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Abstract Neural architecture search (NAS) has demonstrated success in discovering promising ar- 5

chitectures for vision or language modeling tasks, and it has recently been introduced to 6

searching for graph neural networks (GNNs) as well. Despite the preliminary success, GNNs 7

struggle in dealing with heterophily or low-homophily graphs where connected nodes may 8

have different class labels and dissimilar features. To this end, we propose co-optimizing both 9

the input graph topology and the model’s architecture topology simultaneously. That yields 10

AutoCoG, the first unified data-model co-search NAS framework for GNNs. By defining a 11

highly flexible data-model co-search space, AutoCoG is gracefully formulated as a principled 12

bi-level optimization that can be end-to-end solved by the differentiable search methods. 13

Experiments show AutoCoG achieves an average performance gain across all datasets of 14

3.18% over the following best approach and ranks best against all other state-of-the-art 15

methods with an average ranking of 2.5. 16

1 Introduction 17

Graph neural networks (GNNs) have emerged as promising tools to analyze networked data in 18

various real-world scenarios, such as social media Grover and Leskovec (2016) and biochemical 19

graph analytics Zitnik and Leskovec (2017). Specifically, GNNs apply recursive message passing 20

to learn the embedding representation of each node via aggregating the representations of its 21

neighbors and itself. Motivated by the significant success of node embedding learning, plenty 22

of GNN variants have been explored for the diverse downstream graph analysis tasks, including 23

GCN Kipf and Welling (2016a), GraphSAGE Hamilton et al. (2018), and GCNII Chen et al. (2020a). 24

However, training GNNs is notoriously challenging, more so when they are train under het- 25

erophily or disassociative graphs, not to mention deep GNNs Chen et al. (2020a). First, since graphs 26

abstract diverse data sources and present tremendous heterogeneity, the success of GNNs is often 27

accompanied by extensive tuning of model architectural hyperparameters to characterize specific 28

graph data. For example, it was reported that graph attention networks GAT Veličković et al. (2018) 29

are sensitive to the number of attention heads, which has to be carefully searched for the citation 30

networks and the protein-protein interaction data, respectively. Second, in the real world graphs 31

often opposites attract which inevitably lead to noisy setting where GNNs tend to suffer from 32

overfitting and generalize poorly to the unseen testing data. Third, despite the potential of deep 33

GNNs in learning the informative high-order neighborhood, the training of deep GNNs is widely 34

known to be limited by the issues of over-smoothing, gradient vanishing, and over-squashing Chen 35

et al. (2020a). 36

Recently, the automated graph neural architecture search (NAS), graph augmentation tricks, and 37

deeper architectures have been independently proposed to tackle the above GNN training challenges 38

partially. Expressly, most of the existing automated efforts are limited to neural architecture tuning, 39

while graph augmentation is often overlooked and untouched despite often being effective to gain 40

performance Li and King (2020); Zhou et al. (2019a). This is primarily because changes to the 41

existing graph structure can have a cascading effect on the process of information aggregation, 42

which adds a new layer of complexity above the already complex architecture tuning problem. 43
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Additionally, existing GNN NAS works are known to scale poorly in deeper architectures. This 44

is primarily due the exploding search space which makes training unstable. Previous efforts 45

have limited themselves in searching the shallow GNNs with less than 3 layers. Finally, Figure(1) 46

illustrates circumstances where the aggregation mechanism fails due to unfavorable graph topology 47

thus, it remains a daunting task to optimize the design philosophy for GNNs comprehensively. 48

?
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Figure 1: In red outline are nodes with poor aggre-

gation, black arrows, due to a graph topol-

ogy under heterophily. This can be mitigated

by learning to place meaningful edges, yel-

low lines, to facilitate proper message propa-

gation. Motivate to solve this performance

problem, we propose co-adapting both graph

and model in a end-to-end manner.

49

To bridge the gaps, we propose AutoCoG, 50

the first NAS framework towards unified data- 51

model co-search for GNNs to specifically tame 52

the problem training under heterophily con- 53

dition. Besides automatically optimizing the 54

GNN model architecture, we propose to simul- 55

taneously optimize the input graph topology, 56

via progressively growing and pruning using 57

a separate GNN model to learn to attune the 58

graph to the proposed architecture. Addition- 59

ally, by defining the highly flexible data-model 60

co-search space, AutoCoG is formulated as a 61

principled bi-level optimization that can be end- 62

to-end solved by the differentiable search meth- 63

ods. To scale up our core framework to search- 64

ing deep GNN architectures, we curb an explo- 65

sive search space as the number of layers increased by performing multiple searching stages with 66

increasing depth, as inspired by Chen et al. (2019c). Additionally, for each search stages, we 67

evolve the graph by growing/pruning it at the same time. To stabilize the search landscape from 68

the shifting topologies of graph and model, we further utilize Chen et al. (2020a) to combat the 69

over-smoothing/over-squashing issues. 70

Together, our framework ensures a reliable way to discover powerful architectures, a stable 71

model training environment, and state-of-the-art results to train graph different degree of homophily. 72

AutoCoG searches for and trains on deep or shallow graph neural networks to successfully achieve 73

state-of-the-art results in Web datasets, Actor, Coauthor, and Wikipedia benchmarks. 74

In summary, our three contributing novelties are: 75

• We propose AutoCoG, the first NAS framework towards unified data-model co-search for GNNs. 76

