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We present the related supplements in the following sections. It contains the proof of theoretical
analysis section for Theorem A.9, Theorem 4.1 and Theorem 4.5, experimental details, and extra
results.

A PROOF OF THEORETICAL ANALYSIS

A.1 ASSUMPTIONS

Assumption A.1. The loss functions are L-smooth, which means they are continuously differentiable
and their gradients are Lipschitz-continuous with Lipschitz constant L > 0, whereas:

∀i ∈ N, ∀w1,w2 ∈ Rd, ∥∇L(w1))−∇L(w2))∥2 ≤ L ∥w1 −w2∥2
∥∇ℓ(w1;D)−∇ℓ(w2;D)∥2 ≤ L∥w1 −w2∥2

Assumption A.2. The loss function ℓ(wi, D) are µ-strongly convex:

∃µ > 0,∀w1,w2 ∈ Rd,∇ℓ(w∗;D) = 0,∇L(w∗) = 0

2 (L(w1)− L(w2)) ≥ 2 ⟨∇L(w2),w1 −w2⟩+ µ ∥w1 −w2∥22
2 (ℓ(w1;D)− l(w2;D)) ≥ 2 ⟨∇ℓ(w2;D),w1 −w2⟩+ µ ∥w1 −w2∥22

Assumption A.3. The expected square norm of gradients w is bounded:

∀w ∈ Rd,∃Gw <∞,E ∥∇ℓ(w;D)∥22 ≤ G
2
w

Assumption A.4. The variance of gradients w is bounded:

∀w ∈ Rd,∃Vw <∞,E ∥∇ℓ(w;D)− E(∇ℓ(w;D)∥22 ≤ Vw

A.2 PROOF OF THEOREM A.9 AND THEOREM 4.1

A.2.1 LEMMAS

The lemmas we utilize in the proof of Theorem A.9 and Theorem 4.1, are presented here due to the
page limit.
Lemma A.5. Assume Assumption A.4 holds, according to our Algorithm 1, it follows that

E
∥∥F(wt−1)−∇L(wt−1)

∥∥2
2
≤ (1− 2θ) CVw

√
B

Where

F(wt−1) =
∑

i∈St−1

pt−1
i ∇ℓ(wt−1

i ;Dt−1
i )

Lemma A.6. From Assumption A.1 and A.2, L(w) is L-smooth and µ-strongly convex. Then
∀w1,w2 ∈ Rd, one has

⟨∇ℓ(w1)−∇ℓ(w2),w1 −w2⟩ ≥
Lµ

L+ µ
∥w1 −w2∥22 +

1

L+ µ
∥∇ℓ(w1)−∇ℓ(w2)∥22

Lemma A.7. Assume Assumption A.1, Assumption A.2 and Lemma A.6 hold, we have

∥∥wt−1 − r∇L(wt−1)−w∗∥∥2
2
≤

N∑
i=1

pt−1
i

∥∥wt−1 −wt−1
i

∥∥2
2

+

(
r2
(
1 + L2

)
− 2rLµ+ 1

L+ µ

)∥∥wt−1 −w∗∥∥2
2

(4)

Lemma A.8. Assume Assumption A.3 holds, it follows that

E
N∑
i=1

pt−1
i

∥∥wt−1 −wt−1
i

∥∥2
2
≤ (E − 1)

2
r2G2w
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A.2.2 PROOF OF LEMMAS

Lemmas A.5, Lemmas A.8, Lemmas A.6 and Lemmas A.7 are all the lemmas we utilise during the
proof of Theorem A.9, and we prove them in that order. Notice, Lemmas A.6 are used in the proof
Lemmas A.7, and Theorem A.9 is proved using Lemmas A.5, Lemmas A.8 and Lemmas A.7.

Proof of Lemma A.5

Proof. Due to Assumption A.4 and Algorithm 1, we have

E
∥∥F(wt−1)−∇L(wt−1)

∥∥2
2
= Var

(
F(wt−1)

)
= ESt−1

∥∥∥∥∥ ∑
i∈St−1

pt−1
i

(
∇ℓ(wt−1

i ;Dt−1
i )−∇ℓ(wt−1

i )
)∥∥∥∥∥

2

2

=
∑

i∈St−1

(
pt−1
i

)2 E∥∥∇ℓ(wt−1
i ;Dt−1

i )−∇ℓ(wt−1
i )

∥∥2
2

≤
∑

i∈St−1

(
pt−1
i

)2 Vw ≤ Vw ∑
i∈St−1

(
vt−1
i∑

i∈St−1 v
t−1
i

)2

≤ Vw
∑

i∈St−1

(
vt−1
i

)2(∑
i∈St−1 v

t−1
i

)2 ≤ Vw∑i∈St−1

(
vt−1
i

)2∑
i∈St−1 v

t−1
i

≤ Vw
∑

i∈St−1

vt−1
i ≤ (1− 2θ) qNVw

√
B (5)

