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A Further Discussion of Related Work

In this section, we further discuss the most closely related prior works, which also consider a Bayesian
active learning approach for causal discovery. These methods are summarised and contrasted with
ABCI in Tab. 1. Similar to our approach, they also all assume acyclicity and causal sufficiency.

Table 1: Comparison of ABCI with closely related active Bayesian causal discovery methods in terms
of the learning objective, that is, the causal target query, and the considered model class.

Work Target Query Model Class

Tong and Koller [79],
Murphy [50]

causal graph G Conjugate Dirichlet-Multinomial

Cho et al. [11] causal graph G Conjugate linear Gaussian-inverse-Gamma

Agrawal et al. [1] some function ϕ(G) of the
causal graph G

Linear Gaussian

Tigas et al. [78] causal graph G and param-
eters of fi

Additive Gaussian noise with parametric
neural network functions fi

GP-DiBS-ABCI
(ours)

some function q(M) of the
full SCMM

Additive Gaussian noise with nonpara-
metric functions fi modeled by GPs

The early experimental design work by Tong and Koller [79] and Murphy [50] already investigated
active causal discovery from a Bayesian perspective. They focused on the case in which all variables
are multinomial to allow for tractable, closed-form posterior inference with a conjugate Dirichlet prior.

The setting with continuous variables was not explored from an active Bayesian causal discovery
perspective until the work of Cho et al. [11], who consider the linear Gaussian case in the context
of biological networks. Cho et al. [11] similarly use an inverse-Gamma prior to enable closed-form
posterior inference. In these approaches, experiment selection targets the full causal graph. Agrawal
et al. [1] extend the work of Cho et al. [11] by enabling the active learning of some function of the
causal graph and handling interventional budget constraints.

Similarly to our approach, the concurrent work by Tigas et al. [78] models nonlinear causal relation-
ships with additive Gaussian noise in the active learning setting. However, they are limited to targeting
the full SCM for experiment design, which corresponds to our qCML objective. In addition, their
approach does not quantify the uncertainty in the functions conditional on a causal graph sampled
from the graph posterior. In contrast, our nonparametric approach both directly models the epistemic
uncertainty in the functions and mitigates the risk of model misspecification by jointly learning the
kernel hyperparameters. Moreover, our method is Bayesian over the unknown noise variances, which
are usually unknown in practice. It is unclear whether Tigas et al. [78] hand-specify a constant noise
variance a priori, or whether they infer it jointly with the function parameters [78, cf. § 5.4.1].

Other related work by Shanmugam et al. [70] considers the problem of finding the minimal number
of perfectly informative (w.r.t. conditional independences induced by the true underlying graph)
multi-target interventions to fully identify the true causal graph. In contrast, we assume that only
finitely many data points are available per experiment/intervention. Thus, we try to perform at each
time step (possibly repeating) interventions to maximally reduce our uncertainty in the target causal
query (which may be the causal graph). As another point of difference, we also optimise for the
actual intervention value, whereas Shanmugam et al. [70] only optimise for the intervention targets.
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B Background on Gaussian processes

We use Gaussian Processes (GPs) to model mechanisms of non-root nodes Xi, i.e., we place a
GP prior on p(fi |G). In the following, we give some background on GPs and how to compute
probabilistic quantities thereof relevant to this work. For further information on GPs we refer the
reader to Williams and Rasmussen [82].

A GP(mi(·), kGi (·, ·)) is a collection of random variables, any finite number of which have a joint
Gaussian distribution, and is fully determined by its mean function mi(·) and covariance function (or
kernel) kGi (·, ·), where

m(x) = E[f(x)], and k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))]. (B.1)

In our experiments, we choose the mean function mi(x) ≡ 0 to be zero and a rational quadratic
kernel

kRQ(x,x
′) = κoi ·

(
1 +

1

2α
(x− x′)⊤ κli (x− x′)

)−α
(B.2)

as our covariance function. Here, α denotes a weighting parameter, κoi denotes an output scale
parameter and κli denotes a length scale parameter. For the weighting parameter, we use a default
value of α = log 2 ≈ 0.693. For κli and κoi we choose priors according to Appx. D.4. In Section 4.1
we summarise both parameters as κi = (κoi , κ

l
i).

In this work, we consider Gaussian additive noise models (see Eq. (4.1)). Hence, for a given non-root
node Xi in some graph G, we have

p(Xi |paGi , fi, σ
2
i , G) = N (Xi | fi(paGi ), σ

2
i ) (B.3)

where paGi denotes the parents of Xi in G. For some batch of collected data x = {xn}Nn=1, let
xi = (x1i , . . . x

N
i )T , paGi = (paG,1i , . . . ,paG,Ni ), and K the Gram matrix with entries Km,n =

kRQ(paG,mi ,paG,ni ). Then, we can compute the prior marginal log-likelihood, which is needed to
compute p(x1:t |G), in closed form as

log p(xi |paGi , σ
2
i , G) = logEfi |G

[
p(xi |paGi , fi, σ

2
i , G)

]
(B.4)

= −1

2
xTi (K + σ2I)−1xi −

1

2
log |K + σ2I| − N

2
log 2π. (B.5)

To predict the function values fi(p̃aGi ) at unseen test locations p̃aGi = (p̃aG,1i , . . . , p̃aG,Ñi )

given previously observed data x, let K† be the (Ñ × N) covariance matrix with entries
K†
m,n = kRQ(p̃aG,mi ,paG,ni ) and K̃ be the (Ñ × Ñ) covariance matrix with entries K̃m,n =

kRQ(p̃aG,mi , p̃aG,ni ). Then, the predictive posterior is multivariate Gaussian

p(fi(p̃aGi ) | p̃aGi ,x, σ
2
i , G) = N (µf ,Σf ) (B.6)

with mean
µf =K†[K + σ2

i I
]−1

xi (B.7)
and covariance

Σf = K̃ −K†[K + σ2
i I

]−1
K†. (B.8)

Finally, the marginal posterior over observations X̃i, which is needed to sample and evaluate candidate
experiments in the experimental design process, is given by

p(X̃i | p̃aGi ,x, σ
2
i , G) = N (µXi

,ΣXi
) (B.9)

with mean
µXi

= µf (B.10)
and covariance

ΣXi
= Σf + σ2

i I. (B.11)
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C Derivation of the Information Gain Utility Functions

In the following, we provide the derivations for the expressions presented in Section 4.2.

