
Speak & Spell: LLM-Driven Controllable Phonetic Error Augmentation for
Robust Dialogue State Tracking

Anonymous ACL submission

Abstract001

Dialogue State Tracking (DST) is a key part002
of task-oriented dialogue systems, identify-003
ing important information in conversations.004
However, its accuracy drops significantly in005
spoken dialogue environments due to named006
entity errors from Automatic Speech Recog-007
nition (ASR) systems. We introduce a sim-008
ple yet effective data augmentation method009
that targets those entities to improve the ro-010
bustness of DST model. Our novel method011
can control the placement of errors using012
keyword-highlighted prompts while introduc-013
ing phonetically similar errors. As a result, our014
method generated sufficient error patterns on015
keywords, leading to improved accuracy in016
noised and low-accuracy ASR environments.017

1 Introduction018

Task-oriented dialogue systems (TODs) assist019

users in achieving specific objectives through020

conversations and are used in various sectors, in-021

cluding customer service and hotel reservations.022

A crucial component of these systems is Dialogue023

State Tracking (DST), which extracts vital infor-024

mation from conversations in a slot-value format025

(e.g., hotel-name: Claire Hotel). This information026

is essential for querying databases and generating027

responses (Young et al., 2013).028

However, DST models face significant chal-029

lenges in spoken dialogue environments, where030

user utterances are converted into text by auto-031

matic speech recognition (ASR). Notably, Soltau032

et al. (2022) observed a drastic reduction in model033

accuracy from 41.6% to 23.6% in such environ-034

ments. This decline is primarily due to ASR errors,035

which frequently misrecognize named entities—a036

key target in DST (Nechaev et al., 2021).037

To address ASR inaccuracies, data augmenta-038

tion has emerged as a viable, cost-efficient strat-039

egy. Existing text augmentation methods, such040

as word swapping (Wei and Zou, 2019) and back041

translation (Sennrich et al., 2015), do not main- 042

tain audio similarity with the original text, lead- 043

ing to discrepancies with ASR error patterns. To 044

bridge this gap, Sharma et al. (2020) and Jacqmin 045

et al. (2023) synthesized audio from text with text- 046

to-speech (TTS) model (Shen et al., 2018) and 047

processed it through ASR, while Hrinchuk et al. 048

(2020) and Zhang et al. (2021) employed transla- 049

tion model structure to introduce ASR-like errors 050

directly into texts. 051

Despite these advancements, prior methods of- 052

ten fail to provide sufficient error for DST model 053

training. Accurately identifying key terms is vital 054

for DST performance; thus, models need to be 055

trained on a broad spectrum of ASR-errored key- 056

words. Unfortunately, many current strategies do 057

not ensure that errors are positioned within crit- 058

ical keywords, often generating trivial examples 059

by altering non-essential words such as random 060

words (Wei and Zou, 2019) or sentence structure 061

(Sennrich et al., 2015). This oversight results in 062

sub-optimal performance against ASR errors. 063

To address these limitations, we introduce Er- 064

ror Positioning Augmentation (EPA), a straightfor- 065

ward yet effective method that ensures sufficient 066

errors in keywords. Our method leverages large 067

language models (LLMs) (Ouyang et al., 2022; 068

Touvron et al., 2023; Zhang et al., 2022), which 069

have demonstrated impressive capabilities in se- 070

mantic augmentation (Whitehouse et al., 2023; 071

Sahu et al., 2023) and precise text generation con- 072

trol (Sun et al., 2023; Liang et al., 2024). Despite 073

their strengths, LLMs’ potential for phonetic aug- 074

mentation remains largely unexplored. 075

In our method, we utilize in-context learn- 076

ing (Brown et al., 2020) with phonetically similar 077

examples to introduce general ASR errors and de- 078

vise a highlighting method to explicitly localize 079

the error to a target span. Surprisingly, without re- 080

quiring extensive domain-specific user speech 081

data, a publicly available audio dataset and a 082
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Automatic Highlight Tagging 

[Example1]
Org :Where … place in this city?
Err : Where … plays in the city?

Org : Can you recommend place near the 
lynnwood ?
Err :

Target Sentence

🔉 ASR Example 
Database

In-context examples

[Example1]
Org :to the <hl>Purcellville </hl>
Err : to the persimmonVille

Org : Can you recommend plays near the <hl> 
lynnwood </hl>?
Err :

Inference target

Step 1 . Overall Utterance Augmentation Step 2. Key word Augmentation

Inference target

In-context examples

LLM

🔉ASR augmented
Text Dialogue

Can you 
recommend 
plays near 
the Lynwood

Errors to 
keywords

Can you 
recommend place 
near the 
Lynnwood?