Proof of Lemma A.6

Proof. Let g(w) = ℓ(w)− ς
2 ∥w∥

2
2. Base on the Assumption A.2, we have g(w) is (L− ς)-strongly

convex. from Bubeck et al. (2015) Equation 3.6, we have

⟨∇ℓ(w1)−∇ℓ(w2),w1 −w2⟩ ≥
1

L
∥∇ℓ(w1)−∇ℓ(w2)∥22 (6)

Hence,

⟨∇g(w1)−∇g(w2),w1 −w2⟩ ≥
1

L− ς
∥∇g(w1)−∇g(w2)∥22 (7)

Now We have

⟨∇
(
ℓ(w1)−

ς

2
∥w1∥22

)
−∇

(
ℓ(w2)−

ς

2
∥w2∥22

)
,w1 −w2⟩

≥ 1

L+ µ

∥∥∥∇(ℓ(w1)−
ς

2
∥w1∥22

)
−∇

(
ℓ(w2)−

ς

2
∥w2∥22

)∥∥∥2
2

(8)

And therefore

⟨∇ℓ(w1)−∇ℓ(w2),w1 −w2⟩ − ⟨ςw1 − ςw2,w1 −w2⟩

≥ 1

L− ς
∥(∇ℓ(w1)−∇ℓ(w2))− (ςw1 − ςw2)∥22 (9)

Refer to Assumption A.1, we obtain
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⟨∇ℓ(w1)−∇ℓ(w2),w1 −w2⟩ ≥
Lς

L− ς
∥w1 −w2∥22 −

2ς

L− ς
⟨∇ℓ(w1)−∇ℓ(w2),w1 −w2⟩

+
1

L− ς
∥∇ℓ(w1)−∇ℓ(w2)∥22

≥ − Lς

L− ς
∥w1 −w2∥22 +

1

L− ς
∥∇ℓ(w1)−∇ℓ(w2)∥22 (10)

Let ς = −µ, then we conclude the proof of Lemma A.6.

Proof of Lemma A.7

Proof. We have

∥∥wt−1 − rt−1∇L(wt−1)−w∗∥∥2
2
=
∥∥wt−1 −w∗∥∥2

2
−2rt−1

〈
∇L(wt−1),wt−1 −w∗〉︸ ︷︷ ︸

A1

+ r2t−1

∥∥∇L(wt−1)
∥∥2
2︸ ︷︷ ︸

A2

(11)

For part A1 under the Assumption A.2, Lemma A.6 and Maclaurin inequality, we have

A1 = −2rt−1

N∑
i=1

pt−1
i

〈
∇ℓ(wt−1

i ),wt−1 −w∗〉
= −2rt−1

N∑
i=1

pt−1
i

(〈
∇ℓ(wt−1

i ),wt−1 −wt−1
i

〉)
− 2rt−1

N∑
i=1

pt−1
i

(〈
∇ℓ(wt−1

i ),wt−1
i −w∗〉)

≤
N∑
i=1

pt−1
i

(
r2t−1

∥∥∇ℓ(wt−1
i )

∥∥2
2
+
∥∥wt−1 −wt−1

i

∥∥2
2

)
−

2rt−1

N∑
i=1

pt−1
i

(
1

L+ µ

∥∥∇ℓ(wt−1
i )

∥∥2
2
+

Lµ

L+ µ

∥∥wt−1
i −w∗∥∥2

2

)

=

(
r2t−1 −

1

L+ µ

) N∑
i=1

pt−1
i

(∥∥∇ℓ(wt−1
i )

∥∥2
2

)
+

N∑
i=1

pt−1
i

∥∥wt−1 −wt−1
i

∥∥2
2
− 2rt−1Lµ

L+ µ

∥∥wt−1 −w∗∥∥2
2

From Assumption A.1 and Jensen inequality, we can derive:

∥∥∇ℓ(wt−1
i )−∇ℓ(w∗)

∥∥2
2
≤ L2

∥∥wt−1
i −w∗∥∥2

2
(12)
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Hence for A1, by Jensen inequality and Equation 12, we have

A1 ≤
(
r2t−1 −

1

L+ µ

) N∑
i=1

pt−1
i

(∥∥∇ℓ(wt−1
i )

∥∥2
2

)
+

N∑
i=1

pt−1
i

∥∥wt−1 −wt−1
i

∥∥2
2
− 2rt−1Lµ

L+ µ

∥∥wt−1 −w∗∥∥2
2

≤
(
r2t−1 −

1

L+ µ

) N∑
i=1

pt−1
i

∥∥wt−1
i −w∗∥∥2

2

+

N∑
i=1

pt−1
i

∥∥wt−1 −wt−1
i

∥∥2
2
− 2rt−1Lµ

L+ µ

∥∥wt−1 −w∗∥∥2
2

≤
(
r2t−1 −

2rt−1Lµ+ 1

L+ µ

)∥∥wt−1 −w∗∥∥2
2

+

N∑
i=1

pt−1
i

∥∥wt−1 −wt−1
i

∥∥2
2

Similar for A2, we have

A2 = r2t−1

∥∥∥∥∥
N∑
i=1

pt−1
i ∇ℓ(wt−1

i )

∥∥∥∥∥
2

2

≤ r2t−1

N∑
i=1

pt−1
i

∥∥∇ℓ(wt−1
i )