C.1 Information Gain for General Queries

We show that
argmax

at

I(Y ;Xt |x1:t−1) = argmax
at

U(at) (C.1)

for U(at) given in Eq. (4.11).

Proof. We write the mutual information in the following form

I(Y ;Xt |x1:t−1) = H(Y |x1:t−1) +H(Xt |x1:t−1)−H(Y, Xt |x1:t−1). (C.2)

In the above, we expand the joint entropy of experiment outcome and query as

H(Y, Xt |x1:t−1) = −EY,Xt |x1:t−1

[
log p(Y, Xt |x1:t−1)

]
(C.3)

= −EM|x1:t−1

[
EY,Xt |M

[
log p(Y, Xt |x1:t−1)

]]
(C.4)

= −EM|x1:t−1

[
EY,Xt |M

[
logEM′ |x1:t−1

[
p(Y |M′) · p(Xt |M′)

]]]
(C.5)

for any query such that query and experiment outcome are conditionally independent given an SCM.
This holds true, e.g., whenever Y is a deterministic function ofM such as Y = qCD(M) = G.

The marginal entropy of the experiment outcome given previously observed data is

H(Xt |x1:t−1) = −EXt |x1:t−1

[
log p(Xt |x1:t−1)

]
(C.6)

= −EM|x1:t−1

[
EXt |M

[
log p(Xt |x1:t−1)

]]
(C.7)

= −EM|x1:t−1

[
EXt |M

[
logEM′ |x1:t−1

[
p(Xt |M′)

]]]
(C.8)

= −EM|x1:t−1

[
EXt |M

[
logEf ′,σ2′ ,G′ |x1:t−1

[
p(Xt |f ′,σ2′ , G′)

]]]
(C.9)

= −EM|x1:t−1

[
EXt |M

[
logEG′ |x1:t−1

[
p(Xt |G′,x1:t−1)

]]]
(C.10)

= −Ef ,σ2,G |x1:t−1

[
EXt | f ,σ2,G

[
logEG′ |x1:t−1

[
p(Xt |G′,x1:t−1)

]]]
(C.11)

= −EG |x1:t−1

[
EXt |G,x1:t−1

[
logEG′ |x1:t−1

[
p(Xt |G′,x1:t−1)

]]]
(C.12)

Finally, since the query posterior entropyH(Y |x1:t−1) does not depend on the candidate experiment
at, we obtain

argmax
at

I(Y ;Xt |x1:t−1)

= argmax
at

H(Y |x1:t−1) +H(Xt |x1:t−1)−H(Y, Xt |x1:t−1)

= argmax
at

H(Xt |x1:t−1)−H(Y, Xt |x1:t−1) (C.13)

which, together with Eqs. (C.5) and (C.8), completes the proof.

C.2 Derivation of the Causal Discovery Utility Function

To derive UCD(a), we note that Y = qCD(M) = G, and hence the joint entropy of experiment
outcome and query in Eq. (C.3) becomes

H(G, Xt |x1:t−1) = −EG,Xt |x1:t−1

[
log p(G, Xt |x1:t−1)

]
(C.14)

= −EG,Xt |x1:t−1

[
log p(Xt |G, x1:t−1) + log p(G |x1:t−1)

]
(C.15)

= −EG,Xt |x1:t−1

[
log p(Xt |G, x1:t−1)

]
+H(G |x1:t−1) (C.16)

= −EG |x1:t−1

[
EXt |G,x1:t−1

[
log p(Xt |G, x1:t−1)

]]
+H(G |x1:t−1).

(C.17)

20



Substituting this into Eq. (C.2) yields

I(G;Xt |x1:t−1) (C.18)

= H(Xt |x1:t−1) + EG |x1:t−1

[
EXt |G,x1:t−1

[
log p(Xt |G, x1:t−1)

]]
. (C.19)

By Eq. (C.12), we have

= EG |x1:t−1

[
EXt |G,x1:t−1

[
log p(Xt |G, x1:t−1)− logEG′ |x1:t−1

[
p(Xt |G′,x1:t−1)

]]]
(C.20)

which recovers the utility function UCD(a) from Eq. (4.13).

C.3 Derivation of the Causal Model Learning Utility Function

To derive UCML(a) given Y = qCML(M) =M, the joint entropy of experiment outcome and query
in Eq. (C.3) are given by

H(M, Xt |x1:t−1) = −EM,Xt |x1:t−1

[
log p(M, Xt |x1:t−1)

]
(C.21)

= −EM,Xt |x1:t−1

[
log p(Xt |M,x1:t−1) + log p(M|x1:t−1)

]
(C.22)

= −EM,Xt |x1:t−1

[
log p(Xt |M)

]
+H(M|x1:t−1) (C.23)

= −EM|x1:t−1

[
EXt |M

[
log p(Xt |M)

]]
+H(M|x1:t−1). (C.24)

As previously, substituting this into Eq. (C.2) yields

I(G;Xt |x1:t−1) = H(Xt |x1:t−1) + EM|x1:t−1

[
EXt |M

[
log p(Xt |M, )

]]
(C.25)

and by Eq. (C.10), we have

= EM|x1:t−1

[
EXt |M

[
log p(Xt |M)− logEG′ |x1:t−1

[
p(Xt |G′,x1:t−1)

]]]
(C.26)

which recovers the utility UCML(a) from Eq. (4.14).

