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Abstract Automated machine learning (AutoML) usually involves several crucial components, such as
Data Augmentation (DA) policy, Hyper-Parameter Optimization (HPO), and Neural Archi-
tecture Search (NAS). However joint optimization of these components remains challenging
due to the largely increased search dimension and the variant input types of each component.
In parallel to this, the common practice of searching for the optimal architecture first and
then retraining it before deployment in NAS often suffers from low performance correlation
between the search and retraining stages. An end-to-end solution that integrates the Au-
toML components and returns a ready-to-use model at the end of the search is desirable. In
view of these, we propose DHA, which achieves joint optimization of Data augmentation
policy, Hyper-parameter and Architecture. Specifically, end-to-end NAS is achieved in a
differentiable manner by optimizing a compressed lower-dimensional feature space, while
DA policy and HPO are updated dynamically at the same time.

1 Introduction
While deep learning has achieved remarkable progress in various tasks such as computer vision and
natural language processing, the design and training of a well-performing deep neural architecture
for a specific task usually requires tremendous human involvement He et al. (2016); Sandler et al.
(2018). To alleviate such burden on human users, AutoML algorithms have been proposed in
recent years to automate the pipeline of designing and training a model, such as automated Data
Augmentation (DA), Hyper-Parameter Optimization (HPO), and Neural Architecture Search (NAS)
Cubuk et al. (2018); Mittal et al. (2020); Chen et al. (2019).) All of these AutoML components are
normally processed independently and the naive solution of applying them sequentially in separate
stages, not only suffers from low efficiency but also leads to sub-optimal results Dai et al. (2020);
Dong et al. (2020). Indeed, how to achieve full-pipeline “from data to model” automation efficiently
and effectively is still a challenging and open problem.

One of the main difficulties lies in understanding how to automatically combine the different
AutoML components (e.g., NAS and HPO) appropriately without human expertise. Another main
challenge of achieving the automated pipeline “from data to model" is understanding how to
perform end-to-end searching and training of models without the need of parameter retraining.
Current approaches, even those considering only one AutoML component such as NAS algorithms,
usually require two stages, one for searching and one for retraining Liu et al. (2019); Xie et al. (2019).

Targeting the challenging task-specific end-to-end AutoML, we propose DHA, a differentiable
joint optimization solution for efficient end-to-end AutoML components, including the DA, HPO and
NAS. In DHA, the optimization strategyweight-sharing Xie et al. (2020) is delicately adopted in DA,
HPO and NAS by respectively introducing the probability matrix, the continuous hyper-parameter
setting and the super-network. Specifically, the DA and HPO are regarded as dynamic schedulers,
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Figure 1: An overview of DHA. We first sample the DA operations for each sample based on the data

transformation parameters τ . Then, a child network is sampled based on the architecture
parameters α, which will be used to process the transformed mini-batch. Training loss
is calculated to update τ , α, and θ. Finaly, the training loss based on updated networks’
weights θ𝑡+1 is used to update hyper-parameters η.

which adapt themselves to the update of network parameters and network architecture. At the same
time, the end-to-end NAS optimization is realized in a differentiable manner with the help of sparse
coding method. Instead of performing our search in a high-dimensional network architecture space,
we optimize a compressed lower-dimensional feature space. With this differentiable manner, DHA
can effectively deal with the huge search space and the high optimization complexity caused by
the joint optimization problem.

2 Methodology

Consider a dataset D = {(𝑥𝑖 , 𝑦𝑖)}𝑁𝑖=1, where 𝑁 is the size of this dataset, and 𝑦𝑖 is the label of the
input sample 𝑥𝑖 . We aim to train a neural network 𝑓 (·), which can achieve the best accuracy
on the test dataset D𝑡𝑒𝑠𝑡 . Multiple AutoML components are considered, including DA, HPO, and
NAS. Let τ , η, α, and θ represent the data augmentation parameters, the hyper-parameters, the
architecture parameters, and the objective neural network parameters, respectively. This problem
can be formulated as

𝑎𝑟𝑔𝑚𝑖𝑛τ ,η,α,θL(τ ,η,α, θ;D)
𝑠 .𝑡 . 𝑐𝑖 (α) ≤ 𝐶𝑖 , 𝑖 = 1, ..., 𝛾,

(1)

where L(·) represents the loss function, D denotes the input data, 𝑐𝑖 (·) refers to the resource cost
(e.g., storage or computation cost) of the current architecture 𝛼 , which is restricted by the 𝑖-th
resource constraints 𝐶𝑖 , and 𝛾 denotes the total number of resource constraints. Considering the
huge search space, it is challenging to achieve the joint optimization of τ , η, α, and θ within
one-stage without parameter retraining. In this work, we propose to use the differentiable method
to provide a computationally efficient solution. See Fig. 1 for an illustration.