∥∥2
2

≤ r2t−1L
2

N∑
i=1

pt−1
i

∥∥wt−1
i −w∗∥∥2

2

= r2t−1L
2
∥∥wt−1 −w∗∥∥2

2

Then we combine results of A1 and A2 for Equation 11, it follows that

∥∥wt−1 − rt−1∇L(wt−1)−w∗∥∥2
2
≤
(
r2t−1

(
1 + L2

)
− 2rt−1Lµ+ 1

L+ µ

)∥∥wt−1 −w∗∥∥2
2

+

N∑
i=1

pt−1
i

∥∥wt−1 −wt−1
i

∥∥2
2

(13)

Proof of Lemma A.8

Proof. For each E step FL necessitates a communication. As a result, for any t − 1 ≥ 0, ∃t∗ ≤
t − 1 that t − t∗ ≤ E, t∗ ∈ T , accordingly ∀i, j ∈ St∗ ,wt∗

i = wt∗

j = wt∗ . Then, based on
E ∥X− EX∥22 ≤ E ∥X∥22, Jensen inequality and Assumption A.3, we have

16



Under review as a conference paper at ICLR 2024

E
N∑
i=1

pt−1
i

∥∥wt−1 −wt−1
i

∥∥2
2
= ESt∗

∑
i∈St∗

pt−1
i

∥∥∥(wt−1
i −wt∗

)
−
(
wt−1 −wt∗

)∥∥∥2
2

= ESt∗

[
ESt∗

∥∥∥(wt−1
i −wt∗

)
− ESt∗

[
wt−1

i −wt∗
]∥∥∥2

2

)
≤ ESt∗

[
ESt∗

∥∥∥(wt−1
i −wt∗

)∥∥∥2
2

]
= ESt∗

∑
i∈St∗

pt−1
i

∥∥∥wt−1
i −wt∗

∥∥∥2
2

= ESt∗
∑
i∈St∗

pt−1
i

∥∥∥∥∥
t−2∑
t=t∗

∇ℓ(wt−1
i , Dt−1

i )

∥∥∥∥∥
2

2

≤
∑
i∈St∗

pt−1
i ESt∗ (t− 1− t∗)

t−2∑
t=t∗

r2t−1

∥∥∇ℓ(wt−1
i , Dt−1

i )
∥∥2
2

≤
∑
i∈St∗

pt−1
i (E − 1)

t−2∑
t=t∗

r2t−1

∥∥∇ℓ(wt−1
i , Dt−1

i )
∥∥2
2

≤
∑
i∈St∗

pt−1
i (E − 1)

t−2∑
t=t∗

r2t−1G2w

≤
∑
i∈St∗

pt−1
i (E − 1)

2
r2t−1G2w

≤ (E − 1)
2
r2t−1G2w (14)

A.2.3 THEOREM A.9

Theorem A.9. Under Assumptions A.1, A.2, A.3 and A.4, and m = 0. Choose α = L+µ
µL and

β = 2 (L+1)(L+µ)
µL , then FEDQV satisfies

EL(wT )− L(w∗) ≤ L

2φ+ T

(
φE

∥∥w0 −w∗∥∥2
2
+

α2

2
∆

)
(15)

Where

∆ = (E − 1)
2 G2w + (1− 2θ) CVw

√
B, φ = α (L+ 1) , wt =

N∑
i=1

ptiw
t
i , p

t
i =

1

C
1i∈St

A.2.4 PROOF OF THEOREM A.9

Proof. In t round, due to m = 0, we have:∥∥wt −w∗∥∥2
2
=
∥∥wt−1 − rt−1M(wt−1)−w∗∥∥2

2
=
∥∥wt−1 − rt−1F(wt−1)−w∗∥∥2

2

=
∥∥wt−1 − rt−1∇L(wt−1)−w∗∥∥2

2︸ ︷︷ ︸
A

+ r2t−1

∥∥F(wt−1)−∇L(wt−1)
∥∥2
2︸ ︷︷ ︸

B

+ 2rt−1

〈
wt−1 − rt−1∇L(wt−1)−w∗,F(wt−1)−∇L(wt−1)

〉︸ ︷︷ ︸
C

(16)

Where

M(wt−1) =
∑

i∈St−1

pt−1
i Mi(w

t−1
i )
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Note that EC = 0. For the expectation of A, from Lemma A.7 and Lemma A.8, it follows that

E[A] = E
∥∥wt−1 − rt−1∇L(wt−1)−w∗∥∥2

2

≤
(
r2t−1

(
1 + L2

)
− 2rt−1Lµ+ 1

L+ µ

)∥∥wt−1 −w∗∥∥2
2

+ (E − 1)
2
r2t−1G2w

(17)

We use Lemma A.5 to bound B, we have

E[B] ≤ r2t−1 (1− 2θ) qNVw
√
B (18)

Hence, we have

E
∥∥wt −w∗∥∥2

2
≤ r2t−1

(
1 + L2

)
E
∥∥wt−1 −w∗∥∥2

2

− 2rt−1Lµ+ 1

L+ µ
E
∥∥wt−1 −w∗∥∥2

2
+ r2t−1∆ (19)

where
∆ = (E − 1)

2 G2w + (1− 2θ) qNVw
√
B

For the learning rate rt, ∃α > L+µ
2µL ,∃β > 0, such that rt = α

β+t ≤
1

L+1 . We use mathematical
induction to prove the following statement:
Proposition: ∀t ∈ N,E ∥wt −w∗∥22 ≤

γ
β+t , where γ = max

{
(L+µ)α2∆
2αµL−L−µ , β E

∥∥w0 −w∗
∥∥2
2

}
.

