provide detailed proof on the generalization bound of GCN. Recall that the update
rule of GCN is defined as

H® = o(LHDWO), (43)
where o (+) is the ReLU activation function. Note that although ReLU function o (z) is not differen-
tiable when = = 0, for analysis purpose we suppose the o/ (0) = 0.

"https://github.com/snap-stanford/ogb/blob/master/examples/nodeproppred/arxiv/gnn.
py. Due to the memory limitation, we choose hidden dimension as 128 instead of the default 256 hidden
dimension for all models.

Widely used deep learning frameworks, including PyTorch and Tensorflow, also set the subgradient of
ReLU as zero when its input is zero.
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Figure 22: Comparison of gradient norm on Citeseer dataset. The curve stops early at the largest
training accuracy iteration.
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Figure 23: Comparison of training F1-score and number of iterations on Cora dataset.

The training of GCN is an empirical risk minimization with respect to a set of parameters 6 =
W W) vlie,

m

3@, (—p(f(h"),50)), fBY) =5(vTh{P), (44)

i=1

£(6) =

1
m

where hl(.L) is the node representation of the ith node at the final layer, f (th)) is the predicted
label for the ith node, 5(z) = m is the sigmoid function, and loss function @ (—p(z,y))

is %—Lipschitz continuous with respect to its first input z with p(z,y) as defined in Section 5. For
simplification, we will use Loss(z, y) which represents ®.,(—p(z,y)) in the proof.

To establish the generalization of GCN as stated in Theorem 3, we utilize the following result on
transductive uniform stability from [17].

Theorem 8 (Transductive uniform stability bound [17]). Let f be a e-uniformly stable transductive
learner and vy, 6 > 0, and define Q@ = mu/(m + u). Then, with probability at least 1 — § over all
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Figure 24: Comparison of training F1-score and number of iterations on Citeseer dataset.

Table 3: Comparison of F1-score on OGB-Arxiv dataset for different number of layers

Model @ 2 Layers 4 Layers 8 Layers 12 Layers 16 Layers

GCN - 71.02% +£0.14 71.56% £0.19 71.28% £0.33  70.28% +0.23  69.37% £ 0.46
ResGCN —  70.66% +0.48 7241% +0.31 72.56% +0.31 72.46% +0.23 72.11% £ 0.28
GCNIIL 0.9 71.35% +£0.21 72.57% +£0.23 72.06% +£0.42 71.31% £0.62  69.99% =+ 0.80
GCNIIL 0.8 71.14% +0.27 72.32% +£0.19 71.90% £0.41 71.21% +0.23  70.56% + 0.72
GCNIIL 0.5 70.54% +0.30 72.09% +0.25 71.92% +0.32 71.24% +0.47  71.02% + 0.58
APPNP 0.9 67.38% +0.34 68.02% +0.55 66.62% +0.48 67.43% +0.50  67.42% + 1.00
APPNP 0.8 66.71% +0.32 68.25% +0.43 66.40% +0.89 66.51% +2.09 66.56% + 0.74
DGCN - T1.21% +£0.25 72.29% +£0.18 72.39% +0.21 72.63% +0.12 72.41% + 0.07

training and testing partitions, we have

Ru(f) < RL(f) + %O(E\/Q 1n(5*1)) + O(ln(é\/;))

Then, in Lemma 4, we derive the uniform stability constant for GCN, i.e., egen-

Lemma 4. The uniform stability constant for GCN is computed as € gey = % ZZ;I (14+nLp)t—1t
where

2 2
pr=CFCy Gy = ~(L+)OFCy, Ly = Z(L+ DCEC((L+2)CECs +2),
Ci = max{l, \/&Bw}, Cy = \/g(l + Bz)

(45)

By plugging the result in Lemma 4 back to Theorem 8, we establish the generalization bound for
GCN.

The key idea of the proof is to decompose the change of the GCN output into two terms (in Lemma 5)
which depend on

* (Lemma 6) The maximum change of node embeddings, i.e., Ahfﬂx = max; ||[H(e) —
f{(f)}i J

2
* (Lemma 7) The maximum node embeddings, i.e., hfﬁ;x = max; || [H(Z)]L: II2-
Lemma 5. Let f(hEL)) = &(VThEL)), f(flfL)) = &({,TBEL)) denote the prediction of node i using

parameters @ = {WO W) v} 0= (WO W) ¥} (ie., the two set of parameters
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trained on the original and the perturbed dataset) respectively. Then we have

max |f(h{"”)) = F(b{")| < AR, + AL AV,
(L) (L) 46)
e | 22800 OFBD | < A, 4 W+ 1AV,
'3 2

on'H 5‘h(.L)
where Av = v — V.

Lemma 6 (Upper bound of hmdx for GCN). Let suppose Assumption | hold. Then, the maximum
node embeddings for any node at the (th layer is bounded by

hY) < By(max{1,VdB,})". 47)

Lemma 7 (Upper bound of Ahmax for GCN). Let suppose Assumption | hold. Then, the maximum
change between the node embeddings on two different set of weight parameters for any node at the
Lth layer is bounded by

ARY) . < VdB,(max{1, VB, })  (|AWD ||y + ... + AW O 5), 48)

max —
where AW () = W) — W),

Besides, in Lemma 8, we derive the upper bound on the maximum change of node embeddings

before the activation function, i.e., Azr(f;x = max; || [Z(é) — Z(Z)]i_’: II2- Azl(li)ix will be used in the
computation of the gradient related upper bounds.

Lemma 8 (Upper bound of Azr(nzx for GCN). Let suppose Assumption | hold. Then, the maximum

change between the node embeddings before the activation function on two different set of weight
parameters for any node at the (th layer is bounded by

max —

Azl < VdB, (max{l,\/EBM})E’1(||AW(1)||2+...+ ||AW“)H2), (49)

where AW = W) — W),

Then, in Lemma 9, we decompose the change of the model parameters into two terms which depend
on

* The maximum change of gradient passing from the (¢ + 1)th layer to the ¢th layer Adfﬁ;x =
{QJ(LH“’I)W(Z)) aa(Lﬁ“*UVv“’)}

max; .

oH(— D) oH(-1)

1112

* The maximum gradient passing from the (¢ + 1)th layer to the /th layer dfﬁz)ix =
do(LHY-VwW®)
e

)

max;

Lemma 9 (Upper bound of dmax, Ad%;x for GCN). Let suppose Assumption | hold. Then, the
upper bound on the maximum gradient passing from layer { + 1 to layer £ for any node is

dif), < ?y(max{l, VdB,, })E =, (50)

and the upper bound on the maximum change between the gradient passing from layer ¢ + 1 to layer
£ on two different set of weight parameters for any node is

AdY),. < (max{1, \/&Bw})H% (L + D)VA(B, + 1) (max{1,VAB, )" +1) |26]2,

max —
(51D
where ||[AB||s = ||[v — V|2 + 2571 W — WO, denotes the change of two set of parameters.

Finally, based on the previous result, in Lemma 10, we decompose the change of the model parameters
into two terms which depend on

* The change of gradient with respect to the /th layer weight parameters || AG®) |5,
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* The gradient with respect to the /th layer weight parameters |G ()|,

where G (X1 denotes the gradient with respect to the weight v of the binary classifier and G(©)
denotes the gradient with respect to the weight W () of the /th graph convolutional layer. Notice that
|AG®||5 reflects the smoothness of GCN model and [|G(¥)||5 corresponds to the upper bound of
gradient.

Lemma 10 (Upper bound of |G |5, [|AG®) || for GCN). Let suppose Assumption | hold and

let Cy = max{1,vdB,} and Cy = \/d(B, + 1). Then, the gradient and the maximum change
between gradients computed on two different set of weight parameters are bounded by

L+1
> IGO
(=1

L+1

> IIAGH|
=1

IN

(L+1)CrCa|| 28],
(52)

IN
20 2N

(L+ 1)CEC (L +2)CEC, +2) 126,

where ||AB]|2 = ||v — V|2 + ZéL_l W — WOy denotes the change of two set of parameters.

Equipped with above intermediate results, we now proceed to prove Lemma 4.

Proof of Lemma 4. Recall that our goal is to explore the impact of different GCN structures on the
uniform stability constant egcn, which is a function of py, G, and Ly. Let C; = max{1, \/ﬁBw}
and Cy = V/d(B, + 1). Firstly, by plugging Lemma 7 and Lemma 6 into Lemma 5, we have

max max

< VAB, - (max{1, VAB,})*| A0 (53)
< C1LC2HA9H2-

max | f(h{") — F(")] < AREL + nE) | Av]l2

Therefore, we know that the function f is ps-Lipschitz continuous, with py = CFCs. Then, by
Lemma 10, we know that the function f is L ¢-smoothness, and the gradient of each weight matrix is
bounded by Gy, with

2 2
Gy = (L +1)CCy, Ly = S(L+1)CHC, (L+2)0tCs+2). (54)
By plugging egcn into Theorem 3, we obtain the generalization bound of GCN. O

F.1 Proof of Lemma

By the definition of f(th)) and f(flgL)), we have

max | f(h{") = f(b{")| = max |5(vTh{") — 5(+Th{")|

< max ||vTh(L) - {ITflEL)\|2

)

(@ * (55)
< max||vT (b{") — h{")||5 + max ||n{") (v — ¥)]|2

< ARE) + hiE)

max max

Av,
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where (a) is due to the fact that sigmoid function is 1-Lipschitz continuous.

afm™)  afm")

7

on'" on'”

max
?