Original -
Errored Pair

Attraction-name : Lynnwood

Keyword Information 

LLM

Figure 1: Illustration of EPA process.

small set of in-context examples (fewer than 10083

samples) are sufficient to generate a wide vari-084

ety of ASR-errored keywords for DST. This signifi-085

cantly simplifies the error generation process.086

In the experiment, to reflect diverse real-087

world conditions, we evaluated EPA under four088

ASR environments: a low-accuracy ASR system,089

noisy audio with café and traffic background, a090

paraphrased input setting where users naturally091

rephrased transcriptions, and a high-accuracy092

ASR system. In these experiments, EPA signifi-093

cantly improved model robustness, increasing ac-094

curacy from 45.76% to 51.12% with high keyword095

diversity (95.4%), surpassing the previous best-096

performing model. Our analysis suggests that097

this improvement is primarily driven by keyword-098

level augmentation, which effectively mitigates099

errors in ASR-affected values.100

2 Method101

2.1 Notation102

Before detailing each step, we first clarify the nota-103

tion. Dialogue context from turn 1 to t is denoted104

as D t ={(s1,u1), ..., (st ,ut )} where s denotes for sys-105

tem and u for user utterance. DST model pre-106

dicts the dialogue state (also called belief state)107

Bt given D t . Bt is composed with slot sl and value108

v pairs, denoted as Bt = {(sl 1, v1), ..., (sl J , v J )} ,109

where sl j and v j is j -th slot name and value. J is110

the total number of slots.111

2.2 Step 1: ASR Error for Overall Utterance112

In this step, we augmented the overall utterance113

by introducing general ASR errors. We began by114

constructing example sets for in-context learning,115

utilizing an open-source audio dataset (Ardila116

et al., 2020). From this dataset, we randomly se-117

lected 300 hours of audio along with their cor-118

responding gold transcripts (g ) and transcribed119

the audio using an off-the-shelf ASR model (e.g.,120

Whisper-base (Radford et al., 2022)) to obtain the121

erroneous transcriptions (e). We denote this ex-122

ample dataset as DB = {(g1,e1), . . . , (g I ,e I )}. 123

Next, we inject errors into u by prompting the 124

LLM with in-context examples. We retrieved (g , e) 125

pairs from the database (DB) based on phonetic 126

similarity between u and g (Figure 1, Step 1). To 127

compute phonetic similarity, we converted the 128

characters of both u and g into phonemes using 129

the International Phonetic Alphabet (IPA), and 130

calculated similarity using a frequency-based re- 131

trieval 1. After selecting the top-k (g , e) pairs, we 132

concatenated the instruction, in-context exam- 133

ples, and u into a single prompt and provided it 134

to the LLM. This process results in the overall ASR- 135

errored user utterance, denoted as u̇. Concretely, 136

u̇ can be obtained by 137

u̇t = LLM(Inst1 ⊕ (g1,e1) · · · (gk ,ek )⊕ut ) (1) 138

where ⊕ denotes concatenation, and we set k = 3 139

throughout our experiments. Retrieved examples 140

are provided in Appendix A.3. 141

2.3 Step 2: ASR Error for Keywords 142

While Step 1 introduces general ASR-style errors 143

into u, it does not ensure sufficient error diversity 144

in keyword tokens. To construct a more effective 145

training dataset, we explicitly generate keyword- 146

focused ASR errors in Step 2 (Figure 1). In this 147

step, we highlight the keywords in u̇ using the 148

<hl> tag and instruct the LLM to inject errors 149

specifically within the highlighted spans. For the 150

DST task, we treat dialogue state values (v) as 151

keywords, although the definition of a keyword 152

may vary depending on the task. To facilitate this 153

process, we provide a few examples that illustrate 154

how values within <hl> tags are intended to be 155

modified during augmentation. Given these in- 156

structions and examples, the LLM generates an 157

1We used BM25(Robertson et al., 2009), a retrieval model
based on term frequency. While neural retrievers (e.g.,
DPR(Karpukhin et al., 2020)) could be applied, we opted
for a frequency-based method, as neural models tend to
capture semantic similarity.
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Idx Method Examples

1
Original Tuesday, going to bailey’s crossroads please.

+EPA Tuesday, going to baley’s crossroads, peas .

1
Original I’d like to find a vegetarian restaurant, if possible.

+EPA I’d hike to find a veggie tarian restroom , if possible.

3
Original I am going to auburn.

+EPA I am flowing to auburng .

4
Original Hi! Could you find me a train to loris on thursday?

+EPA Oh ! Could you find me a trai to lorri on thursdae ?

5
Original Ashby is my destination.

+EPA Ashy’s my desity .

Table 1: Examples of ASR errors from EPA.