2.1 Data augmentation parameters

For every mini-batch of training data B𝑡𝑟 = {(𝑥𝑘 , 𝑦𝑘 )}𝑛
𝑡𝑟

𝑘=1, we conduct data augmentation to
increase the diversity of the training data. For 𝑡-th iteration, we sample 𝑛𝑡𝑟 transformations
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according to data augmentation parameter τ 𝑡 to generate the corresponding augmented samples
in the batch. Given a sampled architecture, the loss function for each augmented sample is denoted
by L𝑡𝑟 (𝑓 (α𝑡 , θ𝑡 ; T𝑘 (𝑥𝑘 ))), where T𝑘 represents the selected transformation. In order to relax τ to
be differentiable, we regard 𝑝𝑘 (τ 𝑡 ), the probability as an importance weight for the loss function.
The objective of data augmentation is to minimize the following loss function:

L𝐷𝐴 (τ 𝑡 ) = −
𝑛𝑡𝑟∑︁
𝑘=1

𝑝𝑘 (τ 𝑡 )L𝑡𝑟 (𝑓 (α𝑡 , θ𝑡 ; T𝑘 (𝑥𝑘 ))). (2)

In this way, DHA aims to increase the probability of those transformations with high training loss.

2.2 Hyper-parameters
At the training stage, we alternatively update θ and η. In 𝑡-th iteration, we can update θ𝑡 based on
the gradient of the unweighted training loss L𝑡𝑟 (𝑓 (α𝑡 , θ𝑡 ;B𝑡𝑟 )) = 1

𝑛𝑡𝑟

∑𝑛𝑡𝑟

𝑘=1 L
𝑡𝑟 (𝑓 (α𝑡 , θ𝑡 ; T𝑘 (𝑥𝑘 ))),

which can be written as θ𝑡+1 = OP(θ𝑡 ,η𝑡 ,∇θL𝑡𝑟 (𝑓 (α𝑡 , θ𝑡 ;B𝑡𝑟 ))), where OP(·) is the optimizer. To
update the hyper-parameters η, we regard θ𝑡+1 as a function of η and compute the training loss
L𝑡𝑟 (𝑓 (α𝑡 , θ𝑡+1(η𝑡 );B𝑡𝑟 )) with network parameters θ𝑡+1(η𝑡 ) on a mini-batch of training data B𝑡𝑟 .
Then, η𝑡 is updated with ∇ηL𝑡𝑟 (𝑓 (α𝑡 , θ𝑡+1(η𝑡 );B𝑡𝑟 )) by:

η𝑡+1 = η𝑡 − 𝛽∇ηL𝑡𝑟 (𝑓 (α𝑡 , θ𝑡+1(η𝑡 );B𝑡𝑟 )), (3)

where 𝛽 is a learning rate. Even θ𝑡 can also be deployed to θ𝑡−1 whose calculation also involves
η𝑡−1, we take an approximation method and regard θ𝑡 here as a variable independent of η𝑡−1.

2.3 Architecture parameters
Following Liu et al. (2019), we denote the each space as a single directed acyclic graph (DAG),
where the probability matrix α consists of vector α𝑇

𝑖,𝑗 = [𝛼1
𝑖, 𝑗 , ..., 𝛼

𝑟
𝑖, 𝑗 , ..., 𝛼

𝑘
𝑖,𝑗 ] and 𝛼𝑟𝑖, 𝑗 represents the

probability of choosing 𝑟 𝑡ℎ operation associated with the edge (𝑖, 𝑗). Instead of directly optimizing
α ∈ R𝑛 , we adopt ISTA-NAS to optimize its compressed representation 𝑏 ∈ R𝑚 where𝑚 << 𝑛,
which can be written as 𝑏 = 𝐴α + 𝜖, where 𝜖 ∈ R𝑚 represents the noise and 𝐴 ∈ R𝑚×𝑛 is the
measurement matrix which is randomly initialized. α is optimized by using iterative shrinkage
thresholding algorithm Daubechies et al. (2004), which can be written as:

α𝑡+1 = 𝜂𝜆/𝐿 (α𝑡 − 1
𝐿
𝐴𝑇 (𝐴α − 𝑏)), 𝑡 = 0, 1, ..., (4)

where 𝐿 represents the LASSO formulation which can be written as𝑚𝑖𝑛
α

1
2 | |𝐴α − 𝑏 | |22 + 𝜆 | |α| |1;

the 𝜆 represents the regularization parameters and the 𝜂𝜆/𝐿 is the shrinkage operator as defined
in Beck and Teboulle (2009). Thus we have α𝑇

𝑗 o𝑗 = (𝑏𝑇𝑗 𝐴 𝑗 − [α𝑗 (𝑏 𝑗 )]𝑇𝐸 𝑗 )𝑜 𝑗 , where 𝑜 𝑗 refer to all
possible operations connected to note 𝑗 and 𝐸 𝑗 = 𝐴𝑇

𝑗 𝐴 𝑗 − 𝐼 . With this relaxation, 𝑏 can be optimized
through calculating the gradient concerning training loss.