= max||¢' (v h{?)vT = &' (@ Th{)¥ |,
2

< max |6’ (v h{”)v" = &' (v h{")v |5

+max |5 (v )T — 5 (v TRD) T, OY
< Av+ (Ahf,fa)x + hf,fa)XAv)
(a)
= Ahl + (higd +1)Av,
where (a) is due to the fact that sigmoid function and its gradient are 1-Lipschitz continuous.
F.2 Proof of Lemma 6
By the definition of hr(lex, we have
hitax = max [|[o(LHDWEO)
K3
< max |[LHDWO,
(a) *
< max [[[LH D, |[o[ W5
- (e-1)
_ -l 0
= max Z L; ;hj WO 57
Jj=1
2
N
-1
< max || 37 Ll -max b5V - WOl
j=1
< VWO 5 - hiLY
(b)
< VdB, - h%;xl) < (max{1, \/ng))éBw,
where (a) is due to ||o(x)]|2 < ||x||2 and (b) is due to Lemma 3 1.
F.3 Proof of Lemma 7
By the definition of Ahgﬂx, we have
Ah, = max [ — B,
= max || [0 (LH"DW®) — o (LHEDWO)), ||,
= max |[LHC WO - LACHWO), |,
< max H[LH“_U(W“) _ V”V(L’)) + L(H(L’—l) _ ﬁ(f—l))v”v(f)}“h 58)

N N
< mx |3 Lig# | AW + max|[ 3 2o, | WO
j=1

2 =1

< VAARLD WO |3 + VAR D AW O |
< VdB,ARYZD + \/;ih(ffl)”Aw(f)Hz_

max max

2
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By induction, we have

AR, < VdB, ALY + VA D AW O
< (VdB,)?ArD + ﬂ(h“*”HAW“)nz + (ﬁBw)h“’Z)HAW“’”IIz)

max max

< (VdB,) AR + \/3(11“_” 1AW O 2 + (VABL RGP NAW D |2+ 4 (VdBL) A

max max

AWD)];)

Al

max max

= \/E(W*l)\mw“)nz + (VdB )W AW D5 (\/EBw)e’lhﬁr?;XHAW(l)HQ),

(59)
where (a) is due to ARS)L = 0. Plugging in the upper bound of h8. in Lemma 6, yields
ARt < VAB,(VaB,) T (AWl + ..+ AW D))
(60)

< VdB, (max{1, VdB,})" (HAW“)HQ o [AWO ).

F.4 Proof of Lemma 8

By the definition of Z(©), we have

70 _ 70 — LHC-OWO — LHE-DW®
— L(H“*)W(f) _HEDWO L FEDWO ﬁ(H)va)) 61)
— L(HY - AED)WO £ LAY (WO - W),

By taking norm on the both side of the equation, we have

Az

max

=max [[[Z) — ZU)]; .2

< VB, -max 271 = 247V o + VARG AW (62)

= \/ng : Zr(rf;xl) + \/ghgrl;;xl) HAW(O ||2

By induction, we have

Az < VdB, - ALY + VAR |AW O |,

max — max max

S \/ng : AZ(Z?I) + \/gBac(\/ng)471”AW(£) ||2

(a) max

<VdB, (\/&Bw CAZUD) 4 \/&Bx(\/ng)K*ZHAW“*Hb) +VAdB,(VdBL) AW O

max

(VABL)? - Axlf? + VB, (VB ) (|AW D], + AW,

IN

< VaB,(VdB,) T (1AW D2 +... + |AWO, ),
(63)

where (a) is due to himd) < (VdBy)* ' B,.
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F.5 Proof of Lemma 9

For notation simplicity, let D(*) denote the gradient passing from ¢th to (£ — 1)th layer. By the
definition of dif)x, we have

), = max [[d{"|,
= max||[L7o"(2“) © DWW,

< max [[L D] [l [ WO 2
(@ *

< max ZL d“HIN WO, (64)

2% ]
2

<\F\|W<@|| D

max

< \FB ~dEED

max

(fB YL+l < i(max{l,\/ng})L_“l

where (a) is due to each element in ¢’(Z®) is either 0 or 1 depending on Z*), and (b) is due to
[RESECHOE)

2 < 2/~. By taking norm on the both sides, we have

on{H
Ad{) = max||[D® —DO); |15
= max [[LT (DY 0 o' (ZO)WOTT - LTDD @ o"(Z9) WO
< max [[LT (DY 0 0'(29)[W ] —~LT (DY 0o"(Z9) WO, |2

+ max|[|[LT (DU © o' (Z) WO —LTDEY 0 o' (Z9) WO, |12

)
+max |[[LT(D 00" (ZO)WOTT — LT(DHY 0 '(Z0) W),
)

< maXII[LT((D““) ~ DN IWETT] Iz
(@ °

+max |[LT (DI [WO - WO, |5
+ max [|[LDFV(Z — ZOyW O, |,
< VAB,AdYED +VddCED AW O ||y + VdB,,dHD AzY)

max max max max
< VABLAALED + dD (VA AW o + VB, A, ),

(4)
(65)
where inequality (a) is due to the gradient of ReL U activation function is either 1 or 0.

Knowing that d(me;t(l ) < (\f B, ) ¢ and using the upper bound of ZI(IQLX as derived in Lemma &,
we can upper bound (A) as

altd (VA aw O + VaB, A=), )

< 2 (VaB)P ! (VAIAWO -+ VB (VB (AW 2+ ..+ [AW )

< Z(VdB)" ! (V4 VB (VB ) (JAW Do + ..+ [AW D) (66)

IN

%(\/&Bw)L—fﬁa + B,)(max{1,VdB,})||A0||

IN

%\/&(1 + B,)(max{1,VdB,})*|| A8
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Plugging it back, we have

AdY)

max

2
< VdB,Ad Y + ;\/E(Bx + 1)(max{1, VdB,})*| A8

< VB, (VAB,AdYED + %\/E(Byc + 1) (max{1, VdB, })*[1 26 )
+ %\/&(Bx +1)(max{1, VdB,})" A0
< (14 VB, + ..+ (max{1, VAB, 1)) %ﬁ(Bx + 1) (max{1, VdB. }) (| A0
+ (max{1, VdB, })* 1 AdL ]
< (miax{1, VB )P - ZLVAB, + 1) (maax{1,VAB |20 + (ma(1, VB, )P~ AdkE)
= (max{1, \/&BU,})L’Z(%L\/Q(BQC +1)(max{1,VdB,})" 28] + Adéii)-

(67)
Then, our next step is to explicit upper bound Ad,(fail). By definition, we can write Adfxf;);l) as

AdiEED = max [[af" T — afF Y,

N 8Loss(f(h§L)),yi) B 8LOSS(JE(B§L))’%>

i on{" on" ,
L (L
c 2 [erm®) arm)
@7 ¢ | on'® on™ ||,

< 2 (\/EBx(maX{l, VAdB, D H[AWD o + .+ AW D) |1) + (B, (max{1, VdB, })* + l)Av)

®
2
< = (VB (max{1,VaB)F +1) (IAWD 4+ AW + [ Av]])

2
- (VaB. (max{1, VB, )" + 1) ] 26,
(68)
where (a) is due to fact that VLoss(z, y) is 2/~-Lipschitz continuous with respect to z, (b) follows
from Lemma 6 and Lemma 7.

Therefore, we have
AdD), < (max{1,VaB)* (2 LVA(B, + 1) (max{1, VAB,}) |A6]; + AdLLL)
Y

max —

< (max{1, \/EBw})L*Z% (EVA(B. + 1) (max{1, VAB,)* + VB, (max{1, VAB, })* +1) 0]

< (max{1, \/EBw})L*Z% (2 + DVA(B, + 1)(max{1, VAB,})* +1) A0

(69)
F.6 Proof of Lemma 10
By the definition of G(), ¢ € [L], we have
1
1GO]|y = — LH"Y)™DY 6 o'(21)|,
_ lH[LH(Z—l)]TD(é)Hz (70)
m
< Vdhi D d(
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By plugging in the result from Lemma 6 and Lemma 9, we have
2
GO, < ;\/&(BI + 1)(max{1, VdB,})~. (71)

Besides, recall that G(“1) denotes the gradient with respect to the weight of binary classifier.
Therefore, we have

2 2
IGED, < ;hgfgx < ;(max{l,\/&Bw})LBx, (72)
which is smaller than the right hand side of the Eq. 71. Therefore, we have
L+1
Z IGO5 < L+1)7ﬁ(3m +1)(max{1, VdB., })". (73)

Similarly, we can upper bound the difference between gradients computed on two different set of
weight parameters for the (th layer as

HG(/) _ é(£)||2 — iH[LH(Z—l)]TD(Z+1) o) O_I(Z(Z)) _ [LIfI(Z—l)]Tf)(Z—H) ® U/(Z(Z))Hz
m

1 -
< E||[LH(£—1)]TD(Z+1) o O_I(Z(Z)) _ [LH(Z—l)]TD(Z—i-l) o O_I(Z(E))HQ

1 ~ N .