augmented utterance ü that includes both gen-158

eral and keyword-specific ASR errors. Formally,159

we obtain üt as follows:160

üt = LLM(Inst2 ⊕ (g0,e0) · · · (gk ,ek )⊕ u̇t ). (2)161

The used prompts are provided in Appendix A.1.162

2.4 Examples of EPA163

Table 1 shows examples of ASR errors generated164

by EPA. We have highlighted utterance level over-165

all errors in yellow and keyword-specific errors166

in blue . For instance, in Row 1, the model intro-167

duces a keyword-level error (bailey’s → baley’s)168

as well as an additional phonetically plausible169

insertion (peas), simulating realistic ASR noise.170

Further examples can be found in Appendix A.4.171

3 Experiments172

3.1 Experimental Setup173

Dataset. The DSTC11 dataset (Soltau et al., 2022),174

an audio version of MultiWOZ 2.1 (Eric et al.,175

2019), comprises 8,000 dialogues for training,176

1,000 for validation, and 1,000 for testing. To177

enhance generalization, we conducted experi-178

ments across four distinct ASR environments,179

characterized by Word Error Rate (WER) and180

noise levels: (1) a low accuracy ASR model (WER181

> 0.03), (2) a café and traffic noised audio, (3) a182

paraphrased setting where users naturally para-183

phrased the transcriptions, and (4) a high accu-184

racy ASR model.185

Metrics. For overall performance evaluation, we186

used joint goal accuracy (JGA), which requires187

all slot-value pairs to match the gold label. We188

also reported named entity accuracy (N-acc), the189

average accuracy across named entity slots.190

Compared methods. We compared our method191

with two established approaches: text-based aug-192

mentations, AEDA (Karimi et al., 2021), EDA193

(Wei and Zou, 2019), and Back Translation (BT)194

(Sennrich et al., 2015), and audio-aware aug-195

mentation methods, using synthesized audio196

(TTS-ASR) and translation model structure (ASR- 197

translation). Lastly, we included Olisia (Jacqmin 198

et al., 2023), the top-ranked method in the 199

DSTC11 competition. 200

Models. For performing EPA, we used diverse 201

types of LLMs, including GPT-3.5(Ouyang et al., 202

2022), LLAMA2-7B(Touvron et al., 2023) and 203

OPT-6.7B(Zhang et al., 2022). For the DST task, we 204

fine-tuned a T5-base(Roberts et al., 2019) model. 205

Further details about the experimental settings 206

are provided in Appendix B. 207

3.2 Robustness Improvement through EPA 208

EPA improves robustness. The results in Ta- 209

ble 2 shows the effectiveness of EPA in robustness 210

to ASR errors. Remarkably, EPA outperformed 211

existing text-based and audio-based augmenta- 212

tion, showing substantial improvement in JGA 213

and named entity accuracy. It also surpassed the 214

previous best-performing model, Olisia, particu- 215

larly in challenging environments. 216

Effectiveness of keyword-specific error. In Ta- 217

ble 2, we present an ablation study to evaluate the 218

effectiveness of keyword-level augmentation. We 219

found that adding keyword-specific ASR errors 220

improved DST performance across all environ- 221

ments and was particularly helpful in enhancing 222

the robustness of named entity accuracy. Addi- 223

tional experiments, including generalization to 224

other backbones and tasks, as well as statistical 225

significance analysis, are provided in Appendix C. 226

3.3 Qualitative Assessment of EPA Method 227

Automatic evaluation. Although Table 2 con- 228

firms EPA’s effectiveness, it remains unclear 229

whether the LLM-generated augmentations truly 230

reflect diverse, keyword-focused ASR-style errors. 231

To this end, we perform the quality analysis based 232

on three metrics (Table 3): the unique word in- 233

crease rate, named entity change rate, and pro- 234

nunciation similarity with original sentence. The 235

results show that EPA achieves remarkable di- 236

versity in unique words (1.81×) and the highest 237

named entity change rate (95.47%), while main- 238

taining high pronunciation similarity (91.57%). 239

Notably, keyword-level augmentation plays a key 240

role in enhancing named entity variability, in- 241

creasing the change rate from 68.81% to 95.47%. 242

243

Human evaluation. To further verify the qual- 244

ity of our EPA method, we conducted a human 245
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Method
Features Low-acc ASR Noised Aud. Paraphrased High-acc ASR

Aud. Utt-aug Key-aug LLM JGA N-Acc JGA N-Acc JGA N-Acc JGA N-Acc
Baseline - - - - 29.88 45.76 29.70 46.77 28.92 48.79 34.87 52.07
AEDA (Karimi et al., 2021) - ✓ - - 29.90 46.46 29.74 47.48 29.12 48.86 34.94 52.32
EDA (Wei and Zou, 2019) - ✓ - - 29.22 47.65 28.70 49.51 28.08 49.99 33.68 53.78
BT (Sennrich et al., 2015) - ✓ - - 31.69 49.17 31.26 50.98 29.90 51.73 36.27 54.81
TTS-ASR ✓ ✓ - - 29.94 46.34 29.99 47.37 29.08 48.88 35.07 52.03
ASR-translation ✓ ✓ - - 30.40 47.65 30.14 48.45 29.54 50.38 35.25 53.66
EPA (Opt 6.7B) ✓ ✓ ✓ ✓ 31.82 50.73 32.03 51.92 29.57 52.49 37.05 55.78

w/o Keyword Aug ✓ ✓ - ✓ 31.43 49.63 31.51 50.56 30.41 52.02 36.34 54.57

EPA (LLAMA2-7B) ✓ ✓ ✓ ✓ 31.54 51.12 31.55 52.27 30.10 53.55 36.22 55.49
w/o Keyword Aug ✓ ✓ - ✓ 31.12 50.33 31.44 52.07 30.01 53.49 35.70 54.90

EPA (GPT3.5) ✓ ✓ ✓ ✓ 32.39 51.12 32.24 52.70 30.95 53.34 36.61 55.87
w/o Keyword Aug ✓ ✓ - ✓ 31.31 50.67 31.13 52.29 30.06 52.85 35.40 55.80

Olisia (Jacqmin et al., 2023) - - - - 30.17 46.25 30.43 48.07 29.13 49.21 36.1 52.58

Table 2: Comparison of various augmentation methods in enhancing the robustness of DST models across
different ASR environments. All results were averaged over three seeds for better consistency.