For our concrete modeling choices we can further simplify this utility. Let AncMi and PaM
i denote

the ancestor and parent sets of node Xi inM. Then,

EM|x1:t−1

[
EXt |M

[
log p(Xt |M)

]]
(C.27)

= EM|x1:t−1

EXt |M

log ∏
i ̸∈It

pdo(at)(Xt
i |paMi ,M)

 (C.28)

= EM|x1:t−1

EXt |M

∑
i ̸∈It

log pdo(at)(Xt
i |paMi ,M)

 (C.29)

= EM|x1:t−1

∑
i ̸∈It

EXt |M

[
log pdo(at)(Xt

i |paMi ,M)
] (C.30)

= EM|x1:t−1

∑
i ̸∈It

EAncMi | do(at),M

[
EXt

i | paMi ,do(at),M

[
log pdo(at)(Xt

i |paM
i ,M)

]] .
(C.31)

Since our root nodes and GPs assume an additive Gaussian noise model, the innermost expectation
amounts to the negative entropy the Gaussian noise variable, i.e.,

EXt
i | paMi ,do(at),M

[
log pdo(at)(Xt

i |paMi ,M)
]
= −Nt

2
log(2πσ2

i e). (C.32)
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As we further assume a homoscedastic noise model for our GPs, Eq. (C.31) reduces to

EM|x1:t−1

∑
i ̸∈It

−Nt
2

log(2πσ2
i e)

 (C.33)

= −Ef ,σ2,G |x1:t−1

∑
i ̸∈It

Nt
2

log(2πσ2
i e)

 (C.34)

= −EG |x1:t−1

Eσ2 |G,x1:t−1

∑
i̸∈It

Nt
2

log(2πσ2
i e)

 (C.35)

= −EG |x1:t−1

∑
i ̸∈It

Eσ2
i |G,x1:t−1

[
Nt
2

log(2πσ2
i e)

] , (C.36)

which can be approximated by nested Monte Carlo estimation. For non-root nodes we approximate
the inner expectation with a single point estimate (cf. Section 4.1). For root nodes we can compute
the inner expectation in closed form as

Eσ2
i |G,x1:t−1

[
Nt
2

log(2πσ2
i e)

]
=
Nt
2

(
log(2πe)− ψ(αti) + log βti

)
(C.37)

where αti, β
t
i are the parameters of the inverse-gamma noise posterior σ2

i ∼ Γ−1(σ2
i |αti, βti )

(see Appx. D.3) and ψ(·) is the digamma function.

Proof (adapted from [74]). We need to show that

Eσ2

[
log(σ2)

]
= −ψ(α) + log β (C.38)

where the noise variance σ2 follows an inverse-gamma density

σ2 ∼ Γ−1(σ2 |α, β) = βα

Γ(α)
· (σ2)

−α−1 · e−
β

σ2 . (C.39)

By substituting y = log σ2 we get

y ∼ p(y |α, β) = βα

Γ(α)
· e−αy · e−βe

−y

. (C.40)

Now note that ∫ ∞

−∞
p(y |α, β)dy = 1 (C.41)

and hence

Γ(α)

βα
=

∫ ∞

−∞
e−αy · e−βe

−y

dy. (C.42)

By differentiating the latter integrand w.r.t. α we get

d

dα

(
e−αy · e−βe

−y
)
= (−y)e−αy · e−βe

−y

= (−y) · p(y |α, β) · Γ(α)
βα

. (C.43)
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Bringing the parts together we obtain

Eσ2

[
log(σ2)

]
= Ey [y] (C.44)

=

∫ ∞

−∞
y · p(y |α, β)dy (C.45)

Eq. (C.43)
= − βα

Γ(α)

∫ ∞

−∞

d

dα

(
e−αy · e−βe

−y
)
dy (C.46)

= − βα

Γ(α)

d

dα

(∫ ∞

−∞
e−αy · e−βe

−y

dy

)
(C.47)

Eq. (C.42)
= − βα

Γ(α)

d

dα

(
Γ(α)

βα

)
(C.48)

= − βα

Γ(α)

(
β−α · d

dα
Γ(α)− Γ(α) · β−α · log β

)
(C.49)

= − ψ(α) + log β, (C.50)

which completes the proof.

In summary, in our instance of GP-DIBS-ABCI we estimate the causal model learning utility as

UCML(at) = −EG |x1:t−1

[ ∑
i∈R(G)\It

Nt
2

(
log(2πe)− ψ(αti) + log βti

)
+

∑
i∈NR(G)\It

Eσ2
i |G,x1:t−1

[
Nt
2

log(2πσ2
i e)

]
+

EXt |G,x1:t−1

[
logEG′ |x1:t−1

[
p(Xt |G′,x1:t−1)

]]]
(C.51)

C.4 Derivation of the Causal Reasoning Utility Function

We derive the utility function UCR(a) in Eq. (4.12) for the query Y = X
do(Xi=ψ)
j with ψ ∼ p(ψ) a

distribution over intervention values. Starting with the joint entropy in Eq. (C.3) we marginalise over
graphs (instead of SCMs) to exploit that we can sample from and evaluate p(X |G,x1:t−1) in closed
form by using GPs:

−H(Y, Xt |x1:t−1)

= EY,Xt |x1:t−1

[
log p(Y,Xt |x1:t−1)

