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APPENDIX

A KULLBACK-LEIBLER DIVERGENCE BETWEEN TWO DIRICHLET

DISTRIBUTION

For two Dirichlet distributions Dir(π|αθ(x)) and Dir(π|1, . . . , 1) over K-dimensional probability π,
the following equality holds
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where Γ(.) and ψ(α) := d
dα logΓ(α) are the gamma and digamma functions, respectively.

B DERIVATION DETAILS

As we dene in Section 4, our forward model is:

p(π) = Dir(π|1, . . . , 1), (9)

Pr(z|π) = Cat(z|π), (10)

p(x|M, z = k) = N (x|Dϕ(M, z), σ2I). (11)

and the approximate posterior is:

q(π, z|x) = Cat(z|π)Dir(π|α1
θ(x), . . . ,α

K
θ (x)). (12)

We derive the ELBO to be maximized during the training as:

log p(x|M, θ,ϕ) = logEq(π,z|x)
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−DKL(q(π|x)||p(π)). (16)

The codebook can be viewed as M = [m1, . . . ,mK ] where mks are the codebook embeddings. The
input of the decoder zq(x) = Mk = z ∗M consists of the codebook embeddings mks as shown
in Figure 1. Mk is retrieved using the indices zs sampled as z ∼ Cat(z|π). Therefore, we can use
Dϕ(Mk) instead of Dϕ(M, z) for the remaining of the derivations.

The rst term in Equation 16 can be further derived as:
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We dene S =


k α
k
θ (x), and π = [π1, . . . ,πK ] with πk = αk

θ (x)/S since the mean of the
concentration parameters of a Dirichlet distribution can be taken as an estimate of the probabilities
(Sensoy et al., 2018). This approach is theoretically correct and practically proper since sequential
sampling from the Dirichlet distribution and the Categorical distribution causes an instability in the
training. Then, we can get samples z ∼ Cat(z|π) using Gumbel-Softmax trick in order to obtain the
reconstruction loss.

C TRAINING AND INFERENCE PROCEDURES OF EVIDENTIAL DVAE

The training and the inference procedure of EdVAE are described in Algorithms 1 and 2, respec-
tively. t denotes the index of the training iterations, and b denotes the batch index in the inference.
RelaxedOneHotCategorical(.) distribution is differentiable, and the samples from this distribution
are soft one-hot vectors. On the other hand, Categorical(.) distribution is not differentiable which is
not required during the inference. The samples from this distribution are hard one-hot vectors which
indicate one-to-one quantizations.

D EXPERIMENTAL DETAILS

We use PyTorch framework in our implementation. We train all of the models using a single NVIDIA
A100 GPU. We use some common choices for all of the models and all of the datasets in our
experiments. We train all of the models for 150K iterations on CIFAR10, CelebA, and LSUN Church
datasets, using the batch size of 128. We use the Adam optimizer Kingma & Ba (2014) with an initial
learning rate 1e−3, and follow the cosine annealing schedule to anneal the learning rate from 1e−3 to
1.25e−6 over the rst 50K iterations.

For GS-VQ-VAE, dVAE, and EdVAE, we follow the same cosine annealing schedule for the β
coefcient of the KL divergence term as in Equation 8. We anneal the β coefcient starting from 0
over the rst 5K iterations. Based on the model and the dataset, the upper bound for the β coefcient
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Algorithm 1 Training algorithm of EdVAE

Input: Dataset xtrain
Output: Reconstructed xtrain

Initialize the encoder E
[0]
θ , the decoder D

[0]
ϕ , the codebook M[0],

and the temperature parameter τ [0] = 1.0
for t = 1, 2, . . . , T do

x ← Random minibatch from xtrain

ze(x) ← E
[t−1]
θ (x)