Method
Uniq.
Words

NE.chg
[ % ]

Pronoun
Sim.[%]

Baseline 1 - -
AEDA (Karimi et al., 2021) 1.00× 44.29 91.57
EDA (Wei and Zou, 2019) 0.86× 70.03 61.14
BT (Sennrich et al., 2015) 1.21× 73.46 77.17
TTS-ASR 1.01× 38.84 98.93
Translating 0.84× 39.59 94.07
EPA 1.81× 95.47 91.57

w/o Keyword Err. 1.57× 68.81 93.14

Table 3: Assessment of EPA dataset quality: Unique
word increased rate, Named entity changed rate
(NE.chg), and pronunciation similarity.

evaluation using 100 sentence pairs, each con-246

sisting of an original sentence and its augmented247

counterpart, with two human evaluators. Partici-248

pants rated how likely the change resembled an249

ASR error on a 4-point Likert scale, where 1 in-250

dicated "not like an ASR error" and 4 indicated251

"clearly an ASR error." The average rating was252

3.22 with moderate inter-rater agreement (Gwet’s253

AC2(Gwet, 2008) = 0.590), suggesting that most254

EPA-generated edits were perceived as realistic255

ASR errors. Details on the evaluation metric and256

human evaluation are provided in Appendix D.257

3.4 Error Analysis258

We additionally analyze the impact of keyword259

augmentation by examining how it influences260

specific error types in DST predictions. Table 4261

presents the percentage reduction in error rates262

compared to the baseline. The results demon-263

strate that EPA is effective in "Wrong" and "Ig-264

nore" error types, and keyword augmentation265

highly contributed to this improvement by de-266

creasing the error rate from 5.29% to 8.19%. In-267

terestingly, while keyword augmentation led to268

substantial reductions in "Wrong" errors, it also269

caused a slight increase in "Spurious" errors. This270

Method
Error Type

Wrong Ignore Spurious
Noised Audio

Baseline
▽0%
(6237)

▽0%
(3654)

▽0%
(2027)

EPA w/o Key-aug
▽5.29%

(5907)

▽3.72%
(3518)

▽6.31%
(1899)

EPA
▽8.19%

(5726)

▽7.25%
(3389)

▽1.33%
(2000)

Table 4: Ablation study with error analysis. Wrong
indicates the model predicts incorrect values, Ignore
refers to ignored mentioned slots, and Spurious de-
notes predicting values for unmentioned slots. Actual
error numbers are in parentheses.

may be because the model, after repeatedly see- 271

ing phonetic noise around slot values, becomes 272

overly sensitive and starts hallucinating unmen- 273

tioned slots. A potential mitigation is to introduce 274

an additional loss term for slot presence predic- 275

tion (Heck et al., 2020; Kim et al., 2019) , helping 276

the model better distinguish between mentioned 277

and unmentioned slots. 278

4 Conclusion 279

We propose a novel data augmentation method 280

tailored for DST tasks that ensures sufficient er- 281

ror patterns in both key phrases and overall text. 282

By leveraging LLMs for their controlled text gen- 283

eration capabilities, we strategically place errors 284

within key phrases. Our method demonstrates 285

substantially improved robustness in DST by gen- 286

erating diverse, plausible keyword errors. Error 287

case analysis reveals that keyword augmentation 288

significantly enhances robustness against ASR er- 289

rors. As the pioneering research in leveraging 290

LLMs for generating ASR errors, we hope this 291

work lays a strong foundation for future phonetic- 292

based augmentation research. 293

4



Limitations294

Through detailed error analysis, we identified295

a trade-off introduced by our keyword-focused296

phonetic augmentation strategy. While the aug-297

mentation helps the model become more robust298

to noisy slot expressions—leading to substantial299

reductions in "Wrong" errors—it also increases300

the model’s sensitivity to phonetic variations. As301

a result, we observed cases where the model hal-302

lucinates slot values that were not actually men-303

tioned, thereby increasing the number of "Spuri-304

ous" errors. This hallucination effect represents305

a key limitation of our method. We attribute it to306

the model’s repeated exposure to noisy keywords,307

which may cause it to overgeneralize phonetic308

cues as valid slot mentions. As a direction for309

future work, we plan to incorporate an auxiliary310

loss term for slot presence prediction (Heck et al.,311

2020; Kim et al., 2019) to help the model better dis-312

tinguish between mentioned and unmentioned313

slots and mitigate this side effect.314

Ethical Considerations315

Our phonetic augmentation method, while ef-316

fective for simulating ASR-style errors, may raise317

several ethical concerns. One such concern is318

the potential for accent bias, wherein phonetic319

transformations may disproportionately reflect320

majority or standard pronunciations, thereby321

marginalizing regional or minority accents. An-322

other concern is the inadvertent corruption of323

proper names, particularly those that are less324

common or culturally specific, which could lead325

to misrepresentation or reduced inclusivity. We326

acknowledge these risks and emphasize that our327

method relies on LLMs trained on diverse and328

large-scale corpora. As such, the phonetic errors329

generated are likely to reflect dominant patterns330

present in mainstream ASR systems, rather than331

rare or region-specific variations. Nonetheless,332

we recognize the importance of fairness and in-333

clusivity in language technologies and believe334

that future work should explore augmentation335

strategies that are more sensitive to accent and336

cultural variability.337
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A Details of the EPA Method510

A.1 Prompt Used for EPA511

The prompts used in Step 1 and Step 2 are pro-512

vided below.513

Step 1 Prompt

Generate ASR error augmented text with similar pro-
nunciation but different words based on the given
gold text examples.
Apply character and word substitutions, additions,
or deletions while maintaining the overall pronun-
ciation and context.
Error rate should be high
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Example 1
Original: they have a single naupliar eye
ASR-errored: they have a single nor pure eye

Example 2
Original: i must have saint louis then huzza
ASR-errored: i must have st louis then hazard

Example 3
Original: i wonder uncle did not have her come
ASR-errored: i wonder uncle did not have a problem
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Now, following the above examples, generate an
ASR-errored version of the following sentence:
Original: [Target utterance]

ASR-errored:
514

Step 2 Prompt

Change the key words in <hl> tag, to having a ASR
error. ASR error has similar pronounciation with
the correct word, but different charater.
Here is some example.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Example 1
Original: I want to buy a book about <hl>luwombo
best</hl> restaurant.
Keywords : luwombo best
Result: I want to buy a book about luwambo vest
restaurant.