Our novel bi-level optimization formulation uniquely enables the end-to-end discovery of state- 77

of-the-art GNN model and graph altogether. 78

• We perform extensive analysis the resulting learned graph-structures for each benchmarks. To 79

strengthen the co-search framework, we organically integrate several techniques to directly 80

combat issues of searching unreliability, training instability, and scalability, that have previously 81

plagued NAS approaches for searching deeper GNNs. 82

• Experiments show AutoCoG achieves an average performance gain across all datasets of 3.18% 83

over the following best approach and ranks best against all other state-of-the-art methods with 84

an average ranking of 2.5. 85

2 Related works 86

Graph neural networks. Motivated by the state-of-the-art results of GNNs in graph analytics, 87

there have been numerous GNN variants Bruna et al. (2013); Hamilton et al. (2017); Xu et al. (2019); 88

Chen et al. (2020a); Wu et al. (2019a). Most of these existing approaches fit within the category of 89

spatial GNNs. Namely, following the spatial message passing strategy, the core idea of GNNs is 90
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to learn the embedding representation of a node by aggregating the embeddings of its neighbors 91

and node itself recursively. The previous empirical studies show that GNNs often achieve the 92

best performance with less than 3 layers Kipf and Welling (2016a); Veličković et al. (2018). Key 93

limitations of GNNs are their performances decrease significantly with the increasing of model 94

depth and the degree of graph homophily they operate on. As the graph convolutional layer 95

increases, the node representations will converge to indistinguishable vectors due to the recursive 96

neighborhood aggregation and non-linear activation Li et al. (2018); Oono and Suzuki (2020), which 97

is well recognized as over-smoothing issue NT and Maehara (2019); Chen et al. (2019a); Alon and 98

Yahav (2020); Chien et al. (2021); Huang et al. (2020). 99

Graph augmentation. Data augmentation methods has been widely applied to improve the gen- 100

eralization performances of deep neural networks, such as convolutional and recurrent neural 101

networks Shorten and Khoshgoftaar (2019); Antoniou et al. (2017); Feng et al. (2021). They aim to 102

craft the out-of-distribution training data to avoid overfitting with the customized augmentation 103

policies. In the graph analytics, GNNs are prone to overfit the naturally noisy training graphs, 104

which may miss the ground-truth nodes/edges or contain the erroneous information Zügner et al. 105

(2018). Different from the grid-like image data, the graph augmentation is often operated on the 106

adjacency structure or node features. The existing graph augmentations could be catagorized into 107

the following two classes. (i) The random augmentation either drops/adds edges to modify the 108

graph, or masks parts of the node features Rong et al. (2020a); You et al. (2020b); Feng et al. (2020). 109

(ii) The differentiable augmentation learns to optimize the adjacency affinity matrix by minimizing 110

the concerned task loss. Based upon the computed affinity matrix, the differentiable augmentation 111

either continuously combines it into the original adjacency matrix Zhao et al. (2020b); Chen et al. 112

(2020b), or samples the discrete edges to formulate new graph Chen et al. (2019b). 113

Neural architecture search. Targeting at alleviating the laborious hyperparameter tuning, NAS 114

automates the designing of good neural architectures for any a given application. It is shockingly 115

reported that the searched neural architectures could outperform the human-designed ones in 116

many real-world scenarios, such as image classification Zoph and Le (2016); Zoph et al. (2018) and 117

generation Wang and Huan (2019); Gong et al. (2019). Most of NAS frameworks apply one of the 118

following search algorithms: reinforcement learning (RL) Pham et al. (2018); Baker et al. (2016), 119

evolution algorithm (EA) Liu et al. (2017); Miikkulainen et al. (2019); Xie and Yuille (2017), and 120

one-shot differentiable search Liu et al. (2018); Zela et al. (2020). There are several recent efforts to 121

conjoin the researches of GNNs and NAS Gao et al. (2019); Zhou et al. (2019b); You et al. (2020a); 122

Ding et al. (2020); Zhao et al. (2020a). However, all of them are limited in exploring the shallow 123

GNNs, and fail to denoise the underlying graph to further ameliorate the model performance. In 124

this work, we aim to simultaneously search the deep GNN models and graph structure to optimize 125

the downstream graph analytics. 126

Co-Adaptive Search between graph’s structure and model’s architecture. GASSO Qin et al. (2021) 127

is a recent work that similarly proposes the idea of model-graph co-search. Yet two differentiation 128

factors uniquely defined our two works. Firstly, GASSO is a technique that learns attention 129

coefficients G∈[0, 1] only for existing edges E, which is mathematically equivalent to graph attention 130

neural networks (Qin et al., 2021). In contrast, Auto-CoG directly modifies the graph’s structure via 131

pruning poorly attended edges and adding new un-seen edges. Thus the derived graph structure 132

is unique from the original underlying graph. Finally, GASSO employs a coarse macro-level 133

search space with only eight operators and two layers. Its design decision space is shallow (small), 134

consisting of only 256 unique combinations. Theoretically, by searching the optimal attention 135

function in our Auto-Cog, we could approximate the "attentional structure learning" in GASSO. 136
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3 Methodology 137

Preliminary. We briefly review the basic of a message-passing based graph convolution network 138

(GCN) and the definition of homophily. 139

First, the homophily or edge-homophily ratio, of a graph measures the ratio between intra-node 140

pairs (𝑣,𝑤) overall all edges 𝐸 and is given as: 141

|{(𝑣,𝑤) : (𝑣,𝑤) ∈ 𝐸 ∧ 𝑦𝑣 = 𝑦𝑤}|
𝐸

(1)

Second, given a GCN, its 𝑘-th layer could be written generally as: 142

ℎ
(𝑘)
𝑖

= AGGR({𝑎 (𝑘)
𝑖 𝑗

𝑊 (𝑘)𝑥 (𝑘−1)
𝑗

: 𝑗 ∈ N (𝑖)})

𝑥
(𝑘)
𝑖

= 𝜎 (COMB(𝑊 (𝑘)𝑥 (𝑘−1)
𝑖

, ℎ
(𝑘)
𝑖
))