2.4 Joint-optimization
Based on the above analysis of each AutoML module, DHA realizes end-to-end joint optimization of
automated data augmentation parameters τ , hyper-parameters η, and architecture parameters α.
The main reason that DHA could optimize large-scale search space in an effective manner, is that
DHA delicately adopt weight-sharing in the joint-optimization for different parameters. Instead
of only optimizing a sub-network with a DA strategy and a hyper-parameter setting to check
the performance of certain setting, we realize the joint-optimization with the help of a super-net
network, a DA probability matrix and continuous hyper-parameter setting. In that way, DHA can
make use of previous trained parameter weights to check the performance setting, which largely
decreases the computational request.
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3 Experiments

3.1 Experiment setting

Datasets. Following Ru et al. (2020), we conducted experiments on various datasets, including
CIFAR10, CIFAR100, SPORT8, MIT67 and IMAGNET for the object classification task Krizhevsky
et al. (2009); Li and Fei-Fei (2007); Quattoni and Torralba (2009); Nilsback and Zisserman (2008).
Search space. (1) Automated DA. Following Ho et al. (2019), we consider 14 different operations
for data augmentation, such as AutoContrast and Equalize. The magnitude of each operation is
randomly sampled from the uniform distribution. (2) NAS. Following Liu et al. (2019) and Cai et al.
(2019), we consider both the cell-based and the MobileNet search space, which regards the whole
architecture as a stack similar cells. (3) HPO.We consider both the L2 regularization (i.e., weight
decay) and the learning rate in the experiments.
Baselines. We compare DHAwith various AutoML algorithms (see Table 1). To further demonstrate
the benefits of joint optimization of multiple AutoML components, we also include a baseline,
Sequential DHA, which resembles the common practice by human to optimize different components
in sequence. Specifically, Sequential DHA consists of two stages. During the first stage, Sequential
DHA performs NAS to find the optimal architecture under certain hyper-parameter settings. In the
next stage, Sequential DHA performs the online DA and HPO strategy proposed in our paper and
trains the architecture derived from the first stage from scratch.

Table 1: Top-1 accuracy (%) and computational time (GPU hour) of different AutoML algorithms on
CIFAR10, CIFAR100, SPORT8, MIT67 and IMAGNET with Cell-Based Search Space.

Model CIFAR10 CIFAR100 SPORT8 MIT67 IMAGNET
Acc Acc Acc Acc Acc

ENAS Pham et al. (2018) 95.85±0.17 78.02±0.55 94.54±0.35 71.05±0.29 -
NSGA-NET Lu et al. (2019) 96.18±0.37 77.31±0.14 92.53±0.34 70.20±0.41 -
DARTS Liu et al. (2019) 97.24±0.10 82.37±0.34 93.87±0.35 70.73±0.24 73.30

P-DARTS Chen et al. (2019) 97.13±0.07 82.46±0.37 92.45±0.66 70.70±0.29 75.30
MANAS Carlucci et al. (2019) 97.18±0.07 82.07±0.14 94.46±0.22 71.36±0.19 73.85

One-Stage ISTA Yang et al. (2020) 97.64±0.20 83.10±0.11 94.33±0.12 72.12±0.03 76.00
Sequential DHA 97.77±0.14 83.51±0.12 94.55±0.09 72.34±0.14 76.70

DHA 98.11±0.26 83.93±0.23 95.06±0.13 73.35±0.19 77.40

3.2 Results

As shown in Table 1, methods optimizing all of DA, HPO and NAS automatically (i.e, Sequential
DHA and DHA) consistently outperform those NAS algorithms with manual designed DA and HPO.
Specifically, DHA achieves SOTA results on all datasets. This shows the clear performance gain
of extending the search scope from architecture to including also data augmentation and hyper-
parameters, justifying the need for multi-component optimization in AutoML. Moreover, despite
optimising over a larger search space, DHA remains cost efficient. For example, on CIFAR100, DHA
enjoys 1.56% higher test accuracy than DARTS but requires 42% less time. Besides, the comparison
between DHA and Sequential DHA reveals the evident advantage of doing DA, HPO and NAS
jointly over doing them separately in different stages.