]
(C.52)

= EG |x1:t−1

[
EY,Xt |G,x1:t−1

[
logEG′ |x1:t−1

[
p(Y,Xt |G′,x1:t−1)

]]]
(C.53)

= EG |x1:t−1

[
EXt |G,x1:t−1

[
EY |Xt,G,x1:t−1

[
logEG′ |x1:t−1

[
p(Y |Xt, G′,x1:t−1) · p(Xt |G′,x1:t−1)

]]]]
(C.54)

To estimate EY |Xt,G,x1:t−1 [·] we first sample intervention values ψ ∼ p(ψ) and then sample from the
respective interventional densities pdo(Xi=ψ)(Xj |Xt, G,x1:t−1) induced by candidate SCMs with
graph G. Thus, the expectation becomes Eψ

[
Edo(Xi=ψ)
Xj |Xt,G,x1:t−1 [·]

]
. To evaluate p(Y |Xt, G′,x1:t−1)

we estimate pdo(Xi=ψ)(Xj |Xt, G′,x1:t−1) as described in Appx. D.1. The joint entropy therefore
becomes

−H(Y, Xt |x1:t−1) =EG |x1:t−1

[
EXt |G,x1:t−1

[
Eψ

[
Edo(Xi=ψ)
Xj |Xt,G,x1:t−1

[
(C.55)

logEG′ |x1:t−1

[
pdo(Xi=ψ)(Xj |Xt, G′,x1:t−1) · p(Xt |G′,x1:t−1)

]]]]]
By substituting Eqs. (C.13) and (D.1) into Eq. (C.12) we obtain the causal reasoning utility in
Eq. (4.12).
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D Approximate Inference and Experimental Details

In this section, we provide details about our approximate inference and estimation procedures,
including the estimation of the marginal interventional likelihoods in Section D.1 and prior choices in
Sections D.2 — D.4. We also provide details on DiBS for approximate graph posterior inference in
Section D.5, the estimation of the information gain utilities in Section D.6, and our use of Bayesian
Optimisation for experimental design in Section D.7.

D.1 Estimating Posterior Marginal Interventional Likelihoods

In the following, we show how we estimate (posterior) marginal interventional likelihoods
pdo(xj)(xi |x1:t). Let AncGi and PaGi denote the ancestor and parent sets of node Xi in G. Then, the
marginal interventional likelihood is given by

pdo(xj)(xi |x1:t)

= EM|x1:t

[
pdo(xj)(xi |M)

]
(D.1)

= Ef ,σ2,G |x1:t

[
pdo(xj)(xi |f ,σ2, G)

]
(D.2)

= Ef ,σ2,G |x1:t

[
EAncGi | do(xj),f ,σ2,G

[
pdo(xj)(xi | ancGi ,f ,σ

2, G)
]]
. (D.3)

Given that Xi is independent of it’s non-descendants given its parents, we obtain

= Ef ,σ2,G |x1:t

[
EAncGi | do(xj),f ,σ2,G

[
pdo(xj)(xi |paGi , fi, σ

2
i , G)

]]
(D.4)

= EG |x1:t

[
Ef ,σ2 |G,x1:t

[
EAncGi | do(xj),f ,σ2,G

[
pdo(xj)(xi |paGi , fi, σ

2
i , G)

]]]
. (D.5)

Given that p(f ,σ2 |G,x1:t) factorises and AncGi are independent of mechanisms and noise variances
f ,σ2 of the non-ancestors of Xi, we have

= EG |x1:t

[
EfAncG

i
,σ2

AncG
i

|G,x1:t

[
EAncGi | do(xj),fAncG

i
,σ2

AncG
i

,G

[
Efi,σ2

i |G,x1:t

[
pdo(xj)(xi |paGi , fi, σ

2
i , G)

] ]]]
. (D.6)

Finally, marginalising out the functions and noise variances, we obtain

= EG |x1:t

[
EfAncG

i
,σ2

AncG
i

|G,x1:t

[
EAncGi | do(xj),fAncG

i
,σ2

AncG
i

,G

[
pdo(xj)(xi |paGi , G)

]]]
(D.7)

= EG |x1:t

[
EAncGi | do(xj),G

[
pdo(xj)(xi |paGi , G)

]]
(D.8)

= EG |x1:t

[
EAncGi | do(xj),G

[
p(xi |paGi , G)

∣∣∣
Xj=xj

]]
. (D.9)

We use Monte Carlo estimation to approximate the outer expectation of this quantity according
to Eq. (4.10). To approximate the inner expectation by performing ancestral sampling from the
interventional density pdo(xj)(X |G), where we use 50 samples when estimating the UCR utility in
Equation Eq. (4.12) and 200 samples when estimating the metrics described in Appx. F.

D.2 Sampling Ground Truth Graphs

When generating ground truth SCMs for evaluation, we sample causal graphs according to two random
graph models. First, we sample scale-free graphs using the preferential attachment process presented
by Barabási and Albert [6]. We use the networkx.generators.barabasi_albert_graph imple-
mentation provided in the NetworkX [29] Python package and interpret the returned, undirected graph
as a DAG by only considering the upper-triangular part of its adjacency matrix. Before permuting the
node labels, we generate graphs with in-degree 2 for nodes {Xi}di=3 whereas X1 and X2 are always
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root nodes. In addition, we consider Erdös-Renyi random graphs [20], where edges are sampled
independently with probability p = 4

d−1 . After sampling edges, we choose a random ordering and
discard any edges that disobey this ordering to obtain a DAG. Our choice of p yields an expected
degree of 2. Unlike Lorch et al. [45], we do not provide our model with any kind of prior information
on the graph structure.