(2)

𝑥
(𝑘)
𝑖

denotes the node embedding of element 𝑖 at 𝑘-th layer.𝑊 (𝑘) ∈ R𝐷×𝐷
represents the learnable 143

layer-wise weights for all {𝑥𝑖 : 𝑖 ∈ |𝑉 |}, where |𝑉 | is our total number of nodes and𝐷 our number of 144

hidden features. 𝑎
(𝑘)
𝑖 𝑗

dictates the attention coefficient between 𝑖 and 𝑗 derived from some Attention 145

function. N (𝑖) denotes the neighboring nodes of node 𝑖 from a graph 𝐺 . ℎ
(𝑘)
𝑖

is the resulting 146

embeddings after applying an AGGR function to aggregate a set of neighboring embeddings from 147

the previous 𝑘 − 1 layers. In addition, function COMB incorporates information from itself with its 148

neighboring embeddings ℎ
(𝑘)
𝑖

, and 𝜎 provides the nonlinear activation. 149

3.1 Unified Data-Model Co-Search Space 150

3.1.1 Model Search Space: Attention, Activation, and Skip Connection. 151

Table 1: The set of attention functions, where | | de-
notes the concatenation operation, 𝑎, 𝑎𝑖 , 𝑎 𝑗 de-

note learn-able vectors,𝑊𝐺 denotes the train-

able matrix.

Attention Choice Expression Form

GCN
1√

|N (𝑖) | |N ( 𝑗) |
COS 𝑎(𝑊 (𝑘)𝑥 (𝑘−1)

𝑖
| |𝑊 (𝑘)𝑥 (𝑘−1)

𝑗
)

LINEAR tanh(𝑎𝑙𝑊 (𝑘)𝑥 (𝑘−1)
𝑖
| |𝑊 (𝑘)𝑥 (𝑘−1)

𝑗
)

GERE-LINEAR 𝑊𝐺 tanh(𝑊 (𝑘)𝑥 (𝑘−1)
𝑖

+𝑊 (𝑘)𝑥 (𝑘−1)
𝑖
)

GAT LeakyReLU(𝑎(𝑊 (𝑘)𝑥 (𝑘−1)
𝑖
| |𝑊 (𝑘)𝑥 (𝑘−1)

𝑗
))

GAT-SUM 𝑎
(𝑘)
𝑖 𝑗
+ 𝑎 (𝑘)

𝑖 𝑗
based on GAT

CONST 1

Defining the Model Search Space. The design 152

ofmodel search space should achieve a balanced 153

trade-off between the diversity and efficiency. 154

Although a large search space subsumes the di- 155

verse GNN architectures to adapt to the differ- 156

ent graph analysis tasks, it would be extremely 157

time-consuming to explore the optimal design. 158

In the existing search spaces of 159

GNNs (Gao et al., 2019; Zhou et al., 2019a; 160

You et al., 2020a), they often contain the archi- 161

tecture components of hidden units, attention, 162

aggregation, combination, and activation func- 163

tions, as well as the skip connections. To effi- 164

ciently search the outperforming shallow and deep GNNs, we compare the effectiveness of each 165

component, and greatly shrink down the search space to focus on three key components: the 166

Activation function, the Attention module, and the skip connections. They are generally believed 167

to impact GNN’s expressive capability and depth scalability (Chen et al., 2021b). We fix the Ag- 168

greation function and Combination function to be simple summation, and treat the hidden units as 169

hyperparameter. Below we lay out our searchable design for them one-by-one: 170

• Attention Search Space: Attention mechanism has been shown by (Veličković et al., 2018) to 171

effectively stabilize training by placing proper neighborhood scaling with attention coefficient 172

𝑎𝑖 𝑗 . We list our attention choices in Table 1. 173

• Activation Search Space: for basic activation functions, we search among these operations {ReLU, 174

Sigmoid, Tanh, Linear, SoftPlus, LeakyReLU, ReLU6, ELU}. 175
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• Skip Connection Search Space: For an 𝐿-Layer GCN, various skip connections can be applied to 176

overcome the effect of over-smoothing. Previous deep GCN works (Chen et al., 2020a; Zhang 177

et al., 2020; Chen et al., 2021b) illustrated a significant correlation between the type of skip- 178

connections to the performance. We include three skip-connection types — i) Initial Connection, 179

ii) Jumping-Knowledge aggregation. 180
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Figure 2: An illustration of AutoCoG framework. We marked the components we searched on as

yellow; this notation also extends to the different skip connections illustrated in the pro-

gressive search box. Furthermore, we narrow down our search choice for each step within

progressive search while extending the model’s layers. We also perform graph augmentation

for every step. Further details on the process can be found in Algorithm(1) in the appendix

3.1.2 Graph Augmentation. We often expect a clustering of liked nodes when operating on graph 181

data in a "like attracts like" world. However, in reality, when modeling complex relationships, we 182

often observe the opposite, where node identities are often best described by contrasting with 183

their neighbors in "different attract" relationships. Under such heterophily circumstance, GNNs’ 184

performances degrade (Pei et al., 2020a; Zhu et al., 2020a; Battaglia et al., 2018), which makes 185

sense intuitively, since relating unrelated nodes can lead to class obscurity (Zhu et al., 2020a), i.e 186

over-smoothing. Thus overcoming heterophily with model architecture alone is difficult and often 187

requires complicated, and exotic works flow (Abu-El-Haija et al., 2019; Pei et al., 2020b; Lim et al., 188

2021). Lately, a number of works (Srivastava et al., 2014; Zou et al., 2019; Rong et al., 2020b; Chen 189

et al., 2021a; Huang et al., 2021) have found that direct graph augmentations with stochastic policies 190