4 Conclusion

In this work, we present DHA, an end-to-end joint-optimization method for three important
components of AutoML, including DA, HPO and NAS. This differentiable joint-optimization method
can efficiently optimize larger search space than previous AutoML methods and achieve SOTA
results on various datasets with a relatively low computation cost.
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5 Limitations and Broader Impact Statement

Conventional neural architecture search methods perform a search over a fixed set of architecture
candidates and then apply or search for a separate set of hyper-parameters when retraining the
best architecture derived from the architecture search phase. Such search protocol may lead to
sub-optimal results Zela et al. (2018); Dong et al. (2020) as it neglects the influence of training
hyper-parameters on architecture performance and ignores superior architectures under alternative
hyper-parameter values Dai et al. (2020). Given this, several works have been proposed to jointly
optimize architecture structure and training hyper-parameters Dai et al. (2020); Wang et al. (2020);
Dong et al. (2020).

However, previous AutoML algorithms usually focus on one or two components and ignores
the coupling relationship among different components. DHA firstly presents an end-to-end joint-
optimization method for three important components of AutoML including Data Augmenta-
tion, Neural Architecture Search, and Hyperparameter Optimization. This differentiable joint-
optimization method can efficiently optimize larger search space with the help of the weight
sharing strategy than previous joint-optimization AutoML methods and achieve a better result
with a relatively lower computation cost. Moreover, experiments in this paper have also proved
that the performance of simultaneous joint-optimization AutoML method outperforms pipeline-
optimization AutoML method. Our method mainly concentrates on optimizing the differentiable
hyper-parameter like weight decay and momentum. According to Li et al. (2020), learning rate
and weight decay are the two most important hyper-parameters in model training. Experimental
results also show the effectiveness of our search space.
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6 Appendix

6.1 Experimental Settings

6.1.1 Search Space. (1) Automated DA. Following Ho et al. (2019), we consider 14 different operations
for data augmentation, including: AutoContrast Equalize Rotate Posterize Solarize Color
Contrast Brightness Sharpness Shear X Shear Y Translate X Translate Y Identity. The

magnitude ranging from 0 to 10 of each operation is randomly sampled from a uniform distribution.
At each time, two operations would be sampled according to τ and would be successively applied
to each sample.
(2) NAS. Following Liu et al. (2019), we consider the cell-based search space, which regards the
whole architecture as a stack of similar cells. Each cell consists of a fixed number of nodes and
our model tries to find the best operation combination between different nodes. One difference
worth mentioning is that in contrast to DARTS Liu et al. (2019) which has 8 different operations
between two nodes, we adopt the setting in Yang et al. (2020) which only considers 7 different
operation options between two nodes including: 3 × 3 Separable Convolutions 5 × 5 Separable
Convolutions 3 × 3 Dilated Separable Convolutions 5 × 5 Dilated Separable Convolutions 3 ×
3 Max Pooling 3 × 3 Average Pooling Identity. To check the generalization of DHA, we also
have tested our model with MobilenetV2 search space Tan and Le (2019). MobilenetV2 search space
consists of Mobilenet blocks with kernel size {3, 5, 7}, expansion ratio {3, 6} and identity operation.
(3) HPO. In our model, we consider both the L2 regularization(i.e., weight decay) and the learning
rate in the experiments involving the HPO.

6.1.2 Setting. Experiments are run on 8 NVIDIA V100s under PyTorch-1.3.0 and python3.6. We adopt the
hyper-parameter setting in Liu et al. (2019). As to the two-stage NAS, for experiments with CIFAR10,
CIFAR100, SPORT8, MIT67, and FLOWERS102 during the search phase, the initial channel number
and the cell number of the architecture are respectively 16 and 8. During the retraining/tuning
phase, the final channel number and the cell number of the architecture are respectively 36 and 20.
For experiments with ImageNet, the initial channel number of the architecture is 48 and the cell
number of the architecture is 4. During the final retraining/tuning phase, the final channel number
and the cell number of the architecture are respectively 48 and 14. As to the one-stage NAS, for
experiments with CIFAR10, CIFAR100, SPORT8, MIT67, and FLOWERS102, the channel number
and the cell number of the architecture are respectively 36 and 20. For experiments with ImageNet,
the channel number and the cell number of the architecture are respectively 48 and 14.

Moreover, the Adam optimizer is used in the DHA optimization process. Learning rate and
weight decay are randomly initialized. The main reason for setting the lower bound and upper
bound is to prevent negative values and large values. We have set the number of epochs as our
stopping criterion. Variances shown in experiment results are mainly caused by setting different
random seeds, which are used to show the stability of our model.

6.2 Details of Sequential DHA

Sequential DHA consists of two stages. During the first stage, Sequential DHA performs NAS to
find the optimal architecture under certain hyper-parameter settings. In the next stage, Sequential
DHA performs the online DA and HPO strategy proposed in our paper and trains the architecture
derived from the first stage from scratch.
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