D.3 Normal-Inverse-Gamma Prior for Root Nodes

We use a conjugate normal-inverse-gamma (N-Γ−1) prior

p(fi, σ
2
i |G) = N-Γ−1(µi, λi, α

R
i , β

R
i ) (D.10)

as the joint prior over functions and noise parameters for root nodes in G (see Section 4 and Fig. 2).
In our experiments, we use µi = 0, λi = 0.1, αRi = 50 and βRi = 25. When generating ground
truth SCMs, we draw one sample for (f⋆i , σ

2,⋆
i ) from this prior for all i and leave it fixed thereafter.

Closed-form expressions for the (posterior) marginal likelihood can be found, e.g., in [51].

D.4 Gamma Priors for GP Hyperparameters of Non-Root Nodes

We model non-root node mechanisms with GPs (see Section 4.1), where each GP has a set of
hyperparameters (κi, σ2

i ) where κi = (κli, κ
o
i ) includes a length scale and output scale parameter,

respectively, and where σ2
i denotes the variance of the Gaussian noise variable Ui. In our experiments,

we use p(σ2
i |G) = Gamma(α = 50, β = 500), p(κoi |G) = Gamma(α = 100, β = 10) and

p(κli |G) = Gamma(α = 30 · |PaGi |, β = 30), where |PaGi | denotes the size of the parent set of Xi

in G.

D.5 DiBS for Approximate Posterior Graph Inference

DiBS [45] introduces a probabilistic latent space representation for DAGs to allow for efficient
posterior inference in continuous space. Specifically, given some latent particle z ∈ Rd×d×2 we can
define an edge-wise generative model

p(G | z) =
d∏
i=1

d∏
j=1
j ̸=i

p(Gi,j | z) (D.11)

where Gi,j ∈ {0, 1} indicates the absence/presence of an edge from Xi to Xj in G, and a prior
distribution

p(Z) ∝ exp(−β EG |Z [h(G)])
∏
i,j,k

N (zi,j,k | 0, 1) (D.12)

where h(G) is a scoring function quantifying the “degree of cyclicity” of G. β is a temperature
parameter weighting the influence of the expected cyclicity in the prior. Lorch et al. [45] propose to use
Stein Variational Gradient Descent [44] for approximate inference of p(Z |x1:t). SVGD maintains a
fixed set of particles z = {zm}Mm=1 and updates them using the posterior score∇ log p(z |x1:t) =
∇ log p(z)+∇ log p(x1:t | z). In our experiments, we use K = 5 latent particles. For the estimation
of expectations as in Eq. (4.10), we use K = 40 MC graph samples unless otherwise stated, hence, a
total of M ·K = 200 graphs, and we use the DiBS+ particle weighting. In contrast to the original
DiBS version, we do not use the annealing parameter α to force the mass of p(G|z) onto a single
graph during training. For further details on the method and its implementation, we refer to the
original publication [45] and the provided code.

D.6 Estimation of the Information Gain Utility Functions

When estimating the information gain utilities (see § 4.2 and Appx. C), we keep the set of Monte Carlo
samples from the SCM posterior p(M|x1:t) fixed for all evaluations of the chosen utility during a
given experiment design phase at time t, i.e., during the optimisation for all candidate intervention
sets and intervention targets. In our experiments, for the UCD and UCML utilities we sample 5 and
30 graphs to approximate the outer and inner expectations w.r.t. the posterior graphs, respectively.
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We sample 100 hypothetical experiment outcomes with given batch size from p(Xt |G,x1:t) to
approximate the expectation EXt |G,x1:t [·].
For the UCR utility we sample 3 and 9 graphs to approximate the outer and inner expectations w.r.t.
the posterior graphs, respectively. We sample 50 hypothetical experiment outcomes with given batch
size from p(Xt |G,x1:t) to approximate expectations of the form EXt |G,x1:t [·]. To approximate
the expectations Eψ

[
Edo(Xi=ψ)
Xj |Xt,G,D[·]

]
we sample 5 intervention values from p(ψ) and draw 3 samples

from pdo(Xi=ψ)(Xj |Xt, G,D) for each intervention value.

D.7 Bayesian Optimisation for Experimental Design

In order to find the optimal experiment a⋆t = (I⋆,x⋆I) at time t, we compute the optimal intervention
value x⋆I ∈ argmaxx U(I,x) for each candidate intervention target set I (see Eq. (4.15)). As the
evaluation of our proposed utility functions U(a) is expensive, we require an efficient approach for
finding optimal intervention values using as few function evaluations as possible. Following von
Kügelgen et al. [80], we employ Bayesian optimisation (BO) [46, 47] for this task and model our
uncertainty in U(I,x) given previous evaluations DBO = {(xl, U(I,xl))}kl=1 with a GP. We select
a new candidate solution according to the GP-UCB acquisition function [76],

xk+1 = argmax
x

µk(x) + γσk(x) , (D.13)

where µk(x) and σk(x) correspond to the mean and standard deviation of the GP predictive distribu-
tion p(U(I,x) | DBO) (see Appx. B). We then evaluate U(I,xk+1) at the selected xk+1 and repeat.
The scalar factor γ trades off exploitation with exploration. In our experiments, we set γ = 1 and run
the GP-UCB algorithm 8 times for each candidate set of intervention targets.