— drop/add edges — can decelerate both the over-fitting and over-smoothing issues in training deep 191

GNNs. By learning the graph’s topology and the model’s architecture, we naturally adapt our data 192

structure around the model’s strength and co-optimize data flow around the message-aggregation 193

mechanism. 194

The scoring function. Given graph 𝐺 (𝑉 , 𝐸) can be expressed in the form of an adjacent matrix 195

𝐴 ∈ R |𝑉 |× |𝑉 | , where𝑉 is the set of vertices and 𝐸 is the set of edges. We learn an edge score matrix 196

𝑆 ∈ R |𝑉 |× |𝑉 | such that we rewrite the aggregation step in Eqn (2) as: 197

𝐻 (𝑘) = (𝑆 ⊙ 𝐴)𝑋 (𝑘−1)𝑊 (𝑘)
(3)

where 𝐻 (𝑘) = {ℎ (𝑘)
𝑖

: 0 ≤ 𝑖 ≤ |𝑉 |} and 𝑋 (𝑘−1) = {𝑥 (𝑘−1)
𝑖

: 0 ≤ 𝑖 ≤ |𝑉 |}. We formally denote 198

𝑆 ∈ [0, 1] as: 199

𝑆 = 𝜎 (MLP(𝑍𝑉src
| |𝑍𝑉tgt

))
𝑍 = 𝑓 (𝑋,𝐺 (𝑉 , 𝐸);𝑊𝑠)

(4)
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Where 𝑓 (.;𝑊𝑠) is simply the classic VGAE model by Kipf and Welling (2016b), 𝑍𝑉𝑠𝑟𝑐 /𝑍𝑉𝑡𝑔𝑡 are the 200

source and target nodes available from 𝐺 (𝑉 , 𝐸), | | denotes the concatenation function, and 𝜎 is the 201

sigmoid function. 𝑆 is therefore a sparse matrix with only |𝐸 | number of scores. 202

Edge growing and pruning. Taking advantage of the Progressive NAS workflow Chen et al. (2019c), 203

at each searching stage, we prune the bottom 𝑝-percentile from 𝑆 , and at the same-time we grow 204

our graph by appending 𝑘 new edges for each nodes via embedding similarity. This embedding 205

similarity function is best defined as: 206

Sim(𝑣𝑖 , 𝑣 𝑗 ) =
1 + Cosine(𝑧𝑖 , 𝑧 𝑗 )

log𝐷𝑖 𝑗

(5)

Where 𝐶𝑜𝑠𝑖𝑛𝑒 (.) is the cosine-similarity between two nodes’ scoring embeddings, while 𝐷 is the 207

shortest distance between them. We illustrate visually in Figure(2) and in code via Algorithm(1) in 208

the our appendix. 209

3.2 Optimization Formulation and Algorithm 210

3.2.1 A Principled Bi-Level Optimization Formulation. For the sake of conciseness, we use 𝛼 as the 211

model space architecture parameters, and denote Lobj as the objective loss function given 𝛼 . With 𝛼 212

defined, we further denote �̂� =𝑊
⊙

𝑚𝛼 as the pruned sub-model from the supernet derived from 213

𝛼 description, where �̂� ,𝑚𝛼 ∈ R𝐿×𝐷×𝐷
, D denotes the size of hidden embeddings. Additionally, we 214

can write our augmented graph 𝐺 as 𝐴 = 𝐴
⊙

𝑆 , where 𝑆 is defined as our learned scoring matrix. 215

Then, let 𝑍 represents our output vector for a hypothetical 2-layer AutoCoG: 216

𝑍 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 ((𝐴𝜎 (𝐴𝑋�̂� (0) )�̂� (1) )) (6)

Thus the objective loss function Lobj for a transductive semi-supervised node classification tasks is 217

formally denoted as: 218

Lobj(𝐺,�̂� , 𝑋,𝑌 ) = − 1

|𝑌 |
∑︁
𝑦𝑖 ∈𝑌

𝑦𝑖 log(𝑧𝑖) (7)

Extending from (Dong and Yang, 2019), we formulate our data-model co-search as a joint bi-level 219

optimization, to solve 𝛼, 𝑆 concurrently with the weights𝑊 and data space parameters: 220

min

𝛼
Lvalid

obj
(�̂� (𝑊,𝛼),𝐺 (𝑆), 𝑋𝑣𝑎𝑙𝑖𝑑 , 𝑌𝑣𝑎𝑙𝑖𝑑 )

s.t. �̂� ,𝐺 = arg min

𝑊,𝑆
Ltrain

obj
(𝑊,𝐺, 𝛼, 𝑆, 𝑋𝑡𝑟𝑎𝑖𝑛, 𝑌𝑡𝑟𝑎𝑖𝑛)

(8)

Note that 𝛼 are optimized using the objective loss function on the validation set, while𝑊,𝑆 are 221

optimized under training set. Additionally,𝐺 also consists of modified edges 𝐸, not-shown explicitly 222

in Equation (8), but is illustrated in our Algorithm(1). We adopt the same hard-Gumbel-softmax 223

trick (Jang et al., 2017) to differentially optimize architectural variables during search. 224