αθ ← eze(x) + 1
π ∼ Dir(π|αθ)
z ∼ RelaxedOneHotCategorical(temperature = τ [t−1], probs = π)

x̂ ← D
[t−1]
ϕ (M, z)

g ← ∇M,θ,ϕL(M
[t−1], θ[t−1],ϕ[t−1])

with sampled x and x̂
M[t], θ[t],ϕ[t] ← Update parameters using g
τ [t] ← CosineAnneal(τ [t−1], t)

end for

Algorithm 2 Inference algorithm of EdVAE

Input: Dataset xtest
Output: Reconstructed xtest
Freeze the parameters of the trained encoder Eθ, the trained decoder Dϕ,
and the trained codebook M
for b = 1, 2, . . . , B do

xb ← Minibatch from xtest
ze(x) ← Eθ(x)
αθ ← eze(x) + 1
π ∼ Dir(π|αθ)
z ∼ Categorical(probs = π)
x̂ ← Dϕ(M, z)

end for
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varies as the KL terms are different in different models, and the β coefcient decides the reconstruction
vs KL term tradeoff. We also follow the temperature annealing schedule τ = exp(−10−5.t) for
the Gumbel-Softmax where τ denotes the temperature, and t denotes the global training step. We
initialize the codebook embeddings of these models using a Gaussian normal distribution. In EdVAE,
we clamp the encoder’s output ze(x) to be maximum 20 before converting it to the αθ parameters
for the training stability. We observe that after we obtain the training stability, we clamp too few
variables which does not affect the integrity of the latent variables. We provide detailed analysis for
the effects of logits clamping in E.3.

We rerun all of our experiments using the seed values of 42, 1773, and 1. Based on the architecture
and the loss function, we follow specic procedures and describe them below:

VQ-VAE-EMA: We use the same architecture and the hyperparameters as suggested in Oord et al.
(2017). We set the β coefcient for VQ-VAE-EMA’s loss to 0.25, and the weight decay parameter for
the EMA to 0.99. We initialize the codebook embeddings using a uniform distribution as in Oord
et al. (2017).

GS-VQ-VAE: We use the same architecture and hyperparameters as in VQ-VAE-EMA for a fair
comparison. The difference between the GS-VQ-VAE and the VQ-VAE-EMA is the quantization
where the GS-VQ-VAE uses the Gumbel-Softmax operation parameterized with the negative Eu-
clidean distances between the encoder’s output and the codebook. The upper bound for the annealed
β coefcient of the KL divergence is set to 5e−6 for all datasets.

SQ-VAE: We use the ofcial implementation (Takida et al., 2022a) of (Takida et al., 2022b). For
all datasets, we use Gaussian SQ-VAE (I) architecture and hyperparameters as described in (Takida
et al., 2022b).

VQ-STE++: We use the ofcial implementation (Huh, 2022) of (Huh et al., 2023), and follow the
same training procedure described in (Huh et al., 2023).

dVAE: The upper bound for the annealed β coefcient of the KL divergence is set to 5e−5 for all
datasets.

EdVAE: For CIFAR10, we set the upper bound for the annealed β coefcient of the KL divergence
to 5e−7 while we use 1e−7 for the remaining datasets.

D.1 DATASETS

CIFAR10: CIFAR10 consists of 60,000 32 × 32 RGB images in 10 classes. Each class consists
the same amount of images. We use the default train/test split of the dataset that the train split consists
of 50,000 images and the test split consists of 10,000 images.

CelebA: CelebA dataset consists of more than 200,000 celebrity images, and each image is
annotated with 40 different attribute such as gender, hair color, facial hair etc. We use the default
train/val/test split of the dataset. As preprocessing, we perform center cropping of 140 × 140, and
resize the cropped images to 64 × 64 using bilinear interpolation.

LSUN Church: LSUN Church consists of 126,000 256 × 256 RGB images of various churches.
It is a part of LSUN dataset which includes different indoor and outdoor scene categories. We use
the default train/test split of the dataset. We resize the images to 128 × 128 resolution using bilinear
interpolation, and use the resized images.

D.2 MODEL DESCRIPTION

In this section, we describe the architecture of dVAE and EdVAE. The common building blocks used
in the encoders and the decoders are given in Table 4. For the following architectures, w and h denote
the width and the height of the images. For CIFAR10 w = h = 32, for CelebA w = h = 64, and for
LSUN Church w = h = 128. We use a codebook M ∈ R512×16 for all of our experiments.
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Table 4: Notations of network layers used on all models.