Let P (t) be the statement E ∥wt −w∗∥22 ≤
γ

β+t , we give a proof by induction on t.
Base case: The statement P (0) holds for t = 0:

E
∥∥w0 −w∗∥∥2

2
≤ γ

β

Inductive step: Assume the induction hypothesis that for a particular j, the single case t = j holds,
meaning P (j) is true:

E
∥∥wj −w∗∥∥2

2
≤ γ

β + j

It follows that:

E
∥∥wj+1 −w∗∥∥2

2
≤
(
r2t
(
1 + L2

)
− 2rtLµ+ 1

L+ µ

)
E
∥∥wj −w∗∥∥2

2
+ r2t∆

≤
(
1− 2Lµα

(L+ µ)(β + j)

)
γ

β + j
+

(
α

β + j

)2

∆

=

[
α2∆

(β + j)2
− 2αµL− L− µ

(β + j)2(L+ µ)
γ

]
+

β + j − 1

(β + j)
2 γ

≤ γ

β + j + 1

Therefore, the statement P (j +1) also holds true, establishing the inductive step. Since both the base
case and the inductive step have been proved as true, by mathematical induction the statement P (t)
holds for ∀t ∈ N.

We choose α = L+µ
µL and β = 2 (L+1)(L+µ)

µL , and we have

γ =max

{
(L+ µ)α2∆

2αµL− L− µ
, β E

∥∥w0 −w∗∥∥2
2

}
≤ (L+ µ)α2∆

2αµL− L− µ
+ β E

∥∥w0 −w∗∥∥2
2

= α2∆+ 2(L+ 1)αE
∥∥w0 −w∗∥∥2

2
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Then based on Assumption A.1 and Taylor expansion, we have the quadratic upper-bound of L(·):

L(w1)− L(w2) ≤ (w1 −w2)
T∇L(w2) +

L

2
∥w1 −w2∥22

It follows that

EL(wT )− L(w∗) ≤ L

2
E
∥∥wT −w∗∥∥2

2
≤ γL

2(β + T )

≤ L

2α(L+ 1) + T

(
α2

2
∆ + α(L+ 1)E

∥∥w0 −w∗∥∥2
2

)
=

L

2φ+ T

(
φE

∥∥w0 −w∗∥∥2
2
+

α2

2
∆

)
Where

∆ = (E − 1)
2 G2w + (1− 2θ) CVw

√
B, φ = α (L+ 1) , wt =

N∑
i=1

ptiw
t
i , p

t
i =

1

C
1i∈St

A.2.5 PROOF OF THEOREM 4.1

Proof. In the t round, we have:∥∥wt −w∗∥∥2
2
=
∥∥wt−1 − rt−1M(wt−1)−w∗∥∥2

2

=
∥∥wt−1 − rt−1F(wt−1)−w∗ + rt−1F(wt−1)− rt−1M(wt−1)

∥∥2
2

=
∥∥wt−1 − rt−1F(wt−1)−w∗∥∥2

2︸ ︷︷ ︸
A

+ r2t−1

∥∥F(wt−1)−M(wt−1)
∥∥2
2︸ ︷︷ ︸

B

+ 2rt−1

〈
wt−1 − rt−1F(wt−1)−w∗,F(wt−1)−M(wt−1)

〉︸ ︷︷ ︸
C

(20)

Where

M(wt−1) =
∑

i∈St−1

pt−1
i Mi(w

t−1
i )

For the expectation of A, from Theorem A.9, it follows that

E[A] ≤ 1

2φ+ t

(
2φE

∥∥w0 −w∗∥∥2
2
+ α2∆

)
(21)

For B, we have

E[B] = r2t−1

∥∥∥∥∥ ∑
i∈St−1

pt−1
i ∇ℓ(wt−1

i )−
∑

i∈St−1

pt−1
i Mi(w

t−1
i )

∥∥∥∥∥
2

2

= r2t−1

∥∥∥∥∥ ∑
i∈St−1

pt−1
i

(
∇ℓ(wt−1

i )−Mi(w
t−1
i )

)∥∥∥∥∥
2

2

≤ r2t−1

∥∥∥∥∥ ∑
i∈mN

pt−1
i

(
∇ℓ(wt−1

i )−Mi(w
t−1
i )

)∥∥∥∥∥
2

2

(22)

Where m is the percentage of the malicious parties.