3.2.2 Scaling and Stabilizing the Search. Thus, the bi-level optimization (8) can be solved by differential 225

search methods, and we adopt the GDAS approach in (Dong and Yang, 2019) by default. However, 226

when exploring GCN deep architectures and larger graphs, the data/model search spaces grow 227

exponentially with the layer depth/graph size, and they can be entangled to cause even more 228

serious scalability challenge. That is further amplified by the training difficulty and instability 229

of deep GNNs (Chen et al., 2021b). Indeed, we observe that naively applying GDAS is prone to 230

over-smoothening and search collapse, only yielding very poor architectures when searching for 231

more than three layers. Besides, it is not uncommon for the derived graph and model to have 232

considerable performance variations across repeated experiments, due the stochastic initialization 233

and training. 234
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Progressive search space. We follow the idea proposed by (Chen et al., 2019c) (also illustrated 235

in Algorithm 1), to divide search into 𝑁 progressive stages, with each consecutive stage having a 236

larger or equal number of layers than those previously. At each stage, we greedily remove the least 237

selected options (by taking the mean of Soft-Max across 𝐿 layers and removing the option with 238

the smallest value) from the data’s 𝑝 parameters or model space, and pass on the shrunk co-search 239

space to the next stage. Note that we do not shrink the number of augmentation policies. 240

4 Experiments 241

4.1 Experimental settings. 242

We will list our default training hype-parameters common across all datasets, then we will note 243

each dataset’s specific particularity, if any. By default, we employ the Adam-optimizer (Kingma 244

and Ba, 2017) to learn edges’ scores, model’s architecture and model’s weights with equal learning 245

rate of 0.005, and a 𝐿2 regularization of 0.0005. We set the hidden-dimension 𝐷 to be 256 with a 246

dropout rate of 0.6. As for P-DARTS, for every stage we prune the bottom 10% of edges, and add 247

one new edge per node, and the number of stages are set to be 4, starting from 2 layers, and with a 248

2 layers increment. Furthermore, for Identity-Mapping, 𝛾 is set to be 0.5. We search/train for 1000 249

epochs, while setting our rate of patient to be 400 and 200 respectively. To get our final results, we 250

train the network 10 times to get the average and standard deviation. 251

The only notable exception to the default settings are the Co-author datasets, where we set the 252

dropout rate to be 0.8 and 0 for CS and Physics respectively. We typically only search between two 253

and eight layers. Finally, for all datasets, we average their accuracy over 10 runs, with random seed 254

between 0 to 9. 255

4.2 Ablation studies 256

Table 2: Ablation results comparing the test results between different searching modes at increasing

degree of homophily with fixed depth of eight. Best results are bold.

Experiments Actor Texas Wisconsin Cornell CS Photo

H 0.375 0.411 0.488 0.567 0.827 0.833

Co-search 38.039±0.16 78.378±2.21 80.392±0.00 64.864±2.97 91.840±0.60 83.204±2.42
Data-only 23.924±1.86 64.324±1.71 46.666±2.41 46.486±1.13 80.225±2.12 82.255±2.72
Model-only 36.394±0.07 72.070±0.85 70.588±1.60 56.216±1.14 88.599±0.86 62.798±5.51

Model-Graph codependancy. We justify the need for model-graph co-search by performing three 257

experiments, namely — co-search, data-search, and model-search — to illustrate the respective 258

effectiveness of the individual components which constitutes our framework. We collected these 259

results from several datasets at a fixed depth of 8 while maintaining identical searching settings for 260

all experiments. Note that for data-search, we substitute our model with the vanilla GCN (Kipf 261

and Welling, 2016a). The results are collected in Table(2). Herein our results speak for themselves; 262

we observe a significant improvement in performance, especially for graphs under heterophily, 263

utilizing co-search over model-only and data-only search. 264

Correlation between depth and performance. We observe that an increasing depth does not always 265

positively correlate to performance gain. Homophily negatively correlates to our performance at 266

depth. To explain this phenomenon, we offer this hypothesis: since the number of layers in a model 267

correlates to the number of k-hop neighbors observed, graphs under heterophily need to observe a 268

much larger sub-graph to aggregate meaning information against the inherent noisy neighbors. 269
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Figure 3: Illustration of relative performance against

2-layer configuration (not shown).

270

In contrast, with an increasing degree 271

of homophily, more layers may induce over- 272

smoothing sooner, contributing to an overall 273

degradation in performance. We investigate 274

the relationship between the model’s depth and 275

performance. As depth is a hyper-parameter, 276

we perform a search on 2, 4, 8, and 16 layers 277

configurations — while maintaining identical 278

searching parameters — on several datasets at 279

an increasing rate of homophily. We then nor- 280

malize our final accuracy results for each graph 281

against the result of our 2-layer configuration to 282

obtain relative performance gain in percentage. 283

We illustrate our results in Figure(3). 284

Table 3: We characterize the new graph structured

found after search. From left-to-right, ∇H

represents the change of homophily rate, ∇|𝐸 |
denotes the change in informative edges, and

IoU describes the overlap between the original

edges with the current edges

dataset ∇H ∇|𝐸 | Intersection

Actor ↓ 0.056 ↑ 4654 99.72%

Texas ↑ 0.018 ↑ 260 94.31%

Wisconsin ↓ 0.059 ↑ 263 96.93%

Cornell ↓ 0.162 ↑ 161 89.54%

Analyzing the augmented graphs. We charac- 285

terize the newly augmented graphs to under- 286

stand better how they affect the overall perfor- 287

mance by analyzing those searched under the 288

eight-layers configuration. We first calculate 289

the difference of the homophily rate between 290

the new and old graphs. Next, we count the 291

difference of total informative edges, i.e., edges 292

between nodes of similar classes. Finally, we 293

calculate the Intersection between edges of the 294

original to the augmented graph. Table(3) sum- 295

marizes our findings. Herein we observe that 296

our improved graphs do not exhibit a stronger 297

rate of homophily — in comparison to the original graphs — as initially assumed. However, we 298

also observe that, despite the increasing heterophily, the searched graphs include more informative 299

edges while retaining most of the original edges, indicating we are learning new and relevant 300

unseen relationships. Nevertheless, this observation challenges the current research assumption 301

on the correlation between heterophily and performance. We show that performance can still be 302

achieved under low homophily given that enough informative edges are added to the graph and a 303

deeper architecture. 304

Analyzing the method’s effectiveness and efficiency. To evaluate the efficiency of our design, we 305

compare its memory usage and total run time to other NAS-based approaches such as GraphNAS 306

(Gao et al., 2019) and SANE (Zhao et al., 2021). Table(5) summarizes our findings. We could observe: 307

that AutoCoG maintains relatively low memory utilization for each of the datasets tested, and 308

AutoCoG is also the fastest model to complete both its full-search and training stages. 309

Table 4: We characterize the efficiency and effectiveness of our search method by measuring the

memory usage and total run time to search and fully train a model for various datasets.