Example 2
Original: hi, i’m looking for a bus that is depart
from <hl>eliot<hl/> and arriving to <hl>holiday inn
williamsport<hl/>?
Keywords : eliot, holiday inn williamsport
Result: hi, i’m looking for a bus that is depart from
Ellyot and arriving to holliday inn william’s port

Example 3
Original: the <hl>chabuton ramen<hl/> is a
restaurant on the east.
Keywords : chabuton ramen
Result: the shabuton raymond is a restaurant on
the east.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Now, following the above examples, generate an
ASR-errored version of the following sentence:
Original: [Target utterance with <hl> tag]

ASR-errored:
515

A.2 Detailed Keyword Highlighting Strategy 516

for EPA 517

Example of adding <hl> tag

Original Hi, I need to go to Green Day hotel, then book a
table at the Grill House.

Dialogue
State

hotel-name: Green Day, restaurant-name:Grill
House

With <hl>
tags

Hi, I need to go to <hl>Green Day</hl> hotel,
then book a table at the <hl>Grill House</hl>.

Table 5: Example of keyword highlighting using <hl>
tags based on dialogue state annotations.

To explicitly introduce keyword-specific ASR 518

errors, we first identify dialogue state values from 519

the training corpus and match them against the 520

user utterance (u̇). Matched values are then auto- 521

matically wrapped with <hl> tags based on slot 522

annotations (e.g., DST slot labels or NER tags), as 523

shown in Table 5. These highlighted utterances 524

are passed to the LLM, which is instructed to per- 525

turb the text within the <hl> tags while preserv- 526

ing the rest. This keyword highlighting strategy is 527

task-agnostic and can be easily applied to other 528

keyword-sensitive tasks such as Named Entity 529

Recognition (NER) or Spoken Language Under- 530

standing (SLU), where certain slot values or enti- 531

ties are critical for downstream prediction. 532

A.3 Retrieved In-Context Example 533

In Section 2.2, we retrieved in-context examples 534

based on phoneme-level similarity. Table 6, we 535

present several representative examples to illus- 536

trate this retrieval process, showing how phonet- 537

ically similar phrases (highlighted in color) are 538

matched between the target and retrieved utter- 539

ances. This demonstrates that the retrieval mech- 540

anism effectively captures pronunciation-level 541

patterns relevant to ASR-style errors. 542

A.4 Additional Examples of ASR-style Errors 543

Table 7 presents additional examples of ASR-style 544

errors generated by our EPA method, including 545

both general and keyword-specific transforma- 546

tions. 547

B Experimental Setup 548

B.1 Details of the ASR Environment 549

• Low-acc ASR environment: Whisper-base 550

model (74M)(Radford et al., 2022) is used 551

for transcription. WER on LibriSpeech.test- 552

clean is 0.05. 553

7



Example 1

Target can you tell me the address to the police station in point pleasant?
Retrieved 1 frayser station was not the depot on the point

+ ASR freya station was not the deep watch on the point
Retrieved 2 can you get me the maldeamores saga

+ ASR can you get me the melamorphos
Retrieved 3 cannot you tell her whom i am eh joseph

+ ASR cannot you tell her whom i am

Example 2

Target no, i just need to make sure it’s cheap. oh, and i need parking.
Retrieved 1 i need fifty ten foot long segments of wire

+ ASR i need fifty ten foot long signals of my life
Retrieved 2 a drive with a different encoding mechanism would need different patterns

+ ASR and drive was a different building recognition would need different patterns
Retrieved 3 to reach to calcutta you need less time to reach dhaka

+ ASR to reach tukaukara you need last time to reach daka

Example 3

Target i’m open to any kind of food. i’m looking for something in the centre and on the expensive side.
Retrieved 1 kokai means open to the public or laid open

+ ASR cook eye means open to the public all laid open
Retrieved 2 the town of beauharnois was the major centre

+ ASR the town of bo hanwa was the major center
Retrieved 3 the gate is open at eleven

+ ASR the gate is open at 11

Table 6: In-context examples retrieved based on phoneme-level similarity. For each target utterance (top row),
we retrieve three (g , e) example pairs from the database using phonetic similarity between the target and g .
Colored segments highlight phonetically similar phrases between the target and retrieved examples.

Original Augmented
- no, i just need to make sure it’s cheap. oh, and i need parking - no, i just need to make sure it’s sheep. oh, and i need parking.
- i am departing from marion - - i am departing from maryland
- no, i don’t need anything else right now. thank you for your
assistance. good bye.

- no, i don’t need anyone else right now. thank you for your
persistence. good buy.

- i would like to go to sandy please. - i would like to go to cindy please.
- i would like to keep it in the moderate range, please. - i would like to keep it in the mod rain, please
- could i get the address for it? i would also like an expensive
place to eat around it.

- could i get the actress for it? i would also like an extensive
place to eat around it.

- i need to take a train out of garrett, i will be leaving town on
wednesday

- i need to make a plane out of garrett, i will be weaving town
on wednesday.

- do you have any indian restaurants in the south in a different
price range?