Due to Equation 1, we have

θ ≤
〈
∇ℓ(wt−1

i ),Mi(w
t−1
i )

〉∥∥∇ℓ(wt−1
i

∥∥ · ∥∥Mi(w
t−1
i )

∥∥ ≤ 1− θ (23)
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Thus,

θ
∥∥∇ℓ(wt−1

i )
∥∥∥∥Mi(w

t−1
i )

∥∥ ≤ 〈∇ℓ(wt−1
i ),Mi(w

t−1
i )

〉
≤ (1− θ)

∥∥∇ℓ(wt−1
i )

∥∥∥∥Mi(w
t−1
i )

∥∥
(24)

Due to this, we have∥∥∇ℓ(wt−1
i )

∥∥2
2
− 2(1− θ)

∥∥∇ℓ(wt−1
i

∥∥∥∥Mi(w
t−1
i )

∥∥+ ∥∥Mi(w
t−1
i )

∥∥2
2

≤
∥∥∇ℓ(wt−1

i )−Mi(w
t−1
i )

∥∥2
2

≤
∥∥∇ℓ(wt−1

i )
∥∥2
2
− 2θ

∥∥∇ℓ(wt−1
i )

∥∥∥∥Mi(w
t−1
i )

∥∥+ ∥∥Mi(w
t−1
i )

∥∥2
2

(25)

Hence we have

θ(2− θ)
∥∥∇ℓ(wt−1

i )
∥∥2
2
+
∥∥(1− θ)

∥∥∇ℓ(wt−1
i )

∥∥− ∥∥Mi(w
t−1
i )

∥∥∥∥2
2

≤
∥∥∇ℓ(wt−1

i )−Mi(w
t−1
i )

∥∥2
2

≤ (1− θ2)
∥∥∇ℓ(wt−1

i )
∥∥2
2
+
∥∥θ ∥∥∇ℓ(wt−1

i )
∥∥− ∥∥Mi(w

t−1
i )

∥∥∥∥2
2

(26)

Hence,

θ(2− θ)
∥∥∇ℓ(wt−1

i )
∥∥2
2
≤
∥∥∇ℓ(wt−1

i )−Mi(w
t−1
i )

∥∥2
2

(27)

Due to the Triangle Inequality, we have√
θ(2− θ)

∥∥∇ℓ(wt−1
i )

∥∥ ≤ ∥∥∇ℓ(wt−1
i )−Mi(w

t−1
i )

∥∥ ≤ ∥∥∇ℓ(wt−1
i )

∥∥+ ∥∥Mi(w
t−1
i )

∥∥ (28)

It follows that: (√
θ(2− θ)− 1

)∥∥∇ℓ(wt−1
i )

∥∥ ≤ ∥∥Mi(w
t−1
i )

∥∥ (29)

By incorporating Equation 26 and leveraging the AM-GM inequality, we can derive the following
expression∥∥∇ℓ(wt−1

i )−Mi(w
t−1
i )

∥∥2
2
≤ (1− θ2)

∥∥∇ℓ(wt−1
i )

∥∥2
2
+
∥∥θ ∥∥∇ℓ(wt−1

i )
∥∥− ∥∥Mi(w

t−1
i )

∥∥∥∥2
2

≤
(
1− θ2 +

(
1 + θ +

√
θ(2− θ)

)2)∥∥∇ℓ(wt−1
i )

∥∥2
2

≤
(
4 + 6θ − θ2

) ∥∥∇ℓ(wt−1
i )

∥∥2
2

(30)

Therefore,

E[B] ≤ r2t−1

∥∥∥∥∥ ∑
i∈mN

pt−1
i

(√
4 + 6θ − θ2

∥∥∇ℓ(wt−1
i )

∥∥)∥∥∥∥∥
2

2

≤
(
4 + 6θ − θ2

)
m2N2r2t−1G2w (31)

Hence for C, we have

E[C] ≤
2mNGwr2t−1

√
4 + 6θ − θ2

2φ+ t

(
2φE

∥∥w0 −w∗∥∥2
2
+ α2∆

)
(32)

Then based on Assumption A.1 and Taylor expansion, we have the quadratic upper-bound of L(·):

L(w1)− L(w2) ≤ (w1 −w2)
T∇L(w2) +

L

2
∥w1 −w2∥22

It follows that

EL(wT )− L(w∗) ≤ L

2
E
∥∥wT −w∗∥∥2

2

≤ L+ 2LrT−1ϖ

2φ+ T

(
φE

∥∥w0 −w∗∥∥2
2
+

α2

2
∆

)
+

Lϖ2

2

Where φ = α (L+ 1), ϖ = mNGwrT−1

√
4 + 6θ − θ2
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A.3 PROOF OF THEOREM 4.5

A.3.1 LEMMAS

Lemma A.10. f is monotone: : ∀v−i and ∀v′

i > vi, if f(vi, v−i) ∈Wi, then f(v
′

i, v−i) ∈Wi.

Lemma A.11. In FEDQV, ∀i, vi, v−i that f(vi, v−i) ∈ Wi, we have that pi(vi, v−i) = Φi(v−i),
where Φi is the critical value of a monotone function f on a single parameter domain that Φi(v−i) =
supvi:f(vi,v−i)/∈Wi

vi.