Actor Texas Wisconsin Cornell

Model GPU(MiB) Run-time(s) GPU(MiB) Run-time(s) GPU(MiB) Run-time(s) GPU(MiB) Run-time(s)

SANE 3890 3788 1070 2686 998 2194 994 3024

GraphNAS 1088 4320 1268 5161 1326 5262 972 4642

Auto-CoG 2634 960 992 427 994 450 984 360
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Analyzing the effectiveness of progressive search. To test the benefit of progressive search, we 310

perform three ablation studies on Texas, Wisconsin, and Cornell at various depths. As shown 311

in the following tables, note that, with progressive search, accuracy is positively correlated to a 312

model’s depth, while the opposite is true when searching without it. This is due to the search 313

instability from the resulting search space size, and a deeper network only further exacerbates 314

the problem. Indeed, we further observe that simply applying GDAS, as in the case of searching 315

without progressive search, only yields poor architectures. The results align with our reasoning in 316

section 3.2.2.

Table 5: We study the effectiveness of progressive search (PS) by comparing Auto-CoG’s performance

at various depth search with and without it.

Texas Wisconsin Cornell

Mode 2 4 8 2 4 8 2 4 8

With PS 77.30 77.57 80.27 79.96 80.20 80.39 64.86 64.32 64.59

Without PS 76.76 73.24 64.86 77.84 63.92 68.23 60.27 59.2 61.08

317

Analyzing graph-model co-search improvement on model’s robustness. First, taking the original 318

graphs, we added random noisy edges to the percentage amount, with respect to the total edges, 319

specified in each column. Next, we performed two searches from these noisy graphs, one without 320

graph co-search and one with. Table (6) summarizes our finding. Here we make the following 321

observations: First, noisy graph data leads to poor model performance from lack of robustness. 322

Second Graph-search can rectify and improve the model’s robustness by removing artificial noise, 323

correspondingly leading to better model performance.

Table 6: We analyze the improved robustness provided by graph-model co-search. First taking the

original graphs, we added random noisy edges to the percentage amount, with respect to the

total edges, specified in each column.

Texas Wisconsin Cornell

Mode 20% 40% 80% 20% 40% 80% 20% 40% 80%

Model Only 74.59 ± 1.39 73.78 ± 1.30 71.35 ± 2.28 65.88 ± 2.11 72.35 ± 0.62 71.35 ± 2.28 54.59 ± 1.13 61.24 ± 2.61 62.70 ± 1.13

Co-Search 80.81 ± 0.85 79.73 ± 1.91 77.29 ± 1.39 80.0 ± 1.24 81.56 ± 1.01 81.96 ± 0.83 66.22 ± 2.29 63.24 ± 1.88 65.40 ± 1.70

324

4.3 Results 325

Table 7: Test Accuracy (%) comparison with other previous state-of-the-art frameworks. Experiments

are conducted on the WebKB, Coauthor, Amazon, and Actor datasets. To highlight only the

model’s performance, we select the best accuracy from each model among different depths

between two to eight layers for each dataset. (*) best result. (**) second best result.

Model Actor Texas Wisconsin Cornell Computer CS Photos Physics Avg improv. Avg Rank

SGC 26.17±1.15 56.41±4.25 51.29±6.44 58.57±3.44 37.53±0.20 70.52±3.96 26.60±4.64 91.46±0.48 ↑ 24.30 9.87

GCN 28.82±0.13 65.95±2.76 57.84±1.81 54.05±0.00 81.62±2.11** 91.83±0.50** 79.76±3.14 93.68±0.22 ↑ 7.43 5.50

GAT 28.24±0.36 62.16±1.21 52.55±1.92 53.78±1.46 77.74±2.02 89.27±0.46 74.56±3.02 93.19±0.36 ↑ 10.18 8.13

GCNII 34.28±1.12** 69.19±6.56 70.31±4.75 61.08±2.76 37.56±0.43 71.67±2.68 62.95±9.41 93.15±0.92 ↑ 14.10 5.75

JKNet 28.80±0.97 61.08±6.23 52.76±5.69 57.30±4.95 67.99±5.07 81.82±3.32 78.42±6.95 90.92±1.61 ↑ 11.73 8.00

APPNP 28.65±1.28 60.68±4.50 54.24±5.94 58.43±3.74 43.02±10.16 91.61±0.49 59.62±23.27 93.75±0.61** ↑ 15.74 7.13

Geom-GCN 31.63±0.02 65.94±1.39 68.63±0.00 59.75±1.80 — — — — ↑ 9.40 5.5

H2GCN 33.13±0.10 82.41±0.07* 79.61±1.01** 80.4 ±0.05* 37.48±0.08 28.83±7.95 46.56±0.17 93.90 ±0.05* ↑ 16.33 4.75

GraphNAS 26.87±2.09 78.11±3.91 63.14±5.13 59.73±4.49 84.66±0.22* 90.11±0.31 91.11±0.18* 93.75±0.60 ↑ 3.18 4.25