+ E||[LH(£71)]TD(Z+1) ® O_/(Z(E)) _ [LH(Zfl)]TD(EJrl) ® O,/(Z(é))H2
1 ~ - ~ - -

+ E||[LH(£71)]TD(Z+1) o O,I(Z(E)) o [LH(Zfl)]TD(EJrl) o O,/(Z(é))H2

< lH[L(H(Zfl) H(f 1))}TD(Z+1 ” + = ”[LH(Z 1)] (D(ZJrl) 7D(€+1))”2
(a) M

1 ~ - N
+ E||[LH(£71)]TD(Z+1) o (O_I(Z(Z)) _ O_I(Z(Z))) HQ

< ma [[L(HY — BT ),

+ max [[[LHE DT DD - DED)),
+ max [LH D) TDED 209 — 2O,

<vﬁ(Ah£1w“+”+h/ UAd““W+M41d“+UAz“ )

max max

(4) (B) (@)
(74)
where inequalities (a) and (b) are due to the fact that the gradient of ReLU is either 0 or 1.
We now proceed to upper bound the three terms on the right hand side. By plugging the result from
Lemma 6, Lemma 7, Lemma 9, and letting C; = max{1, \/EBw} and Cy = \/E(Bm + 1), we can
upper bound the term (A) as

max

ARLDAEHD < /aB, (max{1,VdBy )" - %(max{L\/&Bw})L—f

IN

%\/&Bw(max{l, VAB, )L A0 (75)

IN

2

~CLC| A0,
~

upper bound (B) as

hE=DAGUD < B, (max{1, J&Bw})L%((L +1VA(B, + 1)(max{1, VdB, })* + 1) A8

max

2
<-clo (L +1D)CECs +1) |26,
(76)
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and upper bound (C) as
2

WEDdETY A < By(max{1,VdB,})"" - = (max{1,VdB,})** - VdB,(max{1,VdB,})" | A8||
Y

2
< ;\/&Bz(max{l,\/ng})MHABHQ

2
< Z(CFC2)*[A0) 2.
(77
By combining the results above, we can upper bound AG () as
IG® = Gy < V(ARG AELD + WD AdGED + hD ) - A0, )
(78)

N

2
~cta, ((L+2)CkCs+2)]20]
Similarly, we can upper bound the difference between gradient for the weight of binary classifier as

max

IGUEAD — G|, < 2ApE)
~

(719)
2
< VB[ VBT (IW D+ W),
which is smaller than the right hand side of the previous equation. Therefore, we have
L+1 3 9
D _IGY = GO < (L +1)ZCEC((L +2)0E 0y +2) 46 (80)
=1

G Generalization bound for ResGCN

In the following, we provide detailed proof on the generalization bound of ResGCN. Recall that the
update rule of ResGCN is defined as

HY = o(LHYWO) 4 HED, 81
where o(+) is ReLU activation function. Please notice that although ReLU function o(z) is not
differentiable when x = 0, for analysis purpose, we suppose the ¢'(0) = 0.

The training of ResGCN is an empirical risk minimization with respect to a set of parameters
0={Wh .. W v} ie.,

£(0) = -3 0, (-p(fBP). ), F07) = 5(v D), (52
=1

where th) is the node representation of the ith node at the final layer, f (hEL)) is the prediction
of the ith node, &(z) = m is the sigmoid function, and loss function ®.(—p(z,y)) i %—
Lipschitz continuous with respect to its first input z. For simplification, we will use Loss(z, y) denote
®.,(—p(z,y)) in the proof.

To establish the generalization of ResGCN as stated in Theorem 3, we utilize the result on transductive

uniform stability from [17] (Theorem 8 in Appendix IF). Then, in Lemma 1 |, we derive the uniform
stability constant for ResGCN, i.e., eresGeN-

Lemma 11. The uniform stability constant for ResGCN is computed as €pesgey = % Zthl (1+

nLp)t=! where

2 2
_ L _ L _Z L L
pr=ClCy, Gy = ~(L+1)CHCy, Ly = Z(L+1)C] Co((L+2)CECy +2), @)

C1 =1+ VdB,, Cy =Vd(B, +1).
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By plugging the result in Lemma 1 | back to Theorem &, we establish the generalization bound for
ResGCN.

Similar to the proof on the generalization bound of GCN in Section I, the key idea of the proof is to
decompose the change if the ResGCN output into two terms (in Lemma 5) which depend on

¢ (Lemma |2) The maximum change of node representation, i.e., Ahr(lex = max; || [H(‘)) —
HO; o,

« (Lemma |3) The maximum node representation, i.e., Ak = max; [lns SRAPHIPS

Lemma 12 (Upper bound of hﬁfgx for ResGCN). Let suppose Assumptoon | hold. Then, the
maximum node embeddings for any node at the (th layer is bounded by

h

max

< B,(1 4+ VdB,)". (84)

Lemma 13 (Upper bound of Ahfﬂx for ResGCN). Let suppose Assumption | hold. Then, the
maximum change between the node embeddings on two different set of weight parameters for any
node at the (th layer is bounded by

ARG, < VAB.(14+VdB,) " (IAWD |y + ...+ [AW O ), (85)
where AW = W) — W),

Besides, in Lemma 14, we derive the upper bound on the maximum change of node embeddings
before the activation function, i.e., AZI(QX = max; || [Z(Z) — Z(Z)]i
proof of gradient related upper bounds.

2, which will be used for the

Lemma 14 (Upper bound of Azfﬁx for ResGCN). Let suppose Assumption | hold. Then, the
maximum change between the node embeddings before the activation function on two different set of
weight parameters for any node at the Lth layer is bounded by

Az < VB, (1 + VdB,) M (|AWD |y + ...+ |[AWO]|y), (86)

where AW = W) — W),

Then, in Lemma 15, we decompose the change of the model parameters into two terms which depend
on

* The maximum change of gradient passing from the (¢ + 1)th layer to the (th layer

Ad©

max

= max
K3

OH(-1) SH(-1)

G(U(LH(LDW(E)) + H(f—l)) a(U(LI:I(Z—l)VV(@)) + I:I(fl))]
[ 2

* The maximum gradient passing from the (¢ 4 1)th layer to the /th layer

d®

max

I(oc(LHEDW®) 4 HED)
|

= max
i

5

2

Lemma 15 (Upper bound of dfﬁ?ix, Ad%;x for ResGCN). Let suppose Assumption | hold. Then, the

maximum gradient passing from layer { + 1 to layer { for any node is bounded by
2

dihe < Z(14+ VdB,) =, (87)
Y

and the maximum change between the gradient passing from layer £ + 1 to layer £ on two different
set of weight parameters for any node is bounded by

Adfhe < Z(14 VB, (L + OVA(B, + (1 + VB +1) 8612 (88)

where |AB|2 = ||v — V|2 + ZéL—1 W — WOy denotes the change of two set of parameters.
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Finally, based on the previous result, in Lemma 16, we decompose the change of the model parameters
into two terms which depend on

* The change of gradient with respect to the /th layer weight matrix || AG®) |5,
* The gradient with respect to the /th layer weight matrix |G ()||,,

where G(“*1 denotes the gradient with respect to the weight v of the binary classifier and G )
denotes the gradient with respect to the weight W) of the /th layer graph convolutional layer.
Notice that | AG ) ||, reflect the smoothness of ResGCN model and ||G(¥)||, correspond the upper
bound of gradient.

Lemma 16 (Upper bound of |G|, || AG®)||, for ResGCN). Let suppose Assumption | hold and

letCy =1+ \/&Bw and Cy = \/E(Bx + 1). Then, the gradient and the maximum change between
gradients on two different set of weight parameters are bounded by

L+1
Y NIGW s < Z(L+ 1)CECo| A2,
=1

210

L+1 (89)

S IAGO |, < Z(L+1)CEC (L +2)CECs +2) |40,
(=1

=2 | N

where |AB|2 = ||[v — V|2 + 2112'11 W — WOy denotes the change of two set of parameters.

Equipped with above intermediate results, we now proceed to prove Lemma

Proof. Recall that our goal is to explore the impact of different GCN structures on the uniform stability
constant eresgen, Which is a function of pr, Gy, and Ly. Let Cy =1+ VdB,, Cy = \/&(Bm +1).
Firstly, by plugging Lemma |3 and Lemma 12 into Lemma 5, we have that

max | f(h{"”) — F(B{")] < ARLE) + L) | Av],
< VdB, - (max{1,VdB,})*| A8 (90)

< ClLCQHAeHQ-

Therefore, we know that the function f is p;-Lipschitz continuous, with p; = C¥Cy. Then, by
Lemma 16, we know that the function f is L ;-smoothness, and the gradient of each weight matrices
is bounded by Gy, with

2 2
Gf==(L+1)C{Cy, Ly = ;(

: L+ 1)0502((L+2)01LCQ +2). ©1)

By plugging egesgen into Theorem 3, we obtain the generalization bound of ResGCN.
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G.1 Proof of Lemma 12

By the definition of hr(ﬁzix, we have
i = max [|[o(LH VW) 4 HED,

max

< max |[LHDWO), .