A.3.2 PROOF OF LEMMAS

Proof of Lemmas A.10

Proof. ∀v−i and ∀v′

i > vi, based on the voting scheme, if the party i who submit si join the
aggregation with vi, which means f(vi, v−i) ∈Wi, then this party can also submit ∀s′

i < si that lead
to v

′

i > vi, and still join the aggregation. In other words, f(v
′

i, v−i) ∈Wi. Thus, f is monotone.

Proof of Lemmas A.11

Proof. The number of parties is C in each round. In voting scheme that follows Equation 1, the parties
whose si ≤ θ and si ≥ 1− θ pay 0 credits voice. After Equation 2, the parties with 0 credit voice or
0 budget gain 0 vote. Assuming there are the top k(k < C) parties in ranking whose payments are
cj∈k (cj∈k > 0). Notice in FEDQV, the payment function pi(vi, v−i) = ci = v2i .

∀j ∈ k, if party j pays c
′

j > pj(vj , v−j) = Φi(v−i) = supvi:f(vi,v−i)/∈Wi
vi, it will still remain

in top k and join the aggregation. On the other hand, if party j pays c
′

j < pj(vj , v−j) = Φi(v−i),
then it will be replaced by the party k + 1 in the ranking, and party j will not be able to join the
aggregation regardless of whether party k + 1 joins or not. As a result, in order to participate in the
aggregation, the parties need to pay critical value, that is, ∀i, vi, v−i that f(vi, v−i) ∈Wi, we have
that pi(vi, v−i) = Φi(v−i)

A.3.3 PROOF OF THEOREM 4.5

Proof. According to Theorem 9.36 Blumrosen & Nisan (2007): a normalised mechanism on a single
parameter domain is incentive compatible(truthful) if and only if:
(i) The selection rule is monotone.
(ii) For every party i participants in the aggregation (vi > 0) pays the critical value Φi(v−i) =
supvi:f(vi,v−i)/∈Wi

vi.
The first condition (i) and the second one (ii) are proofed in Lemma A.10 and Lemma A.11 respec-
tively. Thus, the proposed scheme FEDQV is incentive-compatible (truthful).

B FEDQV WITH ADAPTIVE BUDGETS ALGORITHM

Here we present a concise elucidation of key components of the Algorithm 2 as followings:

• IRLS (Iteratively Reweighted Least Squares): IRLS serves as an optimisation technique
employed to solve specific regression problems. Within Chu et al. (2022), IRLS is utilised
to compute the Subjective Observations of participating clients based on their parameter’s
confidence score, which is calculated using the repeated-median regression technique.

• Subjective Observations: Positive observations denoted by P t
i signify acceptance of an

update, while negative observations denoted by N t
i indicate rejection. Consequently, positive

observations enhance a client’s reputation, and negative ones have the opposite effect.

• Reputation Score Calculation: The reputation score of a client is determined using a
subjective logic model, formulated as follows:

Rt
i =

κP t
i +Wa

κP t
i + ηN t

i +W

21



Under review as a conference paper at ICLR 2024

Table 3: Default experimental settings

Explanation Notation Default Setting

Budget B 25
Similarity threshold θ 0.1

The number of parties N 100
The fraction of selected parties C 10
The number of total steps T 500
The number of local epochs E 5
Learning rate r 0.01
Local batch size 10
Loss function L(·) Cross-entropy
Repeating times 3

Regarding the integration of the reputation model, our objective is to demonstrate how combining
FEDQV with the reputation model enables the allocation of unequal budgets, thereby enhancing the
robustness of standard FEDQV. This integration’s adaptability extends beyond a single reputation
model, allowing customisation to suit various needs. The example presented in the paper serves to
showcase the concept’s viability.

C EXPERIMENTAL DETAILS AND EXTRA RESULTS

C.1 EXPERIMENTAL DETAILS

Our simulation experiments are implemented with Pytorch framework Paszke et al. (2017) on the
cloud computing platform Google Colaboratory Pro (Colab Pro) with access to Nvidia K80s, T4s,
P4s and P100s with 25 GB of Random Access Memory. Table 3 shows the default setting in our
experiments.

C.2 OVERVIEW OF FEDQV

Figure 3 provides an overview of our QV-based aggregation algorithm, which comprises two integral
components: "similarity computation" executed on the party side and "voting scheme" managed on
the server side. This visual representation encapsulates the essential steps involved in our approach.

C.3 STATE-OF-THE-ART ATTACKS

Labelflip Attack Fang et al. (2020): In the Label-Flip scenario, all the labels of the training data
for the malicious clients are set to zero. This scenario simulates a directed attack, with the goal to
disproportionally bias the jointly trained model towards one specific class. This is a data poisoning

Step II.  

Local 

Training

𝑠0
𝑡 𝑠2

𝑡 𝑠3
𝑡

𝑐0
𝑡

𝑠1
𝑡

𝑐1
𝑡 𝑐2

𝑡 𝑐3
𝑡

𝐵Similarity   Computation

Step III.  Aggregation

Step IV.  Update 

the  Global Model

Step I .  Broadcast

the Global Model

Voting  Scheme

𝑣1
𝑡 𝑣2

𝑡 𝑣3
𝑡𝑣0

𝑡

Figure 3: Overview of FEDQV algorithm.
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attack that does not require knowledge of the training data distribution. Under this attack, the
malicious parties train with clean data but with flipped labels. Specifically, we flip a label k as
K − k − 1, where K is the total class number.