26



Algorithm 2: Particle Resampling

Input: set of latent particles z = {zk}Kk=1

Output: set of resampled latent particles z̃ = {z̃k}Kk=1
z̃ ← ∅ ▷initialise set of resampled particles
Nmax ←

⌈
K
4

⌉
▷max. number of particles to keep

{wk}Kk=1 ←
{

p(zk |x1:t) p̃(zk)∑
k p(zk |x1:t) p̃(zk)

}
▷compute particle weights

nkept ← 0
for wk in sort_descending({wk}Kk=1) do

if nkept < Nmax and wk > 0.01 then
z̃ ← z̃ ∪ {zk} nkept ← nkept + 1

end
else

znew ∼ p(Z)
z̃ ← z̃ ∪ {znew}

end
end

E Implementation Details

In this section, we give details about our implementation, including our particle resampling pro-
cedure in Section E.1, the sharing and caching of priors in Section E.2, a discussion of the com-
putational complexity of our implementation in Section E.3, and finally some information on our
code framework and computing resources in Section E.4. Our implementation is available at
https://www.github.com/chritoth/active-bayesian-causal-inference.

E.1 Particle Resampling

As described in Alg. 1, we resample latent particles z = {zk}Kk=1 according to a predefined schedule
instead of sampling new particles from the particle prior p(Z) after each epoch. Although sampling
new particles would allow for higher diversity in the graph Monte Carlo samples and their respective
mechanisms, it also entails a higher computational burden as the caching of mechanism marginal log-
likelihoods is not as effective anymore. On the other hand, keeping a subset of the inferred particles
is efficient, because once we have inferred a “good” particle zk that supposedly has a high posterior
density p(zk |x1:t) it would be wasteful to discard the particle only to infer a similar particle again.
Empirically, we found that keeping particles depending on their unnormalized posterior densities
according to Alg. 2 does not diminish inference quality while increasing computational efficiency. In
our experiments, we chose the following resampling schedule:

rt =


1 if t ∈ {1, 2, 3, 4, 5, 6, 9}
1 if tmod 5 = 0

0 otherwise.

E.2 Shared Priors and Caching of Marginal Likelihoods

We share priors for mechanisms and noise p(fi, σi |G), as well as for GP hyperparameters p(κi |G),
across all graphs G that induce the same parent set PaGi . Consequently, not only the posteriors
p(fi, σi |G,x1:t) and p(κi |G,x1:t), but also the GP marginal likelihoods p(x1:t

i |G) and GP predic-
tive marginal likelihoods p(xt+1

i |G,x1:t) can be shared across graphs with identical parent sets for
nodeXi. By caching the values of the computed GP (posterior) marginal likelihoods, we substantially
save on computational cost when computing expectations of the form EG | z

[
p(x1:t |G)ϕ(G)

]
and

EG | z
[
p(xt+1 |G,x1:t)ϕ(G)

]
where ϕ(G) is some quantity depending the graph.

Specifically, consider that p(x1:t|G) =
∏
i p(x

1:t
i |G) factorizes into the GP marginal likelihoods of

the individual mechanisms, so for d nodes in the graph and N samples in x1:t (counted over all time
steps) the complexity of computing p(x1:t|G) is O(d ·N3) for a fixed set of GP hyperparameters (for
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simplicity we ignore that not all d mechanisms are modelled by GPs as some are root nodes, so this
is not a tight bound). Thus, in the worst case, estimating p(x1:t|z) = EG|z[p(x

1:t|G)] with K graph
samples would yield a complexity of O(K · d ·N3). By caching the marginal likelihoods as outlined
above we can rewrite the complexity O(K · d · N3) as O(L · N3) where L ≤ K · d denotes the
number of unique mechanisms entailed by the set of K graph samples. Although this does not reduce
the worst case complexity it nevertheless greatly alleviates the computational demand in practice.

The benefit of caching becomes even more pronounced as p(G | z) concentrates is mass on a small set
of similar graphs as a result of the inference process. In particular, when updating the latent particles
using SVGD we do not need to recompute p(x1:t |G) after we have once before sampled G, which
greatly speeds up the gradient estimation of the particle posterior.

E.3 Computational Complexity

There are two main phases in our algorithm (disregarding the computation of metrics for evaluation),
(i) the inference phase where we (approximately) infer the posterior over SCMs p(M|x1:t) after
collecting new experimental data, and (ii) the experimental design phase.

The inference phase has worst-case complexity in O(TSV GD · (THP ·M ·K · d ·N3 +M2 · d2))
where TSV GD is the number of SVGD update steps, THP is the number of GP hyperparameter update
steps, M is the number of latent z particles, K is the number of graph samples per latent z particle,
d is the number of nodes in the network, and N is the number of collected experimental samples
in x1:t. The computation of the GP marginal likelihood dominates the complexity of the inference
phase. To improve scalability we make use of shared priors and caching. Additionally, we update the
GP hyperparameters according to a predefined schedule instead of doing so after each performed
experiment. In our experiments, both measures reduce the factor THP ·M · K · d significantly.
For example, running inference with 5 freshly initialized z particles with 40 graph samples each
on a scale-free SCM with 20 nodes updates the hyperparameters of (2970, 964, 177) GPs during
SVGD update steps (1, 5, 10), and of less than 15 GPs after 20 SVGD update steps. Compared to
M ·K · d = 4000 in this example, the benefit is evident.

In the experimental design phase we parallelize finding the optimal intervention value for each
candidate target node, so the complexity is basically the number of Bayesian optimization (BO)
steps times the complexity of the utility we want to optimize for. For a general query (cf. Eq. (4.11))
we have complexity in O(TBO ·M ·Kouter · S ·Q ·M ·Kinner · (O(p(y|M) + d ·N3))) where
TBO is the number of Bayesian optimization iterations, M is the number of latent z particles,
Kouter is the number of graph samples in the outer SCM expectation in, S is the number of
simulated experiments per SCM, Q is the number of simulated queries, Kinner is the number
of graph samples in the inner SCM expectation, O( p(y|M) ) is the complexity of evaluating the
query likelihood and d · N3 is the complexity of evaluating the GP predictive posteriors for the
simulated experiments. For the causal discovery and model learning utilities the complexity reduces
to O(TBO ·M ·Kouter · S ·M ·Kinner · d ·N3).