Notation Description

Conv
(7×7)
n 2D Convolutional layer (out_channel= n, kernel= 7, stride= 1, padding= 3)

Conv
(4×4)
n 2D Convolutional layer (out_channel= n, kernel= 4, stride= 2, padding= 1)

Conv
(3×3)
n 2D Convolutional layer (out_channel= n, kernel= 3, stride= 1, padding= 1)

Conv
(1×1)
n 2D Convolutional layer (out_channel= n, kernel= 1, stride= 1, padding= 1)

MaxPool 2D Max pooling layer (kernel_size= 2)
Upsample 2D upsampling layer (scale_factor= 2)

EncResBlockn 3× (ReLU → Conv
(3×3)
n ) → ReLU → Conv

(1×1)
n + identity mapping

DecResBlockn ReLU → Conv
(1×1)
n → 3× (ReLU → Conv

(3×3)
n ) + identity mapping

As the encoder of dVAE and EdVAE return a distribution over the codebook, the last dimensions of
the encoders’ outputs ze(x)s are all equal to 512 for all datasets. After the quantization of ze(x)s, the
last dimensions of the decoders’ inputs zq(x)s are all equal to 16 for all datasets.

Encoder

x ∈ R
w×h×3

→ Conv(kw×kw)
n shape: (w × h× n)

→ [EncResBlockn]2 shape: (w × h× n)

→ MaxPool shape: (w/2 × h/2 × n)

→ [EncResBlock2∗n]2 shape: (w/2 × h/2 × 2 ∗ n)

→ MaxPool shape: (w/4 × h/4 × 2 ∗ n)

→ [EncResBlock4∗n]2 shape: (w/4 × h/4 × 4 ∗ n)

→ Conv
(1×1)
4∗n shape: (w/4 × h/4 × 4 ∗ n)

Decoder

zq(x) ∈ R
w/4×h/4×16

→ [DecResBlock4∗n]2 shape: (w/4 × h/4 × 4 ∗ n)

→ UpSample shape: (w/2 × h/2 × 4 ∗ n)

→ [DecResBlock2∗n]2 shape: (w/2 × h/2 × 2 ∗ n)

→ UpSample shape: (w × h× 2 ∗ n)

→ [DecResBlockn]2 shape: (w × h× n)

→ ReLU → Conv
(1×1)
3 shape: (w × h× 3)

where n is equal to 128 for all datasets, and 4 ∗ n is equal to the number of the codebook embeddings.
kw denotes the kernel size of the convolution layer. For CIFAR10 and CelebA kw = 3, for LSUN
Church kw = 7.

E ADDITIONAL EXPERIMENTS AND RESULTS

E.1 HIGHER TEMPERATURE USAGE WITH DVAE

We use temperature values of 2 and 5 in our current experiments, and observe that perplexity value
obtained as 190 for CIFAR10 dataset slightly decreases to 170 and 180, respectively. Similarly, for
CelebA dataset, perplexity value obtained as 255 decreases to 217 using temperature 2, and increases
to 296 using temperature 5. The performance of dVAE is sensitive to temperature hyperparameter,
and perplexity does not always increase with a high temperature. Therefore, using higher temperature
is not an appropriate solution.

E.2 UNCERTAINTY VS PERPLEXITY

We anticipate that introducing uncertainty awareness will enhance codebook usage, addressing
limitations in dVAE caused by the softmax operation. Our intuition is rooted in the denition of
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Figure 6: EdVAE training on CIFAR10: perplexity values increase during the training due to the
increase in uncertainty values.

Table 5: Test perplexities using various max clamping values.

Max Clamping Value CIFAR10 CelebA LSUN Church

10 351 319 363
15 421 376 375
20 425 386 393
25 411 1 1
30 1 1 1

codebook collapse—new elements are introduced when existing ones fail to explain observations. In
order to validate our intuition, we monitor the training of CIFAR10 and present an interval of the
training until saturation in Figure 6.

We observe a correlation between the perplexity values and the uncertainty values during the training.
The trend of perplexity values perfectly matches the trend of uncertainty values. This correlation
emphasizes that our model dynamically adjusts codebook usage based on its uncertainty, preventing
codebook collapse by utilizing embeddings effectively.