Gaussian Attack Zhao et al. (2022): This attack forges local model updates via Gaussian distribution
on the malicious parties. malicious parties forge local model updates via Gaussian distribution.

Krum Attack Fang et al. (2020): Malicious parties craft poisoned local model updates opposite from
benign ones, and enable them to circumvent the defence of Krum Blanchard et al. (2017).

Trim Attack Fang et al. (2020) The poisoned local model updates constructed by malicious parties
are optimised for evading the Trim-mean and Median Yin et al. (2018).

Min-Max Attack Shejwalkar & Houmansadr (2021)In order to ensure that the malicious gradients
closely align with the benign gradients within the clique, attackers strategically compute the malicious
gradient. This computation is carried out to limit the maximum distance of the malicious gradient
from any other gradient, which is constrained by the maximum distance observed between any two
benign gradients.

Min-Sum Shejwalkar & Houmansadr (2021) The Min-Sum attack enforces an upper bound on the
sum of squared distances between the malicious gradient and all the benign gradients. This upper
bound is determined by the sum of squared distances between any one benign gradient and the rest of
the benign gradients.

The targeted poisoning attacks include:

Backdoor Attack Gu et al. (2019) Malicious parties inject specific backdoor triggers into the training
data and modify their labels to the attacker-chosen target label. Specifically, we use the same backdoor
pattern trigger and attacker-chosen target label as in Bagdasaryan & Shmatikov (2021) as our trigger
and set the attacker-chosen target label as 5.

the backdoor can be introduced into a model by an attacker who poisons the training data with
specially crafted inputs. A backdoor transformation applied to any input causes the model to mis-
classify it to an attacker-chosen label The pattern must be applied by the attacker during local training,
by modifying the digital image.

Scaling attack Bagdasaryan et al. (2020) The malicious parties generate poisoned local model
updates by backdoor attack and only launch this attack during the last communication round after
scaling these updates by a factor of N .

Neurotoxin attack Zhang et al. (2022) In this attack, the adversary starts by downloading the gradient
from the previous round and employs it to approximate the benign gradient for the upcoming round.
The attacker identifies the top-k% coordinates of the benign gradient and treats them as the constraint
set. Over several epochs of Projected Gradient Descent (PGD), the attacker computes gradient
updates on the manipulated dataset and projects this gradient onto the constraint set, which consists
of the bottom-k% coordinates of the observed benign gradient. PGD is employed to approach the
optimal solution within the span of the bottom-k% coordinates. We adopt the original parameter
setting from the paper, where k is set to 0.1.

QV-Adaptive attack We introduce an adaptive attack, QV-Adaptive, tailored for FEDQV, util-
ising the Aggregation-agnostic optimizations Shejwalkar & Houmansadr (2021) within the LMP
framework Fang et al. (2020). This attack manipulates both the similarity score and the local model,
following the procedure below:

1) The malicious party i generates benign updates wt
i using clean data Di in round t and calculates

the corresponding similarity score;

2) malicious parties (with counts of m) collectively normalise all the similarity scores and employ the
Aggregation-agnostic Min-Max optimisation to select the optimal similarity score. This optimisation
objective aims to increase the likelihood of the score being accepted by the server.
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Figure 4: FEDQV aggregation weights of each party(left), ACC and ASR for global model(right), for
10 communication rounds in MNIST dataset under Backdoor attack

3) the adaptive attack focuses on local model poisoning to optimise the following problem:

max ν (33)

s.t. wt′

i∈m = FedQV(wt
1,w

t
2, . . . ,w

t
m) (34)

wt′

i∈m = wt
i − νd̂ (35)

Here, d̂ represents a column vector encompassing the estimated changing directions of all global
model parameters. The variables wt

i∈m and wt′

i∈m correspond to the local model before and after the
attack. The parameter ν denotes the extent of the attack’s impact on the model.

C.4 PRELIMINARY RESULTS

In FEDAVG, for example, if the malicious parties hold a substantial amount of local data and poison
it, the accuracy of the global model would suffer owing to its aggregation rule. We use FEDQV to
solve this dilemma.

To demonstrate how FEDQV constrain the influence of malicious parties, we consider two benign
and one malicious party who conduct backdoor attacks with the amount of training data {1, 1, 2}. We
train a multi-layer CNN for 10 rounds in the MNIST dataset same as in Section 5. The test accuracy
is shown in Figure 1 in which the sides of the triangle correspond to the different parties and the
position inside the triangle corresponds to their aggregation weights.