- do you have any indonesian restaurants in the south in a
different prize range

- nope, same people. - nope, same pupil.
- i’m looking for a college type attraction - i’m looking for a knowledge-type action.
- yes, please book me a room for friday - yes, please cook me a broom for friday
- yes, could you please email or fax me the fare amount, as well
as the reference number?

- yes, could you please email or text me the fair amount, as
well as thereference code?

- ois el shaddai a guest house or hotel? iz let shadai a gest house or motel?
- great! i also need a train from mount pleasant to sabattus,
please.

- great! i also need a strain from mount pleasant to suspicious,
please

- yes, can you help me find a train that can take me from
lovelock to abbot?

- yes, can you help me find a plane that can take me from love
lock to rabbit?

Table 7: Examples of augmented utterances generated by injecting phoneme-level ASR-style errors. For each
original utterance (left), the corresponding augmented version (right) includes substitutions that mimic realistic
ASR recognition mistakes. Blue-colored phrases indicate changes in keywords that are used as slot values in DST,
while orange-colored phrases represent overall ASR-style errors.

• Noisy audio environment: Incorporated au-554

thentic cafe and traffic noise from https:555

//freesound.org/ with a 10 to 20 Signal-to-556

Noise Ratio (SNR) and transcribed it using557

the Whisper large model.558

• Paraphrased environment: When recording559

the audio, the text was paraphrased to re- 560

semble more natural, real-life spoken lan- 561

guage(Soltau et al., 2022). 562

• High-acc ASR environment: Whisper-large 563

model (1550M) is used for transcription. 564

WER on LibriSpeech.test-clean is 0.027. 565
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B.2 Comparison Methods566

• AEDA (Karimi et al., 2021): We randomly in-567

serted punctuation marks, effectively main-568

taining the original word order.569

• EDA (Wei and Zou, 2019): We augmented570

data by applying edit-based technique571

that implements four rule-based modifica-572

tions—synonym replacement, random in-573

sertion, swapping, and deletion.574

• Back Translation (Sennrich et al., 2015): We575

translated original texts to error texts and576

then back to the original texts for generat-577

ing syntactic variations during the process.578

We use English to German 2 and German to579

English3 models as translator.580

• TTS-ASR : We used Tacotron2 (Shen et al.,581

2018) for the TTS model to synthesize the582

audio and use Whisper-base (Radford et al.,583

2022) as an ASR model to simulate the ASR584

errors.585

• ASR translation: We employed a sequence-586

to-sequence structure to translate clean text587

into ASR-errored text. Our training set com-588

prised 300 hours of paired clean and ASR-589

errored text. We fine-tuned the model based590

on the T5-base architecture (Roberts et al.,591

2019), using the loss function defined in592

equation 3. The loss function is as follows:593

L =−
I∑

i=1
logP (ei |gi ). (3)594

B.3 Training Details595

In training models, we used T5-base (Roberts596

et al., 2019) as the backbone model and in-597

structed the model to generate the Bt by given598

D t in sequence to sequence manner, as in (Su599

et al., 2021) and the loss function is600

L =−
T∑

t=1
logP (Bt |Inst,D t ). (4)601

We set the learning rate as 4e-5 and used the602

AdamW (Loshchilov and Hutter, 2017) optimizer.603

One GeForce RTX 3090 is used for training and604

the batch size is 16. Trained until reaching the605

max patient, which is 3.606

2facebook/wmt19-en-de
3facebook/wmt19-de-en

Method
Low-acc ASR Noised Aud. Paraphrased High-acc ASR
JGA N-acc JGA N-acc JGA N-acc JGA N-acc

Baseline – – – – – – – –
AEDA ns ns ns ns ns ns ns ns
EDA * * ** ** ns ** ** **
BT ** ** ** ** * ** ** *
TTS-ASR ns ns ns ns ns ns ns ns
ASR trans. ns * ns ns ns * * *
EPA (GPT-3.5) *** ** *** *** ** ** * **

Table 8: Statistical significance results compared to
the Baseline using paired t-tests across three random
seeds. Stars indicate significance levels: * for p < 0.05,
** for p < 0.01, *** for p < 0.001, and ns for non-
significant differences.

C Further Experiments 607

C.1 Statistical Significance Analysis 608

To assess the reliability of our results, we con- 609

ducted paired t-tests between each method and 610

the Baseline to determine whether the observed 611

performance improvements are statistically sig- 612

nificant. We report 95% confidence intervals to 613

reflect performance variability. Statistical signif- 614

icance is denoted using asterisks: ∗ for p < 0.05, 615

∗∗ for p < 0.01, and ∗∗∗ for p < 0.001. 616

As shown in Table 8, EPA (GPT-3.5) achieves 617

statistically significant gains in nearly all evalu- 618

ation settings, particularly under low-accuracy 619

and noised ASR conditions. These results confirm 620

that the improvements brought by our method 621

are both consistent and statistically reliable. 622

C.2 Baseline Performance Comparison with 623

Clean Text 624

For comparison, we report the baseline perfor- 625

mance on an error-free, clean test dataset. Please 626

note that DSTC11 (Soltau et al., 2022) does not 627

provide a text script for the test dataset, so we are 628

manually cleaning 50 dialogues to ensure they 629

are error-free. In the experiment, the baseline 630

model achieved a JGA score of 45.2 % and an N- 631

ACC score of 86.5 % in an ASR error-free environ- 632

ment. Compared to the JGA, which is 34.8 %, and 633

N-ACC, which is 52.07 %, in the ASR-errored en- 634

vironment (High-acc ASR model environment), 635

this discrepancy highlights the significant impact 636

of ASR errors on performance degradation. 637

C.3 Experiments with a Different Baseline 638

In the main experiments, we use T5-base as the 639

backbone model. To assess the generalizability 640

of our approach, we additionally conduct experi- 641

ments using a GPT-2 (Radford et al., 2019) model, 642

as shown in Table 9. The results show a consistent 643
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Method
Low-acc ASR Noised Aud. Paraphrased
JGA N-acc JGA N-acc JGA N-acc

Baseline 29.9 45.82 27.25 41.81 25.81 44.51
+ EPA 30.63 48.54 27.5 46.52 27.65 47.96

Table 9: Experiment with GPT-2 model as baseline.