SANE 32.05±1.49 71.89±7.77 60.39±10.57 54.59±11.02 78.99±4.3 88.51±0.65 87.72±1.50 OOM ↑ 6.50 5.20

GASSO 27.02±0.05 64.86±0.00 78.43±0.00 64.70±0.00 OOM OOM 89.32±0.05** OOM ↑ 4.88 5.00

Auto-CoG 38.04±0.16* 80.27±2.21** 80.39±0.00* 64.86±2.97** 78.91±2.57 92.05±0.40* 85.16±1.12 93.28±0.58 – 2.50

We compare Auto-CoG to several notable state-of-the-methods inferencing on graphs with 326

increasing degrees of associativity from 0.3 and 0.9. Additionally, we also include average improve- 327
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ment and average rank for quick performance comparison at a glance. Average improvement is the 328

average accuracy difference between Auto-CoG and another model across all datasets, so a higher 329

score indicates a better result. Average rank is a model’s average performance rank for all datasets, 330

so lower is better. For comparison, we include: 331

• NAS based graph models: for this category, we include GraphNAS(Gao et al., 2019), SANE(Zhao 332

et al., 2021) and GASSO(Qin et al., 2021). 333

• Handcrafted graph models: we compare against traditional designs such as GCN (Kipf and 334

Welling, 2016a), SGC (Wu et al., 2019b), GAT (Veličković et al., 2018), GCNII Chen et al. (2020a), 335

JKNet (Xu et al., 2018) and APPNP (Klicpera et al., 2018). Additionally, we also compare against 336

designs that are crafted specifically for disassortative graphs such as Geom-GCN (Pei et al., 2020c) 337

and H2GCN (Zhu et al., 2020b). 338

We summarizes our finding in Table(7). From the results, we make the following observations: 339

• Highlighting the challenge of heterophily, we observe the lack of a dominant approach that can 340

outperform all datasets. However, when we compare their average ranking overall, we do find 341

Auto-CoG ranks highly at 2.5 and able to improve against all other approaches on average. This 342

showcase our method’s robustness in dealing with graphs under different homophily settings 343

• In comparison to other NAS approaches, Auto-CoG reliably outperforms all of them when it 344

comes to disassociative datasets since typical GNNs tend to over-smooth on noisy graph data — an 345

inherent problem for message-passing. Auto-CoG directly modifies its graph data and network’s 346

architecture to overcome this weakness. GASSO (Qin et al., 2021) also performs graph structure 347

search, but it is limited to only learning existing edges attention coefficients and therefore is still 348

susceptible to some degree of over-smoothing. 349

• In comparison to handcrafted baselines, Auto-CoG comfortably outperforms Geom-GCN (Pei 350

et al., 2020c) on Actor and WebKB datasets. Our graph-structured learning process provides a 351

similar function as the "structural neighborhood" concept, which Geom-GCN utilizes for bi-level 352

aggregation. On the other hand, H2GCN (Pei et al., 2020c) shows impressive performance on 353

small Webkb datasets, outperforming Auto-CoG in both Texas and Cornell. However, the model’s 354

’ego-embeddings’ concept does not scale well on larger datasets such as CoAuthor and Amazon, 355

where it repeatedly fails to produce competitive results. 356

5 Conclusion and Limitations 357

In this paper, we present AutoCoG the first NAS framework towards unified data-model co-search 358

for GNNs. Our results convincingly demonstrate the benefit of data-graph co-search for both deep 359

and shallow graph neural networks. Our ablation study shows that controlled variances in graph 360

heterophily can result in a better, more generalized model and the necessity for graph-augmentation 361

to be model-aware. We confidently demonstrate AutoCoG to be a reliable way to discover robust 362

architectures, a stable model training environment, and state-of-the-art results. Additionally, we 363

show that the localized disturbance of graph structure motivates node position learning, allowing 364

for greater generalizability of the model. 365

However, there are still limitations that need to be addressed: large graph scalability and 366

understanding heterophily’s relationship to performance. To address this, we first plan to follow 367

up by learning meaningful model/graph using Auto-CoG via graph-batching. Secondly, we want 368

to conduct a study to understand better the phenomenon between heterophily and performance 369

observed in our ablation. There is no negative societal impact to our best knowledge, except that 370

the NAS search process is resource consuming - but even that excessive cost can be amortized by 371

the re-usability of the searched model, which can achieve superior accuracy-resource trade-off. 372
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6 Reproducibility Checklist 373

1. For all authors. . . 374

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s 375

contributions and scope? [Yes] We claim the benefit of model-graph co-search and prove it 376

with our superior performance in most datasets tested. 377

(b) Did you describe the limitations of your work? [Yes] We describe our two limitations in 378

section 5. 379

(c) Did you discuss any potential negative societal impacts of your work? [Yes] We briefly 380

discuss it in section 5. 381

(d) Have you read the ethics author’s and review guidelines and ensured that your paper 382

conforms to them? https://automl.cc/ethics-accessibility/ [Yes] 383

2. If you are including theoretical results. . . 384

(a) Did you state the full set of assumptions of all theoretical results? [N/A] 385

(b) Did you include complete proofs of all theoretical results? [N/A] 386

3. If you ran experiments. . . 387

(a) Did you include the code, data, and instructions needed to reproduce the main experimen- 388

tal results, including all requirements (e.g., requirements.txt with explicit version), an 389

instructive README with installation, and execution commands (either in the supplemental 390

material or as a url)? [Yes] We provide pseudo-code, experimental settings, and model’s 391

architecture in our supplementary. Full code will be release upon acceptance. 392