< max [[LHCV]; IIW“)Herh“ 2

max

max

= max ZL,ghf DI WOy + nlgD
! (92)

2

max

N
< max |37 i)l max b o WOl + ALY
2

< (1+ Vd|[W®y) - plezD

max
a

< (1+VdB,)-h{Z < B,(1+VdB,)"*

where inequality (a) follows from Lemma 3 1.

—~
=

G.2 Proof of Lemma 13

By the definition of Ahmax, we have
AR

max

—maXHhi _hi ll2
3
= max [ (LHCDWO) - o(LACDWO) 4 HO - ﬂ“)]i,: e
< max [|[LH VWO — LHEDWO, ), + max |[[H — HOJ, 2

< maxH[LH“_l)(Wm - W) —LHY - H“ YW, o + ALY

max

< max Z Lijh V) [[AW® 5 + max ZLl JARSTY N WO |y + AR
(a) i j=1 5 j=1 5
< (1+VdBy) - A + VahG D AW O o,
93)
where inequality (a) follows from Lemma 3 1.

By induction, we have

AL < (14 VdB,) - ALY +VanZ D AW O,

max

< (14 VdB,)?- AR

max

+VA(REDNAWO | + (14 VB, L2 AW D]5)

max

< (14 VdB,)" - AR

max

+ VA(RED AW | + (14 VAB)ED [AWED 3 + 4 (14 VB AL AW D)

= \/E(hﬁﬁgﬁ)llAW“)lla + (L4 VAB )G 1AWVl o (14 VdBL) T QLI AW D ),

max

94
where the last equality is due to Ahmax =0.
Plugging in the upper bound of hfnix in Lemma 13, we have
ARGy < VdB,(1+VdB,) (WD + .+ W), (95)
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G.3 Proof of Lemma 14

By the definition of Z(*), we have

70 _ 70 — LHC-DOWO — LHE-DW®
— L(H“*)W(f) _HEDWO L FEDWO ﬁ(H)va)) (96)
— L(HY - AED)WO £ LAY (WO - W),

Then, by taking the norm of both sides, we have

Az

max

= max (I AREASI AP

max

< VdB,, -max |27V = ZUV] o + VARG AW | 7
=VdB,, - 242D + VAL D | AW O 5.

max

By induction, we have

Az < VdB, - AzUZD 4+ VAR D AW ||,

max — max max

< VABy, - A2YD 4+ VAB, (VdB,) [ AWO ||,
(a)

< VB, (VB, - A2+ ViB,(VAB,) AW DR) 4 VAB, (1+ ViB,) AW,

(VABW)? - Azlin? + VaB,(VaB,) " (AW, + |AW O]

IN

< VB (VB M (AW 4. 4 AW ).
(98)

where (a) is due to himd) < (VdBy,)* ' B,.

G.4 Proof of Lemma 15

For notation simplicity, let D denote the gradient passing from the (th to the (¢ — 1)th layer. By
the definition of dﬁﬁéx, we have

d®

max

= max||d” 2
= max[|[L"¢’(2) 0 DEHDWE + DED ],
< max[|L DD o], [WE |5 + dlihD

max

ST D) 99)
< max ZLi,jdjl WOy + dlf L)

Jj=1 9
< (14 VWO 5)dl LD

2
< (14 VdBy) - diED < Z(1+ VdB,) =,
(a) ¥

where inequality (a) follows from Lemma 3 1.
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By the definition of Ad%)ax, we have

Ad®)

max

= max |[D = D)2

— max[|[LT (DY) © o/ (Z@)[WE]T + DU — LD 6 o (ZO)[WETT ~ D],
< max||[LT (D¢ o a'(z“>>>[w<f>F ~ LT 0.6/ (ZO) WO,

+maXII[LT(D“+1 © o' (ZO) WO —LT DD 0 o"(Z) Wiz
+ max||[LT (DU © o' (Z) WO — LTDEY 6 o' (Z9) WO, |2 + max [[DEHD — DEFD] I
)

< maXII[LT( DD — DEINIWOTT]; lo + max ||[LT(DAHD WO — WOTT], |l
(a) (2 K3

+ max [|[LTDE VWOl max [|[Z2) — ZO;, | + max [[DEFY — DED]
< (14 VdBy,)AdYHD + Vdd D | AW O ||y + VB, d¢ D AL

— max max

— (1 + VdBy)AdEED 4 gl+h (\/8||AW<@ 2 + \/&BwAzgf;x),

max max

(4)
(100)
where inequality (a) is due to the fact that the gradient of ReLU is either 1 or 0.

Knowing that dia) < (1 + VdBy,)E* and 2, < \/EBz(\/ng)“l(HW(UHQ +...+

[ W) ||2), we can upper bound (A) by

dtd (VAW |3 + VaB, A%, )

< 2 (1 VB (VAW | VAR (VB (WOl ++ [WO))
(101

< %(1 VB (V4 VAB(VABL) ) (WDl 4.+ [WO )

2
< ;\/&(1 + B,)(1+ VdB,)"||A8]),.
By plugging it back, we have

2
AdY) < VdB,AdYEY + 5\/&(395 +1)(1+ VdB,)*[| A8,
2
<VdB, (ﬁBwAdgf;? + ;\/&(Bm F1)(1+ J&Bw)LHAeug)
2
+ ;\/ﬁ(Bw +1)(1 + VdB,)*||A8)|

< (1 +VdBy 4 ...+ (1 + V&Bw)L—f—l) - %\/Zl(Bw +1)(1 + VdB,)*|| A8

+ (14 VdB,) L1 Adkt!
< (1+VdB,)" - ;L\@(BI +1)(1 4+ VdB,)*|| A8y + (1 + VdB,)F*Adkt!

Sy \/ﬁBw)L‘é(%L\/Zl(Bw £ 1)1+ VB, [A0]) + AdE).
(102)

47



Let first explicit upper bound Adfnaxl) By definition, we can write Adgnax ) as

max

AdEED = max |a" T — @Y,

dLoss(f(h{™),y:)  dLoss(f(h{"), y:)

4 L (L
on'Y on'" ,
22 Jorm®) armit)
@7 ¢ || on® ani™ |,
2

(\/&Bm(l +VAB)E T (|AWD |y + .+ [[AW D) |y) + (B(1 + VdB,)* + 1)Av)

A
Q“
=
= |

< (VaB(4 ViR + 1) (IAWD s 4+ [AWO; 4 [Av]y)
= ;(\/EBz(l—k\/;iBw) +1)146],

(103)
where inequality (a) is due to the fact that VLoss(z,y) is %-Lipschitz continuous with respect to z,

and inequality (b) follows from Lemma 12 and Lemma 13. Therefore, we have
AdY, < (1+ \/&Bw)L*K(%L\/&(Bx £ 1)(1+ VB, A0 + AdLEL)
<(1+ \/&Bw)L*K% (L\/&(Bgc +1)(1 + VdB,)* + VdB,(1 + VdB,)* + 1) 1262
< (1+ VdBy)“~ - ((L F1)VA(B, + 1)1+ VdB,)E + 1) 1205

(104)
G.5 Proof of Lemma
First By the definition of G(), ¢ € [L], we have
1
G, = LD TDO 6 0/(20),
< L |LED] DO,
m (105)

<VdhDal)

— max

Vd(B, + 1)(1 4+ VdB,)*,

IN
()

(a) ¥

where inequality (a) follows from Lemma 12 and Lemma 15, and the fact that loss function is
%-Lipschitz continuous.

Similarly, by the definition of G+ we have

2
IGEHD, < hgfax < Z(B, +1)(1+ VdB,)*, (106)
(a (R
which is smaller then the right hind side of Eq. 105, and inequality (a) is due to the fact that loss

function is %-Lipschitz continuous and inequality (b) follows from Lemma

By combining the above two inequalities together, we have

L+1

ZHG% L+1)\/E(Bz+1)(1+\/EBw)L. (107)
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Furthermore, we can upper bound the difference between gradients computed on two different set of
weight parameters for the /th layer as

HG(Z) _ G«l(f)”2 _ ||[LH(671)]TD(Z+1) o U/(Z(E)) _ [LI:I(Zfl)]Tf)(H»l) o J/(Z(@))H2

1
m
< %”[LH(Z—D]TD(LH) ©0'(z") - [LH V)T DED 0 6/(20)|

+ %II [LHV]TDEY 0 o/(20) - [LHV]TDEY 0 o/ (29)|,
+ %II [LHD]TDEY 6 o'(20) — [LHY]TDEY  o/(Z9)||,

<

- 1 _ N
) LAY —HED) DD, + QII[LH“‘”]T(D““) — D)5

1
m

—

1= . ~
+ —|LHEYTDE © (0'(29) - 0'(29) 2
m

< max [[L(HD B D)D),

+max | [LHD]H(DED —DED)
+max |[LH D] TDED 520 — 29|

< Va( AP AEED + D ALY + DD A, ).
(4) (B) (©)

(108)
where inequality (a) and (b) is due to the fact that the gradient of ReLU activation function is
element-wise either 0 or 1.