Method Low-acc ASR Noised Audio High-acc ASR
Baseline 56.29 60.50 60.02
+ OPT 6.7B 59.64 62.84 62.47
+ LLaMA 7B 58.29 60.53 60.46
+ GPT-3.5 (125B) 59.39 62.62 62.16

Table 10: NER results on the ASAPP/SLUE dataset
under different ASR conditions. We reported the F1
score.

trend with those of T5-base, demonstrating that644

our method is effective across different backbone645

architectures.646

C.4 Generalizability to Other Tasks647

To evaluate the generalizability of our approach648

beyond the DST domain, we extended our ex-649

periments to two additional spoken language650

understanding tasks: Named Entity Recogni-651

tion (NER) and Spoken Language Understanding652

(SLU). We applied our EPA methodology under653

three ASR conditions—low-accuracy ASR, noised654

audio, and high-accuracy ASR—using the same655

experimental setup as in the DSTC11 evaluation.656

We used asapp/slue dataset for NER task(Shon657

et al., 2022), and SLURP dataset (Bastianelli et al.,658

2020) for SLU task.659

The results, shown in Table 10 and Table 11,660

demonstrate that our method consistently im-661

proves performance across all ASR conditions662

for both NER and SLU tasks. Notably, the gains663

are especially prominent under low-accuracy and664

noisy conditions, confirming that our approach665

is broadly applicable to other tasks.666

C.5 Additional Fine-grained Metrics667

To supplement the main results focusing on JGA668

and N-Acc, we report additional fine-grained669

metrics—Precision, Recall, F1, and Slot Accu-670

racy—under two ASR corruption settings: Low-671

accuracy ASR and Noised ASR. These metrics pro-672

vide a more comprehensive view of model behav-673

ior in diverse error conditions in table 12 and 13.674

C.6 Results with Different Random Seeds675

Table 14 reports the results of our main experi-676

ments (Table 2) repeated with three different ran-677

dom seeds, demonstrating the consistency of the678

Method Low-acc ASR Noised Audio High-acc ASR
Baseline 55.25 63.23 64.32
+ OPT 6.7B 56.97 64.94 66.10
+ LLaMA 7B 57.24 64.26 65.56
+ GPT-3.5 (125B) 58.78 66.16 67.49

Table 11: SLU results on the SLURP dataset under
different ASR conditions. We reported F1 score.

Method Precision Recall F1 Slot Accuracy
Baseline 50.5 50.1 50.3 92.8
+ TTS-ASR 49.5 49.6 49.5 93.4
+ ASR-Translation 51.8 51.7 51.7 93.1
+ EPA (GPT3.5) 55.2 54.8 55.0 93.7

Table 12: Fine-grained DST metrics under Low-
accuracy ASR setting.

observed trends. 679

D Details of Quality Evaluation 680

D.1 About Metric 681

As described in Section 3.3, we use a phonetic 682

similarity metric to evaluate pronunciation-level 683

consistency between the original and augmented 684

text. Specifically, we compute the normalized 685

phoneme edit distance, which quantifies the min- 686

imal number of phoneme-level operations re- 687

quired to transform one utterance into another. A 688

higher score indicates greater phonetic similarity. 689

We used the eng-to-ipa library4 for phoneme 690

conversion in our implementation, as shown in 691

the code snippet below. 692
693

def phonetic_similarity(original_text , 694
augmented_text): 695

696
original_ipa = to_phoneme(original_text) 697
augmented_ipa = to_phoneme(augmented_text) 698

699
edit_distance = nltk.edit_distance( 700

original_ipa , augmented_ipa) 701
702

# Normalize the edit distance 703
max_length = max(len(original_ipa), len( 704

augmented_ipa)) 705
normalized_distance = float(edit_distance) / 706

float(max_length) 707
708

# Convert to similarity score 709
similarity_score = 1 - normalized_distance 710
return similarity_score 711712

D.2 Human Evaluation Details 713

To assess the plausibility of the generated ASR- 714

style errors, we conducted a human evaluation 715

involving two graduate students. Each partici- 716

pant was asked to rate whether a given sentence 717

transformation could plausibly be attributed to 718

an ASR error, using a 4-point Likert scale: 719

4https://pypi.org/project/eng-to-ipa/
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Method Precision Recall F1 Slot Accuracy
Baseline 52.0 51.3 51.6 92.5
+ TTS-ASR 53.7 53.1 53.4 92.8
+ ASR-Translation 53.8 53.0 53.4 92.5
+ EPA (GPT3.5) 56.1 55.3 55.7 93.2

Table 13: Fine-grained DST metrics under Noised ASR
setting.