(b) Did you include the raw results of running the given instructions on the given code and 393

data? [Yes] 394

(c) Did you include scripts and commands that can be used to generate the figures and tables 395

in your paper based on the raw results of the code, data, and instructions given? [Yes] 396

(d) Did you ensure sufficient code quality such that your code can be safely executed and the 397

code is properly documented? [Yes] 398

(e) Did you specify all the training details (e.g., data splits, pre-processing, search spaces, 399

fixed hyperparameter settings, and how they were chosen)? [Yes] We detailed our hyper- 400

parameters in section 4.1 401

(f) Did you ensure that you compared different methods (including your own) exactly on 402

the same benchmarks, including the same datasets, search space, code for training and 403

hyperparameters for that code? [Yes] 404

(g) Did you run ablation studies to assess the impact of different components of your approach? 405

[Yes] see section 4.2 406

(h) Did you use the same evaluation protocol for the methods being compared? [Yes] 407

(i) Did you compare performance over time? [No] 408

(j) Did you perform multiple runs of your experiments and report random seeds? [Yes] See 409

section 4.1 410

(k) Did you report error bars (e.g., with respect to the random seed after running experiments 411

multiple times)? [Yes] All our results are averaged over 10 times for seed between 0 and 9 412
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(l) Did you use tabular or surrogate benchmarks for in-depth evaluations? [No] This is not 413

within-the-scope of our research. 414

(m) Did you include the total amount of compute and the type of resources used (e.g., type of 415

gpus, internal cluster, or cloud provider)? [No] 416

(n) Did you report how you tuned hyperparameters, and what time and resources this required 417

(if they were not automatically tuned by your AutoML method, e.g. in a nas approach; and 418

also hyperparameters of your own method)? [Yes] we went with default hyper-parameters. 419

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets. . . 420

(a) If your work uses existing assets, did you cite the creators? [Yes] We cited datasets used in 421

section 4.1 422

(b) Did you mention the license of the assets? [No] 423

(c) Did you include any new assets either in the supplemental material or as a url? [No] 424

(d) Did you discuss whether and how consent was obtained from people whose data you’re 425

using/curating? [No] 426

(e) Did you discuss whether the data you are using/curating contains personally identifiable 427

information or offensive content? [No] the benchmarks we used contained no personally 428

identifiable information or offensive content 429

5. If you used crowdsourcing or conducted research with human subjects. . . 430

(a) Did you include the full text of instructions given to participants and screenshots, if appli- 431

cable? [N/A] 432

(b) Did you describe any potential participant risks, with links to Institutional Review Board 433

(irb) approvals, if applicable? [N/A] 434

(c) Did you include the estimated hourly wage paid to participants and the total amount spent 435

on participant compensation? [N/A] 436
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A Appendix 594

A.1 Datasets 595

We evaluate AutoCoG on several popular semi-node classification datasets including (i) the WebKB 596

datasets —Cornell, Texas, Wisconsin— (Craven et al., 1998), (ii) Actor dataset (Tang et al., 2009), 597

(iii) Co-author datasets —CS, Physics— (Shchur et al., 2019), and (iv) Amazon datasets — Photo, 598

Computers — (Shchur et al., 2019). We select these datasets to represent a wide range of graphs 599

under different degrees of homophily, which will serve to demonstrate Auto-CoG robustness in 600

comparison to the different SOTA methods. The specifics on each datasets, in sorted order under 601

homophily, is recorded in Table(8). 602
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Table 8: The Statistics of each dataset. From left to right: unique classes, nodes, edges and embedding

dimension and edge-homophily degree.

dataset |𝑌 | |𝑉 | |𝐸 | |𝐷 | H
Actor 5 7,600 33,544 931 0.375

Texas 5 183 295 1,703 0.411

Wisconsin 5 251 499 1703 0.488

Cornell 5 183 295 1,703 0.567

Computers 10 13,752 491,722 767 0.783

CS 40 18,333 163,788 6,805 0.827

Photos 10 7,650 238,162 745 0.833

Physics 5 34,493 495,924 8,415 0.936

A.2 Algorithm 603

Algorithm 1: AutoCoG Searching Algorithm

Input:𝑊𝑠 , 𝑋 , 𝐺 (𝑉 , 𝐸), searchSpace, epochs, startNumLayer, endNumLayer, stages ;

Output: 𝛼 , 𝐺 (𝑉 , 𝐸), 𝑆 ;
𝐸 ← 𝐸 ;

for s = 0 to stages-1 do
#Initialize new model and architecture parameters

𝛼 ← OnesInitParameters(searchSpace);
𝑊 ← initModel(min(startNumLayer+s, endNumLayer));

for e=0 to epochs-1 do
𝑆 ← 𝜎 (MLP(𝑓 (𝑋,𝐺 (𝑉 , 𝐸);𝑊𝑠));
𝑎 ← Sample(𝛼);
BackPropgate 𝐿𝑜𝑏 𝑗 (𝛼,𝑊 , 𝑆, 𝑋𝑡𝑟𝑎𝑖𝑛,𝐺 (𝑉 , 𝐸)) →𝑊,𝑊𝑠 ;

BackPropgate 𝐿𝑜𝑏 𝑗 (𝛼,𝑊 , 𝑆, 𝑋𝑣𝑎𝑙𝑖𝑑 ,𝐺 (𝑉 , 𝐸)) → 𝛼 ;

end
#Reduce search space and augment edges

𝐸 ← PruneAndGrow(𝑓 (.;𝑊𝑠));
searchSpace← ReduceSearchSpace(searchSpace, 𝛼);

end
𝑆 ← 𝜎 (MLP(𝑓 (𝑋,𝐺 (𝑉 , 𝐸);𝑊𝑠));
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