By plugging the result from Lemma 12, Lemma |13, Lemma 15, and letting C;, = 1 + v/dB,, and
Cy = Vd(B, + 1) we can upper bound (A) as
ARV D < VaB, (1 + VdB,,) 2

max max

: %(1 +VdB,,)L~*
%\/&Bm(l +VdBy,)*|A0)2 (109)

IN

IN

2

—C Gy A0z,

Y

upper bound (B) as
2

Bl Al < By (max{1, VB, D (L + 1)VA(B, +1)(max{1, VaB, ) +1)[ A0
Y

2
< Ot ((L+ 10t C +1)120]:,

(110)
and upper bound (C) as

max

2
DA DAL < B (14 VdBy,) ™' - Z(1 + VdBy,) " - VdB, (1 + VdB,) || A6,
v

2
< SVABI(1+ VdB,)* (| A0 |2
Y
2
< ;(0502)2||A9||2-
(111)
By combining the results above, we can upper bound AG(®) as
IG® — GOll; < Va( ARV dsD + RV AEED + nDdltD - A0, )
(112)

2
< “ctoy (L +2)0kCs +2) )26
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By plugging the result from Lemma 12, Lemma |3, Lemma 15, we can upper bound AG®) as

||AG“)H2 <W(Ahf 1) z+1)+h(4 I)Ad(”l

max ma max )

< %(\/&BI(l +VdB,)" + (1 +VdB,) + \/ﬁ) 186]]> - VB, (1 + VdBy)*.

(113)
Similarly, we can upper bound the difference between gradient for the weight parameters of the
binary classifier as

|GUEHD — G|, < 2 ARE)
(a) Y

(114)
2 v
< fy\/ng(l+\/an)1171(”“’(1)||2+ || (L)H2)7

where (a) is due to the fact that loss function is %—Lipschitz continuous.

Therefore, by combining the above inequalites, we have

L
> AGY |, < %(LH)(\/&Bx(1+\/ﬁBw)L+(1+¢ﬁBw)+\/&)||Ao||2~\/&BI(1+\/EBw)L.
(=1

(115)

H Generalization bound for APPNP

In the following, we provide detailed proof on the generalization bound of APPNP. Recall that the
update rule of APPNP is defined as

H® = oLH* Y + (1 - a)H®, H® = WX, (116)

The training of APPNP is an empirical risk minimization with respect to weight parameters 6 =
(WO WE vl ie.,

i (F). ). f{™) = (0 n{"), 17

where th) is the node representation of the ith node at the final layer, f(h (L)) is the predicted
label for the ith node, 6(z) = W is the sigmoid function, and loss function ®.(—p(z,y)) is
%—Lipschitz continuous with respect to its first input z. For simplification, we will use Loss(z, )
denote ®.,(—p(z,y)) in the proof.

To establish the generalization of APPNP as stated in Theorem 3, we utilize the result on transductive
uniform stability from [17] (Theorem & in Appendix ). Then, in Lemma 17, we derive the uniform
stability constant for APPNP, i.e., eappnp.

Lemma 17. The uniform stability constant for APPNP is computed as € ppyp = % ZZ;I (1+
nLp)t~t where

4 4
pr = C1 By, Gf = ;Cl,Lf = 501(0102 + 1),

L (118)
Ci = BdBJ"CQ_maX{lB}Bd—1—0(204\[21 + (aVd)".
=1

By plugging the result in Lemma 17 back to Theorem 8, we establish the generalization bound for
APPNP.

The key idea of the proof is to decompose the change of the APPNP output into two terms (in
Lemma 5) which depend on
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« (Lemma 18) The maximum change of node representation Ah\rd, = max; |HE) —

I:I(L)]i:

25

* (Lemma 19) The maximum node representation hEHLa)X = max; || [H(L)]L: I|2-

Lemma 18 (Upper bound of hffa)x for APPNP). Let suppose Assumption | hold. Then, the maximum
node embeddings for any node at the (th layer is bounded by

W) < B§B,By, (119)

max

where B = (1 — «) Z,@L:l(a\/a)efl + (aVd)r.

Lemma 19 (Upper bound of Ahgfa)x for APPNP). Let suppose Assumption | hold. Then, the
maximum change between the node embeddings on two different set of weight parameters for any
node at the lth layer is bounded by

Ahi < B§ By | AW |3, (120)

max —
where BS = (1 — o) Y20, (aV/d)!1 + (av/d)F and AW = WO — W),

Then, in Lemma 20, we decompose the change of the model parameters into two terms which depend
on

* The change of gradient with respect to the /th layer weight matrix || AG©)|,,

* The gradient with respect to the th layer weight matrix |G (||,

where || AG ()|, reflects the smoothness of APPNP model and ||G(“)||5 corresponds the upper bound
of gradient.

Lemma 20 (Upper bound of |G¥||2, || AG®)||5 for APPNP). Let suppose Assumption | hold. Then,
the gradient and the maximum change between gradients on two different set of weight parameters
are bounded by

IN

4
—Bg7 By,
v

2
> IGO ],
/=1
2

> 1AaG;

(=1

(121)

IA

4
~BYB, (Bng max{1, By} + 1) 1202,
5

where |AB)||2 = |[v — 0|2 + |[W — W ||y denotes the change of two set of parameters.

Equipped with above intermediate results, we now proceed to prove Lemma

Proof. Recall that our goal is to explore the impact of different GCN structures on the uniform
stability constant exppnp, Which is a function of py, G, and Ly. By Lemma 19, we know that the
function f is py-Lipschitz continuous, with py = BJ B,.

By Lemma 20, we know that the function f is L;-smoothness, and the gradient of each weight
matrices is bounded by G ¢, with
4 (63 4 [e3 @
Gy < BiBu Ly < _Bib (BdBm max{1, B,} + 1).

By plugging eappnp into Theorem 3, we obtain the generalization bound of APPNP. O
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H.1 Proof of Lemma

By the definition of hr(nLa)x, we have
hE) = max |[[aLHE™Y + (1 — )HO; ||

max

< amax [[LHE V] lo + (1 - o) max||[H?); |2
7 7

N

_ RN CESY) _

= amax E 1 L; jh; + (1 - «a)ByB,
]:

, (122)

< aVdh{tY + (1 - a)By, B,

(a) max

L

< ((1 —a)Y (V) + (aﬂ)L)Bwa,

(®) =1
where inequality (a) is follows from Lemma 31 and inequality (b) can be obtained by recursively
applying (a).

Let denote BY = (1 — o) Y0, (ev/d)*~ 4 (a/d)", then we have
hith < BiBuBu. (123)

H.2 Proof of Lemma

By the definition of Ahgfa)x, we have
AR{E), = max [h{" — h{",

= max ||[(aLH(L_1) +(1- a)H(O)) - (aLI:I(L_l) +(1- O[)IA_’I(O))]L;HQ

< amax ||[LEED — HED)); s + (1 — o) max ||[HO — HO); ||
5 i (124)
< aVdARLEZY + (1 — a) B, | AW ||,

max
(a)

L

< (1= ) Y (@Vd) ™ + (VD)) B AW .

() L=1
where inequality (a) is follows from Lemma 31 and inequality (b) can be obtained by recursively
applying (a).

Let denote B§ = (1 — o) Y0, (ev/d)* ' 4 (a/d)", then we have
AR < BYB,||AW||;. (125)

max

H.3 Proof of Lemma

By definition, we know that H(™) is computed as

HD = ((aL)L +(1—a)(1+ (L) +...+ (aL)L*))XW. (126)
Therefore, the gradient with respect to weight W is computed as
2 h;
||G(1)||2 < maXHaf( )
@7 + || OW

2
= ~ max oY+ (1—a)(1+(al)+...+ (aL)rH )X

Sma | [((o0) + (=) (14 (@L) o (@D ) )] .
< 2((@V@F + 0= o)1+ (@) + .+ (VD)) B,

2 «
< ~BiBs,
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where inequality (a) is due to the fact that the loss function is %-Lipschitz continuous, and Bj =

(1-a) 25:1 (av/d)* ! 4 (av/d)". Besides, the gradient with respect to weight v is computed as
L

0%, (~p(f ("), 1))

ov )

2 h(L (128)

max

1G] = ‘

I /\

2
2BYB,B,.
5

IN

Combine the result above, we have 25:1 GO, < %B(‘}BTJBU). Then, the difference between two
gradient computed on two different set of weight parameters is computed as
0f (™) b of (b)) oni®
on{®  OW ot aw
of (™) o (hi")
on{" on{"

- 2
IGY = GW]; < = max
"Y (2

2
= 2B,BY
5

2

2
< 25,57 (AEL + B+ Dl1Av])
(a)

& ;BwBé’ (BxBéi‘IIAWHg + (B,B3B, + 1)||Av||2)
b

2
< °B,BY (BmB;; max{1, By} + 1) 1282,
Y

(129)

where inequality (a) follows from Lemma 5 and inequality (b) follows from Lemma 19 and
Lemma

Similarly, the difference of gradient w.r.t. weight v is computed as

1G® _ G, — [ 222U B 50) 9%, (p(T B, 4:))
2 v v ,
< Ahgﬁgx (130)
< §B¢CfBz||AW||2-

Combining result above yields 25:1 GO —GWO|, < %B,,Bda (Bng‘ max{1, By} + 1) [1AO]|2
as desired.