Method
Low-acc ASR Noised Aud. Paraphrased High-acc ASR
JGA N-acc JGA N-acc JGA N-acc JGA N-acc

Baseline 30.05 46.48 29.80 47.49 29.08 48.85 34.73 52.31
AEDA 29.99 46.53 29.80 47.60 28.95 49.02 34.94 52.40
EDA 29.16 47.67 28.93 49.50 28.12 50.10 33.74 53.66
BT 31.54 49.21 31.43 51.25 29.90 51.60 36.25 54.85
TTS-ASR 30.09 46.16 30.32 47.74 29.26 49.31 35.28 51.95
ASR trans. 29.98 47.70 29.95 48.49 29.72 50.43 34.82 53.35
EPA (GPT3.5) 32.56 51.62 32.27 53.48 31.10 53.91 36.65 56.14

Baseline 29.82 45.63 29.75 46.20 28.55 48.75 34.83 51.44
AEDA 29.77 46.29 29.69 47.40 29.26 48.93 34.93 52.26
EDA 29.27 47.48 28.57 49.41 28.20 49.99 33.59 53.68
BT 31.66 49.16 31.05 50.81 29.88 51.75 36.19 54.73
TTS-ASR 29.75 45.99 29.80 46.87 29.10 48.12 34.97 51.49
ASR trans. 30.86 47.47 30.52 48.53 29.63 50.11 35.73 53.59
EPA (GPT3.5) 32.33 50.74 32.41 52.28 31.02 53.15 36.75 55.82

Baseline 29.77 45.18 29.56 46.61 29.12 48.76 35.05 52.47
AEDA 29.94 46.55 29.72 47.45 29.16 48.62 34.94 52.29
EDA 29.22 47.79 28.59 49.61 27.92 49.88 33.71 53.99
BT 31.86 49.13 31.31 50.87 29.91 51.85 36.38 54.85
TTS-ASR 29.98 46.86 29.84 47.51 28.88 49.20 34.97 52.66
ASR trans. 30.37 47.78 29.94 48.32 29.26 50.60 35.20 54.05
EPA (GPT3.5) 32.27 51.01 32.04 52.33 30.72 52.96 36.42 55.66

Table 14: Experiment result with different seeds.

• 1 – Not at all: The change is unlikely to be720

due to an ASR error. It appears to stem from721

other factors such as meaning alteration or722

stylistic variation.723

• 2 – Unlikely: The transformation is probably724

not caused by an ASR error.725

• 3 – Somewhat likely: The transformation726

may plausibly be caused by an ASR error.727

• 4 – Very likely: The transformation clearly728

appears to result from an ASR error.729

Each sentence pair (original and transformed)730

was rated independently by both annotators.731

Inter-rater agreement and average scores are re-732

ported in Section 3.3. The distribution of Likert733

scores for each annotator is as follows : Annotator734

1 assigned 5% of scores as 1, 7% as 2, 17% as 3,735

and 71% as 4. Annotator 2 assigned 3% of scores736

as 1, 24% as 2, 53% as 3, and 20% as 4.737

D.3 Comparison with Authentic ASR Errors738

In this analysis, we explored the similarity be-739

tween simulated data and authentic ASR errors740

from the perspective of edit distance. Specifi-741

cally, we examined the distribution of edit dis-742

tances in simulated data and in errors produced743

Whisper(Large)

Whisper(Base)

TTS-ASR(Base)

ASR-trans.(T5- Base)

EPA (Llama7B)

EPA  (OPT 6.7B)

EPA  (GPT 3.5)

Whisper(Large)

Whisper(Base)

TTS-ASR(Base)

ASR-trans.(T5- Base)

EPA (Llama 7B)

EPA  (OPT 6.7B)

EPA  (GPT 3.5)

Character Edit Distance

Phoneme Edit Distance

Figure 2: Distribution of edit distance. The x-axis rep-
resents edit distances, and the y-axis represents the
corresponding ratio.

Method
Text Dist.(↓) Phoneme Dist.(↓)

ASR-L ASR-B ASR-L ASR-B
TTS-ASR (Whisper-B) 0.030 0.048 0.056 0.061
TTS-ASR (Whisper-S) 0.030 0.048 0.070 0.077
ASR trans. (T5-small) 0.094 0.130 0.221 0.241
ASR trans. (T5-base) 0.025 0.039 0.104 0.116
EPA (Llama2 7B) 0.218 0.123 0.204 0.256
EPA (OPT 6.7B) 0.115 0.106 0.071 0.091
EPA (GPT 3.5) 0.033 0.010 0.009 0.007

Table 15: Distribution distance (JSD) between
Whisper Large/Base model and simulation dataset.
(ASR-L=Whisper Large, ASR-B=Whisper Base).

by Whisper large/base models, considering both 744

character- and phoneme-level representations 745

(Figure 2). To quantify the distributional differ- 746

ences, we computed the Jensen-Shannon Diver- 747

gence (JSD), a symmetric variant of the Kullback- 748

Leibler divergence (Table 15). 749

Our experiments yielded several interesting 750

findings. Notably, LLM-simulated errors from 751

GPT-3.5 and OPT closely matched the distribu- 752

tion of real ASR errors, especially at the phoneme 753

level. This indicates that such LLMs are capable 754

of capturing pronunciation-level variations and 755

generating plausible ASR-style errors. In contrast, 756

errors generated by LLAMA2 and OPT models 757

exhibited higher divergence from real ASR pat- 758

terns and showed increased variability, likely due 759

to their tendency to produce more diverse or less 760

phonetically grounded outputs. 761
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