E.3 EFFECTS OF LOGITS CLAMPING

To obtain the parameters of the Dirichlet distribution, αs, we follow a common approach of logits
clamping to stabilize the training since the exponential of logits might be really large. We conduct an
ablation study to observe the effects of logits clamping, and present our ndings in Table 5.

We observe that clamping the logits with smaller max values clamps some of the values in logits, and
limits the range of positive values logits can have. This situation limits the representativeness of the
logits, and leads to lower perplexities. On the other hand, using larger max values for clamping causes
divergence in the training as the exponential of logits gets large, and the model cannot be trained.
Therefore, the logits should be clamped eventually with proper values. If a proper max value can be
selected, clamping acts as a regularizer at the beginning of the training, and the encoder naturally
outputs logits with no values greater than the max clamping value after a few iterations. If the training
is already stabilized, the max clamping value does not affect the performance dramatically as both 15
and 20 lead to similar results. Therefore, using 20 as the max value for all datasets can be a mutual
design choice.

E.4 EFFECTS OF β COEFFICIENT

As the β coefcient is an important parameter for the optimization, we conduct additional experiments
to observe its effects on the performance. We perform several experiments by changing the β
coefcient within [1e-7, 1e-4]. We repeat our experiments for dVAE and EdVAE using all of the
datasets, and present our ndings in Figure 7.

We observe that our method is more sensitive to β coefcient than dVAE, and EdVAE diverges
when the β coefcient increases for all datasets. We think that the key factor to this sensitivity is
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(a) EdVAE performance on training and testing. (b) dVAE performance on training and testing.

Figure 7: Effects of β coefcient to the performance.

the complexity introduced by the KL distance between our newly introduced posterior and prior,
compared to the KL distance in dVAE. Therefore, ne-tuning the β coefcient emerges. Even though
our original KL term brings some sensitivity to the training and it requires a hyper-parameter tuning
like most of the AI models, its contribution to the performance is non-negligible and essential.

Besides, the best performing β coefcient for CIFAR10 dataset is slightly higher than the best
performing β coefcient of CelebA and LSUNChurch datasets. Our intuition for this difference is that,
reconstructing images with lower resolution as in CIFAR10 is less challenging than reconstructing
images with higher resolution as in CelebA and LSUN Church. Therefore, increasing the β coefcient
from 1e-7 to 5e-7 improves the performance in CIFAR10 without hurting the reconstruction vs KL
term tradeoff. On the other hand, 1e-7 to 5e-7 conversion slightly decreases the performance in
CelebA and LSUN Church datasets since the reconstruction of the higher resolution images affects
the reconstruction vs KL term tradeoff.

E.5 ADDITIONAL RESULTS

Further reconstructed samples from CIFAR10, CelebA, and LSUN Church datasets are given in
Figure 8, Figure 9 and Figure 10, respectively. Moreover, the generated samples using the discrete
latents of all models for CelebA and LSUN Church datasets are given in Figure 11 and Figure 12,
respectively.
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(a) Source images (b) VQ-VAE-EMA

(c) GS-VQ-VAE (d) SQ-VAE

(e) VQ-STE++ (f) dVAE

(g) EdVAE

Figure 8: Reconstructed samples from the CIFAR10 dataset.

20



Under review as a conference paper at ICLR 2024

Figure 9: Reconstructed samples from CelebA dataset using EdVAE and other models.

Figure 10: Reconstructed samples from LSUN Church dataset using EdVAE and other models.
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(a) VQ-VAE-EMA (b) GS-VQ-VAE

(c) SQ-VAE (d) VQ-STE++

(e) dVAE (f) EdVAE

Figure 11: Generated samples from the CelebA 64× 64 dataset.

22



Under review as a conference paper at ICLR 2024

(a) VQ-VAE-EMA (b) GS-VQ-VAE

(c) SQ-VAE (d) VQ-STE++

(e) dVAE (f) EdVAE

Figure 12: Generated samples from the LSUN Church 128× 128 dataset.
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