I Generalization bound for GCNII

In the following, we provide generalization bound of the GCNII. Recall that the update rule of GCNII
is defined as
HO = o((aLH® + (1 - a)X) (5W® + (1 - B)Ly)), (131)

where o(+) is ReLU activation function. Although ReLU function o (z) is not differentiable when
2 = 0, for analysis purpose, we suppose the ¢’(0) = 0 which is also used in optimization.

The training of GCNII is an empirical risk minimization with respect to a set of parameters 8 =
(W® L WE) pl e,

i (F0").90), F(0(") = 5(0h{), 132)
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where hZ(-L) is the node representation of the ith node at the final layer, f (hl(-L)) is the predicted
label for the ith node, &(z) = m is the sigmoid function, and loss function @, (—p(z,y))

is 2-Lipschitz continuous with respect to its first input z. For simplification, let Loss(z,) denote
P, (—p(z,y)) in the proof.

To establish the generalization of GCNII as stated in Theorem 3, we utilize the result on transductive
uniform stability from [17] (Theorem 8 in Appendix ). Then, in Lemma 2 |, we derive the uniform
stability constant for GCNII, i.e., egenir-

Lemma 21. The uniform stability constant for GCNII is computed as €gcyrr = % Z;‘ll (1+
nLy)t =1 where
2
2
Ly = 0B~ (L+ )ViC{C, ((@BL+ BBy +2)CECy +28), 133
01 = max{l, Oé\/ng}, 02 = \/a—F BZ&BB;C,
B? = BBy + (1 - B), B = max {ﬁ((l —a)L+aVd),(1 - a)LB? + 1}.
By plugging the result in Lemma 21 back to Theorem 8, we establish the generalization bound for
GCNIL
The key idea of the proof is to decompose the change of the GCNII output into two terms (in
Lemma 5) which depend on
« (Lemma 22) The maximum change of node representation Ah\h, = max; [[HO —
H(e)}i,: ||27
* (Lemma 23) The maximum node representation A = max; ITHO]; |2

Lemma 22 (Upper bound of hﬁﬁix for GCNII). Let suppose Assumption | hold. Then, the maximum
node embeddings for any node at the (th layer is bounded by

h), < ((1—a)tBE +1)B, - (max{1,aVdB’})", (134)

where BE = B, + (1 — ) and AW®) = W) — W),

Lemma 23 (Upper bound of Ahff?ix for GCNII). Let suppose Assumption | hold. Then, the
maximum change between the node embeddings on two different set of weight parameters for any
node at the (th layer is bounded by

ARG, < BB, ((1 - a)t + aVd) (max{1,aVdBL}) ™ (|\Aw(1)||2 ot HAw(l)”Z)’
i (135)
where B? = BB, + (1 — ) and AW®) = WO — W),

Besides, in Lemma 24, we derive the upper bound on the maximum change of node embeddings

before the activation function, i.e., Az,(rgx = max; || [Z(e) — Z(Z)]i’: |l2, which will be used to derive
the gradient related upper bounds.

Lemma 24 (Upper bound of Az,(f;)lx for GCNII). Let suppose Assumption | hold. Then, the maximum
change between the node embeddings before the activation function on two different set of weight
parameters for any node at the (th layer is bounded by

Al < BB, (1= )+ avad) (max{1,aVdBLH ! (JAWD 3+ + AW ), (136)

where BE = BB, + (1 — 8) and AW®) = W) — W),

Then, in Lemma 25, we decompose the change of the model parameters into two terms which depend
on
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* The maximum change of gradient passing from (¢ 4 1)th layer to the ¢th layer Adl), =

[ SH® 5H® ] ’
[

max;

bl

oHU-1) — pHE-1 9

* The maximum gradient passing from (¢ + 1)th layer to the /(th layer dby, =
oH®

Lemma 25 (Upper bound of dgﬁgx, Adl(fgx for GCNII). Let suppose Assumption | hold and let

denote C; = max{1,aVdB2}, Cy = Vd + BZ’dﬁBx, B = BB, + (1 — B), and BZ’f =

max {3((1 — a)L + aV/d), (1 — a)LBS + 1}. Then, the maximum gradient passing from layer
£ + 1 to layer ¢ for any node is bounded by

max;

‘2'

max —

2
d® < ;cf—“lHAeHz, (137)

and the maximum change between the gradient passing from layer £ + 1 to layer £ on two different
set of weight parameters for any node is bounded by

2
Adf) < ~OF (0BT + BB+ 1)C 0 +1) |86)), (138)

where |AB]|2 = [|[v — 0|2 + 25—1 W — W O], denotes the change of two set of parameters.

Finally, in Lemma 26, we decompose the change of the model parameters into two terms which
depend on

* The change of gradient with respect to the /th layer weight matrix || AG®)|,,
* The gradient with respect to the /th layer weight matrix |G (||,

where G(E+1) denotes the gradient with respect to the weight v of the binary classifier and G ()
denotes the gradient with respect to the weight matrices W (©) of the graph convolutional layer. Notice
that || AG (||, reflect the smoothness of GCN model and ||G(¥)||, correspond the upper bound of
gradient.

Lemma 26 (Upper bound of G(), AG® for GCNII). Let suppose Assumption | hold, and let
Cy = max{1,a/dB?}, Cy = Vd + BZ’dﬁBz, B = BBy, + (1 — ), and BZf = max {ﬁ((l -
@)L+ aVd), (1 — a)LBS + 1}. Then, the gradient and the maximum change between gradients on
two different set of weight parameters are bounded by

L+1 9
D IGY s < S(L+1)BCLC,
=1 v

L41 (139)

2
D 1AG > < (L +1)VACL Oy ((aBL + 5By +2)01 2 +25) 48]
(=1

where |AB]|2 = ||[v — |2 + Zf_l W — W O], denotes the change of two set of parameters.

Equipped with above intermediate results, we now proceed to prove Lemma

Proof. Recall that our goal is to explore the impact of different GCN structures on the uniform
stability constant egenm, Which is a function of py, G ¢, and L. Let denote Cy = max{1, a\/&Bg},

Cy = Vd+B{}) B, B} = BB,+(1—p),and By} = max {3((1—a)L+aVd),(1—a)LBS+1}.
By Lemma 23, we know that the function f is p¢-Lipschitz continuous, with

ps = BCECy. (140)
By Lemma 26, we know that the function f is Ls-smoothness, and the gradient of each weight
matrices is bounded by Gy, with

Gy = g(L + 1)BCEC,,
7 ) (141)
Ly=ap=(L+ DWVACEC, ((aﬁL 4 BBy +2)CLCy + 25).
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where BZ’dB = max {ﬁ((l —a)L+ a\/a), (1—a)LB? + 1}.

By plugging egenyr into Theorem 3, we obtain the generalization bound of GCNII.

I.1 Proof of Lemma 22

By the definition of hfﬁ&x, we have

Bt = max o ((aLHCD + (1= a)X) (5W O + (1 = A1) ) |

< max ||[(04LH(Z_1) + (1 - a)X) (ﬁw(e) + (1= B0l
(a) 7

< max |[[(oaLH Y + (1 = a)X)]i.[2|EW + (1 = 5]z

2

< (BB + (1= ) -max [[(aLHY + (1 - a)X)]i. (142)
< (8Bu+ (1= A)) - (acmax |[ILHE ], s + (1 - ) max X,z

< (BBu+ (1= ) (aVadhin) +(1-a)B,)

= aVd(BBy, + (1 = M)A + (1= @)Ba(BBy + (1 - B)),

where inequality (a) is due to ||o(z)]]2 < ||z]|2.

Let B2 = 3B, + (1 — B). By induction, we have

hO < ((1 —a)B Bﬁ) é (ax/ﬁBﬁ)W_l + (a\/ﬁBg)éBm. (143)

=1
If av/dBP < 1 we have,

hO) < (1-a)B,B+B, = ((1 —Q)¢BS + 1)Bm, (144)

and if av/dB? > 1 we have

hO) < ((1 —a)B, Bﬁ) (m/&ij)e_l + (a\/EBff))eBm

, (145)
< (- a)eBf +1)B, - (avaB) .

By combining results above, we have

hO) < ((1 —a)lBS + 1)Bm : (max{l, a\/ZiBg})[. (146)
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1.2 Proof of Lemma 23
By the definition of Ahmax, we have

ALY

max

= max [ — b2

- max‘ {a((aLH“*D +(1-a)X) (BW + (1 - 5)1))

K3

—o((oLACY 1 (1 - )X) (5W + (1 - 5)D))]

i,

.

< max
K2

[(@LH Y 4+ (1 - a)X) (BW© + (1= B)T)

~ (LAY (- )X) (sWO 4 (1 )] ||

< max [(@LHD + (1 - 0)X) (BWO — W)

+ max H [ (oL HY g )) (5W(£) +(1 5)1)} , H2
< max || [@LHD + (1 — a)X].[l2 - BIAWO |2 + a(BBy + (1 - 8)) max LA —HED)), .