In summary, the complexity of our ABCI implementation is dominated the experimental design
phase from a high-level perspective. On a lower level, the cubic scaling of GP inference is the
major computational issue that we alleviate by caching the (posterior) marginal log-likelihoods
(see Appx. E.2 for details). However, in a small data regime where experimental data is costly to
obtain, GPs are not a prohibitive element in our inference chain. Furthermore, GP scaling issues
could be alleviated, e.g., by using sparse GP approximation or any other kind of scalable Bayesian
mechanism model. Disregarding issues of GP scaling, the estimation of the information gain utilities
is still costly, simply because it requires many levels of nested sampling and too few Monte-Carlo
samples will yield too noisy, in the worst case unusable utility estimates. We believe that in follow-up
work much can be gained in terms of scalability as well as performance by incorporating recent
advances in nested Monte-Carlo/information gain estimation techniques(e.g., [8, 28, 63]).

Finally, consider that a single estimation of the causal discovery utility for an SCM with 20 nodes
with N = 500 previously collected experimental samples takes approximately 2 minutes on an
off-the-shelf laptop. Thus, for 10 BO iterations we can do the experimental design phase in 20
minutes (assuming we parallelize the utility optimization for each node). In a practical application
scenario one might be very willing to invest hours or days for the design phase before conducting a
costly experiment.
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E.4 Implementation and Computing Resources

Our Python implementation uses the PyTorch [54], GPyTorch [24], CDT [41], SKLearn [58], Net-
workX [29] and BoTorch [5] packages, which greatly eased our implementation efforts. All of our
experiments were run on CPUs. We parallelise the experiment design by running the optimisation
process for each candidate intervention set on a separate core.
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F Evaluation Metrics

In this section, we provide details on the metrics used to evaluate our method in Section 5 and Appx. G.
In our experiments, we use (nested) Monte Carlo estimators to approximate intractable expectations.

Kullback-Leibler Divergence. We evaluate the inferred posterior over queries given observed data,
p(Y |x1:t), to the true query distribution p(Y |M⋆) using the Kullback-Leibler Divergence (KLD),
i.e.,

KL(p(Y |M⋆)|| p(Y |x1:t)) = EY |M⋆

[
log p(Y |M⋆)− log p(Y |x1:t)

]
(F.1)

= EY |M⋆

[
log p(Y |M⋆)− logEM|x1:t [p(Y |M)]

]
. (F.2)

Query KLD. For Y = X
do(X3=ψ)
5 with ψ ∼ p(ψ) we have

Query KLD = Eψ
[
KL(pdo(X3=ψ)(X5 |M⋆)|| pdo(X3=ψ)(X5 |x1:t))

]
(F.3)

= Eψ
[
EX5 | do(X3=ψ),M⋆

[
log pdo(X3=ψ)(X5 |M⋆)− log pdo(X3=ψ)(X5 |x1:t)

]]
.

(F.4)

To approximate the outer two expectations, we keep a fixed set of samples for each ground truth
SCM to enhance comparability between different ABCI runs. For pdo(X3=ψ)(X5 |x1:t), we use the
estimator described in Section D.1.

SCM KLD. For Y = qCML(M) =M, we have

SCM KLD = KL(p(M|M⋆)|| p(M|x1:t)) (F.5)

= EM|M⋆

[
log p(M|M⋆)− log p(M|x1:t)

]
(F.6)

= 0− log p(M⋆ |x1:t) (F.7)
= − logEM|x1:t [p(M⋆ |M)] (F.8)

= − logEG,f ,σ2 |x1:t

[
p(G⋆,f⋆,σ2,⋆ |G,f ,σ2)

]
(F.9)

= − logEG,f ,σ2 |x1:t

[
p(G⋆ |G) p(f⋆ |f) p(σ2,⋆ |σ2)

]
. (F.10)

Now note that p(G⋆ |G) = 1 ifG = G⋆ and 0 otherwise, p(f⋆ |f) = δ(f⋆−f), and p(σ2,⋆ |σ2) =
δ(σ2,⋆ − σ2). Hence, the SCM KLD vanishes iff the SCM posterior p(M|x1:t) collapses onto the
true SCMM⋆, and is infinite otherwise.

Average Interventional KLD. Computing the KLD for Y = qCML(M) = M is not useful for
evaluation, since it vanishes when the SCM posterior p(M|x1:t) collapses onto the true SCMM⋆

and is infinite otherwise. For this reason, we report the average interventional KLD as a proxy metric,
which we define as

Avg. I-KLD =
1

d

d∑
i=1

Eψ
[
KL(pdo(Xi=ψ)(X |M⋆)|| pdo(Xi=ψ)(X |x1:t))

]
(F.11)

=
1

d

d∑
i=1

Eψ
[
EX | do(Xi=ψ),M⋆

[
log pdo(Xi=ψ)(X |M⋆)− log pdo(Xi=ψ)(X |x1:t)

]]
(F.12)

=
1

d

d∑
i=1

Eψ
[
EX | do(Xi=ψ),M⋆

[
log pdo(Xi=ψ)(X |M⋆) (F.13)

− logEM|x1:t

[
pdo(Xi=ψ)(X |M)

] ]]
.

As with the Query KLD, we keep a fixed set of MC samples per ground truth SCM to approximate
the two outer expectations to enhance comparability between different ABCI runs.