We observed that compared to FEDAVG with the weight {1, 1, 2}, QV, with the weight setup{
1, 1,
√
2
}

, achieves higher accuracy. This suggests that QV can enhance performance by restraining
the influence of attackers within FEDAVG. Consequently, when QV is integrated into FL with masked
voting rules and a limited budget, as in FEDQV, it effectively excludes the malicious party and yields
higher accuracy, represented by the weight configuration {1, 1, 0}.
To demonstrate how FEDQV compute the aggregation weights, consider the following scenario:
there are 10 parties in the FL system, and 7 of them are attackers. The training consists of 10
communication rounds, during which attackers execute backdoor attacks. The rest of the settings are
the same as the default. The result is shown in Figure 4. In the left of Figure 4, the first three parties
are benign, and the rest are malicious. We observe that the aggregation weights of malicious parties
are 0, implying that FEDQV succeed in eliminating their influence. As a result, ASR is quite low,
and the accuracy of the global model is unaffected. This demonstrates that even if malicious parties
dominate the majority, they do not prevail in damaging the global model.

C.5 NON-IID DEGREE

To concerning datasets with non-IID data across clients, our experiments incorporate datasets
with non-IID characteristics, with a non-IID degree (ι ) of 0.9. Moreover, we have examined the
performance of FEDQV and FEDAVG across varying levels of non-IID data, spanning from 0.1 to
0.9, as depicted in Table 4.
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Non-IID 0.1 0.3 0.5 0.7 0.9

FedQV ACC(%) 84.94 86.01 83.88 81.37 75.96
ASR(%) 3.39 4.55 17.64 20.59 24.18

FedAvg ACC(%) 81.27 81.1 82.44 80.77 65.68
ASR(%) 3.37 13.39 20.84 22.99 60.35

Table 4: Comparison of Accuracy (ACC) and Attack Success Rate (ASR) for FedQV and FedAvg
under Backdoor Attack over 100 epochs with varying Non-IID Degrees on Fashion-MNIST Dataset.
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Figure 5: ACC and ASR as we vary the hyperparameters similarity threshold θ and budget B.

These results demonstrate that as the non-IID degree increases among the clients, the performance
of the global model declines. Notably, FEDQV consistently maintains a superior performance
compared to FEDAVG, even when confronted with different degrees of data heterogeneity under
attack conditions.

C.6 IMPACT OF HYPERPARAMETERS

As noted, Theorem 4.1 provides general guidelines for tuning, and the findings from our grid search.
As shown in Remark 4.3, the error rate is influenced by B and θ. To demonstrate the impact of these
two hyper-parameters, we grid search B in [10, 20, 30, 40, 50] and θ in [0.1, 0.2, 0.3, 0.4, 0.5]. The
setup is the same as on the MNIST dataset under the backdoor attack with 30% malicious parties.

Figure 5 shows that the optimal values of B and θ are 30 and 0.2 respectively in this case. As B
increases, there is a decline in ACC coupled with an increase in ASR. These results indicate that
FEDQV’s performance is not highly sensitive to the hyperparameters, as long as they are chosen in a
reasonable range. The approach of combining theoretical guidelines with an exhaustive search to find
optimal parameters is a commonly adopted strategy used in similar works.

We can see from Theorem 4.1, that the number of malicious devices m will affect the algorithm, and
more malicious devices can lead to increased damage. However, this does mean the server needs
to know the number of malicious devices to do the fine-tuning. We agree that determining optimal
parameters can be challenging, especially in the absence of complete knowledge about the FL system.

A better tuning is possible if more information is available. For specific tasks, more information
can indeed be collected from which practical parameter sets can be extracted either via exhaustive
search or via simpler online algorithms using trial and error. We will add this to our future work and
consider it when we study particular domain-specific problems using our method.

C.7 EXTRA RESULTS FOR INTEGRATION WITH BYZANTINE-ROBUST AGGREGATION

Table 5 demonstrates that when Multi-Krum are integrated with FedQV, its ACC increases by at least
28%, and its ASR decreases by at least 70%.
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MNIST Fashion-MNIST

Multi-Krum + FEDQV Multi-Krum + FEDQV

Backdoor
ACC 70.20±9.99 89.96±1.85 33.24±13.24 70.89±3.17
ASR 32.03±11.20 9.59±2.28 68.87±17.77 9.72±4.50

Scaling
ACC 68.35±16.76 96.55±0.41 59.43±14.22 82.48±0.24
ASR 33.65±19.15 0.41±0.06 33.64±19.08 0.91±0.18

Table 5: Comparison of Multi-Krum and Multi-Krum + FEDQV under targeted attacks with 30%
malicious parties. The best results are in bold.

Trimmed-Mean Trimmed-Mean-QV Trimmed-Mean Trimmed-Mean-QV

Neurotoxin ACC(%) ACC(%) ASR(%) ASR(%)
1% 86.43 86.74 0.76 0.56
5% 84.96 86.34 0.92 0.72

10% 85.64 86.09 2.86 1.80

Backdoor
1% 84.99 85.67 0.57 0.52
5% 84.83 85.66 0.93 0.46

10% 85.45 85.06 2.27 1.79

Table 6: Comparison of Trimmed-Mean and Trimmed-Mean Integrated with FedQV Methods under
Targeted Attacks (Backdoor and Neurotoxin) Across Varying Percentages of Malicious Parties.
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