< (avanid + (1= a)B, ) - BIAWO o + a(BBy, + (1 - 8)) VAARLD,

.

0yt

(147)
where (a) is due to the fact that ||o(z)]]2 < ||z|2.
Let B? = 8B, + (1 — B). Then, by induction we have
AR, < avdBl - ARY + B(aVanl + (1 - o) B, ) AW
< (VB ARED + B(aVdninh + (1 - a)B, ) AW,
+ BlavaB)) (aVanin? + (1 - a)B, ) [AW D]
(148)

< B(aVdninl + (1 - a)B, ) AW,
+ BlaVaBE) (aVaniz? + (1 - a)B, ) AW D]l + ..
+ BlaVaB)) ! (avanD, + (1 - ) B, ) [AWD .

If a\/ﬁBg < 1, using Lemma 23 we have
AR < B(aVarind) + (1 - a)B, ) [AWO 3 + B(aVdh(n? + (1 - a)B, ) [AW D] + ..
+ B(aVdn, + (1 - a) z)HAw%

< 8B, ((1 - @)+ avad) (JAWD s + ...+ AW ),
(149)
and if a\/gBﬁ > 1, using Lemma 23 we have

Mg < B(aVd((1 = a)(C = 1)BL + 1) B, - (aVdBL) ™ + (1 - a)B, ) AW,
ﬂ(a\/&Bg)(a\/&(u —a)(t—2)B2 +1)B, - (av/dB2) 7 + (1 - oz)Bx)HAW“’”IIa +..
+ BlavVdBg) (aVdB, + (1 - a) B, ) AWV,
< BB, ((1 - a)t + avd) (aVaB) " (AW D o + ..+ AW,
(150)
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By combining the result above, we have

AR < BB, ((1-a)l+aVd) (max{1,a\/EBﬁ})f—l(HAW‘”IIH. L+ ||AW“)||2). (151)

1.3 Proof of Lemma 24

The proof is similar to the proof of Lemma 23.

1.4 Proof of Lemma 25

Let B? = BB, + (1 — B). By the definition of ')y, we have

A = max 1D [I2
= amax||[L70"(Z) © DV (WO + (1= )Ll
< amax”[LT "2y o DY), |, - BS

< afB’B dU¢+1)

(a) max

2
< Z(max{1,aVdBS2})E=t+1,

(152)

)

where inequality (a) is due to the gradient of ReLU activation is element-wise either 0 and 1.

By the definition of Adﬁf;x, we have
AdY), = max |[DY — DY, ||,
<maxa|[LTo(Z2) o D (BWE + (1 - B)I) = LTo'(ZY) o DD (BWE — (1 - B)T)];.||2

< maxal[L'DUD (BWE + (1 - B)I) — LD (BWE + (1 — A1)
(a) %

+maxa[L'DE(BWE 4 (1 - )i, — LTDUHD (WO — (1 = B)L)]; |2
+amax [[LDY (W — (1= AT)];i, [l max [[[Z — ZO); |2

< maxa[LT (DD — DED)(BWE + (1 - D)),
(o) *

+max af [LTDED (BWE — W),
+amax||[LTDEY (BWE — (1 - B)T)]; |2 max || AR AP
7
< aVdB? - AdHY + apVddED | AW O ||y + aVdBE AP AL

= VB AdtD + adlED (BVAIAW O], + VABLA(L,).

(4)

(153)
where inequality (@) and (b) is due to the gradient of ReLU activation is element-wise either 0 and 1.

Let C; = max{1,avdB?} and BZ&B = max {A((1 — a)L + aV/d), (1 — a)LBS + 1}. Recall
that d'a) < 2 (max{1, av/dB2})E=¢ and the upper bound of Az}, in Lemma 24, we have

2
div) < SOU B2y S BBBLTCT (AWl + o+ [AW O ). (154)
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Therefore, we have upper bound (A) by

oVt (B1AW D s + BLA,)

max

<af- ;Of—’v’. (VaaW© | + BB CLIAW D+ ..+ [AWO2))
9 (155)
< aB=CY (Vd+ B/ B.) A6

2
< aﬂ;OfCQHAGHQ,

where Cy = vd+ BZ’dﬁBx and BZf = max {B((l —a)L+aVd), (1—a)LBS + 1}. By plugging
it back and by induction, we have

2
AdY) < i AdEED + a570502||A0||2

max — max

2
< C2AdYD) 4 (14 0y) - a5*0f02||ﬁ‘9||2

max

(156)

max

2
< CEHIAGIAD 4 (14 0y 4 ...+ O QB;CILCQHAOHg

max

2
< k- f(Ad@“ + aﬂ;LClLC'Q“AGHQ).

Let first explicit upper bound Adnfa';l) By definition, Adﬁf&”

Adl(—lfa-i-cl) — max ||d§L+1) _ a£L+1) HQ

5‘Loss(f(h,(»L)), Yi) 5Loss(f(l~11(.L)), Yi)
on® - P

afm™)  arm®)
o™ o

= max
A

IN

LRI 2N

=
)

<.

2

(Ah<L> + (h(L) —|—1)Av>

max max

BB CE (1AW Do+ + [AWE)3) + (BB CF + 1) Av]

< =(BrB.CE+1))20],

= = (BrB.CE +1) 26),

(157)
where C; = max{1,av/dB2}, B® = 8B, +(1—3) and Bo‘d —max{b’((l—a)L—ka\/g),(l—
a)LBE + 1}. By plugging it back, we have

Ad)

max

< CF (2 (B B +1)|186]1 + 0B LCH (Vi + B/ B,)126])
< cbt2 (Bng Cl+1+aBLCH(Va+ B B,) ) |26

(158)
< cbt2 (a6L+ (Va+ B B.)CE +1)]126);

—opt? (aﬂL+ )CECy +1) 48]
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1.5 Proof of Lemma
By the definition of G®, we have

1
IGO), = = Hﬁ [oLH*Y + (1 - a)X]'DY o a’(Z“))H
m 2

IN

%5 H[aLH“*U Y (1— a)X]TD“)H2 (159)

IN

B(aVanil + (1 - a)B, )df,.
Plugging in the results from Lemma 22 and Lemma 25, we have

1G]z < %6& (avd((1 = a)(e = 1)B +1) - Cf 7 4 (1 - ) )4

5 5 (160)
< ;ﬂBI((l —a)l+aVd)CE < ;50502,
where Cy = V/d + By} B,. Similarly, by the definition of G(*+1), we have
2 2

|GED||, < ;hﬁfgx < ;Ofcg. (161)
Therefore, we have

L+1 9

> IGO s < (L +1)5CECy (162)

(=1

Furthermore, we can upper bound the difference between gradient for £ € [L] as

- 1 - N -
GO — GO, = — HB[QLH@—U +(1-a)X]" DD 06" (Z20) - BlaLH + (1 - )X] "D ¢ UI(Z(O)HQ
m

1 .
(g) Eﬂ”[aLH“*l) +(1-a)X]"D D — [oLHY 4 (1 - a)X]TDED ||,

1 ] nd ~

+ —Bl[aLHD + (1 - 0)X]TDH — [aLHY + (1 - a)X] "D
1 ' il ~

+ —Bl[oLHD + (1 - a)X]TDV @ (o'(21) - o'(21)) 2

< (o mae | [IL (B — D) DOV,
) v

+ max [ LEY + (1 - a)X]T (DD — D), ot
+ max| [[ALH D + (1 = )X D], | max |20 — 20, )
< B( aVaAARGZDAlED + (Vb + (1 - a)Bo)AdiE)
(4) (B)

+ (Oé\/EhSﬁ;XI) +(1- oz)Bm)dfﬁ;rxl)Az(e) ),

max

(©)
(163)
where inequality (a) and (b) is due to the gradient of ReLU activation is element-wise either 0 or 1.

We can bound (A) as
aVdAR DD < aﬁﬁgcfczlmenz- (164)
To upper bound (B) and (C), let first consider the upper bound of the following term
aVdh{s) + (1—-a)B, < a\/&(u —a)(f—1)BP + l)BICf’l +(1-a)B,
< aﬁ(u —a)lB’ + l)Bme‘l (165)

S a\/&Cf_ng.
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Therefore, we can bound (B) as

2
(aVanid + (1 = a)B, ) AdfED) < avdCi ™ Cy - o ((@BL+ D)CEC +1)26]l3

2
< avi=cto, ((@BL+1)CECs +1)]|126) 2,

(166)
and we can bound (C) by
2
(aVdh(d + (1= a)By)d[E) Az(), < aVdCyCy - ZCF " OTT1 0o A2
) " (167)
< aﬂ\/a;(CfQ)QIIA@IIz-
By combining result above, we have
~ 2

IG = GO, < ap>ViCECy (28+ (aBL+1)CEG). (168)

Similarly, we can upper bound the difference between gradient for the weight of the binary classifier
as

- 2 2
|G — GVl < ZARG, < B=CLCI|AD]. (169)
which is upper bound by the right hand side of the previous equation. Therefore, we have
L+1
~ 2
dIGH - GO, < aﬁ;(L +1)Vdeke, (26 + (aBL + 1)0%02). (170)
=1

J Generalization bound for DGCN

In the following, we provide proof of the generalization bound of DGCN in Theorem 5. Recall that
the update rule of DGCN is defined as

L
Z=> aH" HY =LX@EW + (1 - B)I). (171)
(=1

The training of DGCN is an empirical risk minimization with respect to a set of parameters 8 =
W W) v,

L£0) = — > &y (=p(f(2:),y:))s f(zs) = 5(v ), (172)
i=1

where th) is the node representation of the ith node at the final layer, f (hz(»L)) is the predicted
label for the ith node, 5(z) = m is the sigmoid function, and loss function ®.(—p(z,y))
is %—Lipschitz continuous with respect to its first input z. For simplification, let Loss(z,y) denote
®.,(—p(z,y)) in the proof.