Expected Structural Hamming Distance. The Structural Hamming Distance (SHD)

SHD(G,G⋆) =
∣∣{(i, j) ∈ G : (i, j) ̸∈ G⋆}

∣∣+ ∣∣{(i, j) ∈ G⋆ : (i, j) ̸∈ G}∣∣ (F.14)
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denotes the simple graph edit distance, i.e., it counts the number of edges (i, j) that are present in the
prediction graph G and not present in the reference graph G⋆ and vice versa. We report the expected
SHD w.r.t. our posterior over graphs as

ESHD(G,G⋆) = EG |x1:t [SHD(G,G⋆)] (F.15)

AUPRC. Following previous work [19, 21, 45, 78], we report the area under the precision recall
curve (AUPRC) by casting graph learning as a binary edge prediction problem given our inferred
posterior edge probabilities p(Gi,j |x1:t). Refer to e.g. Murphy [52] for further information on this
quantity.
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Figure 5: Causal Discovery and SCM Learning on Scale-free Graphs with 10 Variables. Comparison
of the experimental design strategies with random and observational baselines on simulated ground truth models
with 10 nodes. Lines and shaded areas show means and 95% confidence intervals (CIs) across 50 runs (10
randomly sampled ground-truth SCMs with 5 restarts per SCM). The UCD and UCML objectives perform on par
with each other. Both clearly outperform the observational and random baselines on all metrics.

G Extended Experimental Results

Causal Discovery and SCM Learning for SCMs with d = 10 Variables. We report results on
ground truth SCMs with d = 10 variables and scale-free graphs in Fig. 5. We initialise all methods
with 5 observational samples and perform experiments with a batch size of 3. All other parameters
are chosen as described in Appx. D.

Causal Discovery and SCM Learning for SCMs with d = 20 Variables. To demonstrate the
scalability of our framework, we report results on ground truth SCMs with d = 20 variables and
scale-free or Erdős-Renyi graphs in Fig. 6 and Fig. 7, respectively. We initialise all methods with
50 observational samples and perform experiments with a batch size of 5. All other parameters are
chosen as described in Appx. D.

While ABCI shows clear benefits when scale-free causal graphs underlie the SCMs, we find that
the advantage of ABCI diminishes on SCMs with unstructured Erdős-Renyi graphs, which appear
to pose a harder graph identification problem. Moreover, we expect performance of our inference
machinery, especially together with the informed action selection, to increase when investing more
computational power to improve the quality of our estimates, e.g., by increasing the number of Monte
Carlo samples used in our estimators and increasing the number of evaluations during the Bayesian
optimisation phase.

Finally, in Fig. 8 we show that using a simple linear model (GP model with a linear kernel) is not
able to reasonably capture the characteristics of the ground truth model (non-linear GP model) due to
the model mismatch.

Learning Interventional Distributions vs. Causal Discovery and SCM Learning. We report
additional metrics for our causal reasoning experiment as described in § 5 in Figs. 9 and 10. The
key result here is that UCR yields a significantly lower Query KLD while exhibiting a worse ESHD
and Average I-KLD scores, which indicates that, indeed, the UCR learns only those parts of the model
that are relevant to reducing the uncertainty in our target query. This is more data efficient than trying
to learn the entire model first and then answering the causal query of interest.
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Figure 6: Causal Discovery and SCM Learning on Scale-free Graphs with 20 Variables. (Same figure
as in Fig. 3 with additional confidence intervals for OBS and RAND FIXED.) Comparison of the experimental
design strategy for causal discovery (UCD) with random and observational baselines on simulated ground truth
models with 20 nodes. Lines and shaded areas show means and 95% confidence intervals (CIs) across 15 runs
(5 randomly sampled ground-truth SCMs with 3 restarts per SCM). The UCD objective significantly outperforms
the observational and random baselines on all metrics.
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Figure 7: Causal Discovery and SCM Learning on Erdős-Renyi Graphs with 20 Variables. Comparison
of experimental design strategies for causal discovery (UCD) and causal model learning (UCML) with random and
observational baselines on simulated ground truth models with 20 nodes. Lines and shaded areas show means
and 95% confidence intervals (CIs) across 15 runs (5 randomly sampled ground-truth SCMs with 3 restarts per
SCM). The UCD and UCML strategies perform approx. equal to the strong random baseline (RAND) on all metrics,
however, all three are significantly better than the weak random (RAND FIXED) and observational baselines.
We expect that improving the quality of the UCD and UCML estimates (e.g., by scaling up computational resources
invested in the MC estimates) yield similar benefits of the experimental design utilities as apparent in Fig. 6.
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Figure 8: Causal Discovery and SCM Learning on Scale-free Graphs with 20 Variables. Comparison
of non-linear GP model with a linear model (linear GP kernel) for UCD an RAND on simulated ground truth
models with 20 nodes. Lines and shaded areas show means and 95% confidence intervals (CIs) across 15 runs
(5 randomly sampled ground-truth SCMs with 3 restarts per SCM). Clearly, the model mismatch in the linear
model prohibits the identification of the ground-truth graph.
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Figure 9: Learning Interventional Distributions. Comparison of the experimental design strategies with
random and observational baselines. Lines and shaded areas show means and 95% confidence intervals (CIs)
across 30 runs (10 randomly sampled ground-truth SCMs with 3 restarts per SCM). UCD, UCML and UCR perform
best w.r.t. the ESHD, Avg. I-KLD and Query KLD metrics respectively, which is expected.
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Figure 10: Learning Interventional Distributions. Comparison of the experimental design strategies with
random and observational baselines. Lines and shaded areas show means and 95% confidence intervals (CIs)
across 30 runs (10 randomly sampled ground-truth SCMs with 3 restarts per SCM). UCD, UCML and UCR perform
best w.r.t. the ESHD, Avg. I-KLD and Query KLD metrics respectively, which is expected.
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