For analysis purpose, we suppose «y and (3, are hyper-parameters that are pre-selected before training

and fixed during the training phase. However, in practice, these two parameters are tuned during the
training phase.

To establish the generalization of DGCN as stated in Theorem 3, we utilize the result on transductive
uniform stability from [17] (Theorem 8 in Appendix F). Then, in Lemma 27, we derive the uniform
stability constant for DGCN, i.e., epgen-

. - . 20p; Gy ~~T
Lemma 27. The uniform stability constant for DGCN is computed as €pgey = ==L 3, (1 +
nLg)t=1 where

pr = (VA)' By, Gy = 2(L+ 1)(Va)" B,
2 ! (173)
Ly=2(L+ (V) B, (V)" By max{1, By} + 1))
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By plugging the result in Lemma 27 back to Theorem &, we establish the generalization bound for
DGCN.

The key idea of the proof is to decompose the change of the network output into two terms (in
Lemma 5) which depend on

* (Lemma 28) The maximum change of node representation Az = max; I1Z — Z);..

25

« (Lemma 29) The maximum node representation zsy = max; IZ]; ;|2

Lemma 28 (Upper bound of zy,,x for DGCN). Let suppose Assumption | hold. Then, the maximum
node embeddings for any node at the (th layer is bounded by

Zmax < (Vd)P' B, max{1, B,,}. (174)

Lemma 29 (Upper bound of Az, for DGCN). Let suppose Assumption | hold. Then, the maximum
change between the node embeddings on two different set of weight parameters for any node at the
Lth layer is bounded by

A < (VA B (AW |y + ..+ [AWD) ), (175)
where AW(®) = W) — W(©),

Then, in Lemma 30, we decompose the change of the model parameters into two terms which depend
on

* The change of gradient with respect to the /th layer weight matrix || AG©)|,,

* The gradient with respect to the /th layer weight matrix |G (||,

where || AG (9|5 reflect the smoothness of APPNP model and ||G(“) ||, correspond the upper bound
of gradient.

Lemma 30 (Upper bound of |G |5, | AG¥)||5 for DGCN). Let suppose Assumption | hold. Then,
the gradient and the maximum change between gradients on two different set of weight parameters
are bounded by

L+1 9
> IGY; < S+ 1)(Vd)" B,
i 7

IN

> IIAGO;
=1

where ||[AB||2 = ||v — V|2 + 2571 W — WOy denotes the change of two set of parameters.

(L4 )V B (V) B max{1. B} + 1) 48]

Equipped with above intermediate results, we now proceed to prove Lemma

Proof. Recall that our goal is to explore the impact of different GCN structures on the uniform
stability constant epgen, Which is a function of py, G, and Ly. By Lemma 29, we know that the

function f is p¢-Lipschitz continuous, with p; = (v/d)" B,. By Lemma 30, we know the function f
is L g-smoothness, and the gradient of each weight matrices is bounded by G5, with

2

Gy <
=5

(L+1)(Vd)"B,, Ly < %(L +1)(Vd) LB, ((\/&)LBI max{1, By} + 1)). 177

By plugging epgen into Theorem 3, we obtain the generalization bound of DGCN.
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J.1 Proof of Lemma 28

By the definition of zy,,x, we have

L
Zmax = max || | Y oL X (BWO + (1 )T

(=1 D)

M=

<D armax ILX(BWE + (1= B)I)]i. |2

(178)

~
Il
—

ar(Vd) By (BeBuw + (1 — Be))

M=

A
IN &
— ~

1
Vd)' B, max{1, B},

—~
=
=

where inequality (a) follows from Lemma 31 and inequality (b) is due to the fact that Zle ap=1
and o € [0, 1].

J.2 Proof of Lemma 29
By the definition of Az,,., we have

AZmax = mlax ”[Z - Z}L:HQ

L L
= max H [Z QL X (BWO + (1 - B)T) = 3 a L X (B W 4 (1 - &)I)}
/=1 (=1

’ 2

[

M=

<

2,

v max H [fo(ﬁewm + (1= B)T) — LEX(BWE (1 — B«)I)}

.

~
Il

1

I
o~
I Mh
N

e max | [LX(WO - W)

1, ‘2

(V) Bo| AWz

M=

—~
Q
~
o~
Il
sy

< (VO B, (JAWD o + .. + AW D)),
179)

where inequality (a) follows from Lemma 31 and inequality (b) is due to the fact that Zle ap=1
and o € [0, 1].
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J.3  Proof of Lemma
Recall that G(©) is defined as the gradient of loss with respect to W(©), which can be formulated as

1 <. OLoss(f(zi),y:) Oz h(@
GO, = H* !
161 = | 3

0z, oh) oW H

OLoss(f(z;),y:) 0z 8h( H

< mas | oz onD OWD

< aufie(Vd)' B, max HW (180)

.,
< gaeﬁe(\/g)eBm
a) Y

2

“ L
< 7(\/&) B,

where (a) is due to the fact that loss function is %—Lipschitz conitnous.

Besides, recall that G(“T1) denotes the gradient with respect to the weight of binary classifier.
Therefore, we have

2
IGED, < 20, < 2(Va) B, (181)
o (a) Y
where inequality (a) follows from Lemma
Therefore, combining the results above, we have
L+1
Z IGO|; < L+1>(¢ﬁ) B,. (182)

Furthermore, by the definition of ||G(®) — G(*) H2» we have
GY -_GW|,< = .
| o < 2 mex| 8zz OW 0z, oW

2 ¢ 0f(z:) Of(2:)
—;aéﬁé(\/g) B, 0z; - 07;

2

; 2 (183)
~ BB (VD) (Bmas + (s + DAV
%(\/&)LBQC (V! B, max{1, By} + 1)) | A6]l2

Similarly, we can upper bound the difference between gradient for the weight of the binary classifier
as

IN

IN

||G(L+1) _ G(L+1)H2 < ARL)

— max

9 (184)

S *<\/a)LBwaa
v

which is bounded by the right hand side of the last equation. Therefore, we have
L+1

> IGH —GW; < %(L+ 1>(¢<?)LBx((\/&>LBx max{1, By} + 1>)||A0||2- (185)

K Omitted proofs of useful lemmas
K.1 Proof of Lemma

Let f;(0) denote applying function f with parameter 8 on the kth data point and ; as the weight
parameter at the ¢th iteration. Because function fy (@) is ps-Lipschitz with respect to parameter 6, we
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can bound the difference between model output by the difference between parameters 0?, Or,ie.,

e = max |f5(67) — fu(0r)| < |67 — 7. (186)
Let Vf(0) = wy Vfe(0) and V£(87) = LS 'V f,(6%) denote the full-batch gradient

computed on the ongmal and perturbed dataset respectively.

Recall that both models have the same initialization 8, = @5 . At each iteration the full-batch
gradient are computed on (m — 1) data points that identical in two dataset, and only 1 data point that

are different in two dataset. Therefore, we can bound the change of model parameters 8, , 8, after
one gradient update step as

0% = Oesalla < (14 (1= )Ly ) 167 — Ol + =71
mn onG m (187)
< (L L]0} — Oulls + =L
Then after T iterations, we can bound the different between two parameters as
y MGt —
107 — Or]|> < —mf S @+ nLe) (188)
t=1
By plugging the result back to Eq. , we have
T
2npsGy t—1
= ——— 1 L . 189
=5 (1+aLr) (189)

t=1
K.2 Upper bound on the ¢;-norm of Laplacian matrix

Lemma 31 (Lemma A.3 in [36]). Let A denote the adjacency matrix of a self-connected undirected
graph G(V, £), and D denote its corresponding degree matrix, and d denote the maximum number of
node degree. We define the graph Laplacian matrix as L = D~/2AD~1/2. Then we have

max [|[L];.]]2 < Vd. (190)

Proof. By the deﬁn1t10n of Laplacian matrix, we know that the ith row and jth column of L is defined

as L; j = m Therefore, we have

N
1
max E L; ; = max E = =
‘ j=1 ! ¢ FEN(D) \/degZ V/deg(j)

191)
< max Z (
(a) ¢ JeN( )\/deg
= max /deg(i) < Vd,
where (a) is due to dl 5 < 1 for any node .
eg(t
O
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