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ABSTRACT

Deep graph generation models have achieved great successes recently, among
which however, are typically unconditioned generative models that have no control
over the target graphs given an input graph. In this paper, we propose a novel Graph-
Translation-Generative-Adversarial-Networks (GT-GAN) that transforms the input
graphs into their target output graphs. GT-GAN consists of a graph translator
equipped with innovative graph convolution and deconvolution layers to learn the
translation mapping considering both global and local features. A new conditional
graph discriminator is proposed to classify the target graphs by conditioning on
input graphs while training. Extensive experiments on multiple synthetic and real-
world datasets demonstrate that our proposed GT-GAN significantly outperforms
other baseline methods in terms of both effectiveness and scalability. For instance,
GT-GAN achieves at least 10X and 15X faster runtimes than GraphRNN and
RandomVAE, respectively, when the size of the graph is around 50.

1 INTRODUCTION

In recent years, deep learning on graphs has seen a surge of interests, especially for graph representa-
tion and recognition tasks such as node-level classification (Li et al.,2016; Kipf & Welling| 2017}
Velickovi€ et al., 2017 |Gilmer et al.| |2017; [Hamilton et al., 2017) and graph-level classification
(Niepert et al.| 2016 |Atwood et al., 2016; Wu et al.,|2017). Because of the successes in graph neural
networks, researchers have recently started to explore the use of deep generative models for graph
synthesis on practical applications such as designing new chemical molecular structures (Simonovsky
& Komodakis, [2018}; [You et al., 2018). This has led to many of the recent advances in deep graph
generative models where some of these approaches are domain dependent models (Kusner et al.,
2017} Dai et al., 2018) for generating graphs with physical constrains, while some others consider the
generation of generic graphs (Li et al., 2018} Samanta et al.| 2018; Jin et al.l 2018a).

However, there are two main drawbacks of existing deep graph generative models. First, one
significant limitation of the previous approaches is that most of these models are only suitable for
small graphs with 40 or fewer nodes, which is mainly due to their one-node-per-step generation
manner. More importantly, most of the existing graph generation models are unconditioned and thus
ignore rich input graph information for generating a new graph. In many applications, it is crucial to
guide the graph generation process by conditioning on an input graph, which can be cast as a graph
translation learning problem — translating the input graph to the output graph.

One straightforward way is to build a translation system by using a graph encoder-decoder architecture.
However, there are several challenges for this type of approaches: 1) how to learn one-to-more
mapping between the input graph and the target graphs. Different from the plain graph generation
problem, a conditional graph synthesis task is to learn a distribution of target graphs conditioning on
the input graph, which aims to capture the underlying implicit properties of the graphs, such as their
scale-free characteristic. 2) how to jointly learn both local and global information for translation.
One needs to not only learn the translation mapping in the local information (i.e. neighborhood
pattern of each node), but also in the global property of the whole graph (e.g.,node degree distribution
or graph density).

To address the aforementioned challenges, we present a novel neural network architecture — Graph-
Translation-Generative-Adversarial-Nets (GT-GAN). We first propose a conditional graph GAN
architecture that consists of an encoder-decoder translator and a conditional graph discriminator to
learn the one-to-more mapping (a conditional distribution) for graph translation. To jointly embed
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the local and global information, we present a novel graph encoder including both the edge and the
node convolution layers. In addition, we further propose a novel graph U-net with graph skips and
dedicated graph deconvolution layers including both the edge and the node deconvolution layers.
Finally, GT-GAN is scalable with at most quadratic computation and memory consumption in terms
of the number of nodes in a graph, making it suitable for at least modest-scale graphs (with hundreds
of nodes, compared to the tens of nodes in most of existing graph generative models).

We highlight our main contributions as follows:

o We develop a generic framework GT-GAN consisting of a novel graph translator and conditional
graph discriminator for learning a conditional distribution of target graphs given the input graphs.

e We propose a novel graph encoder consisting of “edge convolution” layers that extract various
relations among nodes containing both local and global information, and “node convolution” layers
that embed the node representations based on the extracted relations.

l

e We propose a novel graph decoder consisting of the “edge deconvolution” and “node deconvolution’
layers, which can decode the node representations first into the latent relations of the target graph
and then generate the final target graph. The graph skip-connection is also utilized to map the
learned latent relations between the input and target graphs.

e Extensive experiments have been conducted on both synthetic and real-world datasets on eight
performance metrics to demonstrate the effectiveness and efficiency of the proposed model.

2 RELATED WORKS

Graph Neural Networks. The recent surge of research into GNN (Graph Neural Networks) can be
generally divided into two categories: Graph Recurrent Networks and Graph Convolutional Networks.
Graph Recurrent Networks originate from early work by Gori et al.| (2005)); |Scarselli et al.| (2009) and
are based on recursive neural networks that have been extended by modern deep learning techniques
such as gated recurrent units (Li et al., 2016)). The other category, Graph Convolutional Networks,
originate from spectral graph convolutional neural networks (Bruna et al.|2014), which were then
extended by |Defferrard et al.| (2016) using fast localized convolutions, and further approximated
by an efficient architecture for a semi-supervised setting proposed by |[Kipf & Welling| (2017)). Self-
attention mechanism and subgraph-level information are also explored later to further improve the
representation power of learned node embeddings (Velickovic et al., 2017} 2018 Bai et al., 2019).

Graph generation. Most of the existing GNN based graph generation for general graphs have been
proposed in the last two years and are based on VAE (Simonovsky & Komodakis| 2018; Samanta
et al.,2018)) and generative adversarial nets (GANs) (Bojchevski et al.;[2018), among others (Li et al.
2018} [You et al., 2018). Most of these approaches generate nodes and edges sequentially to form a
whole graph, leading to the issues of being sensitive to the generation order and very time-consuming
for large graphs. Differently, GraphRNN (You et al.l 2018) builds an autoregressive generative model
on these sequences with LSTM model and has demonstrated its good scalability.

Data Translation involved Graphs. A variety of graph-to-sequence models have been proposed to
cope with different tasks including machine translation (Beck et al.| 2018 Bastings et al., [2017)),
semantic parsing (Xu et al., 2018aib; Song et al.,|2018)), and question generation (Chen et al., 2019),
and health status prediction (Gao et al.l [2019). The sequence-to-graph algorithms are generally
popular with those working on NLP methods, including generating dependency graphs (Gildea et al.|
2018; [Wang et al., 2018)) and AMR structures (Peng et al., |2018)). A few of very recent attempts
have also been made to develop graph-to-graph translation models. Jin et al.| (2018b)) proposed a
domain-specific graph translation model to deal with molecular optimization task by utilizing the
domain knowledge - junction tree and molecule graph. Do et al.[(2019) dealt with the chemical
reaction product prediction problem by predicting the reaction sequences based on the input graph of
molecules. [Sun & Li|(2019) proposed a RNN based model for encoding and decoding the directed
acyclic graph (converted from regular graphs), which can be viewed as a contemporary work to our
work. However, this method is trained following the encoder-decoder architecture but in a supervised
setting instead of learning a distribution of graphs. More importantly, it is difficult to scale to even
modest-scale graph due to its one-node-per-step generation manner.
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Conditional Graph Discriminator

Figure 1: GT-GANSs consisting of a graph translator and a conditional graph discriminator. A novel
graph encoder and decoder are designed for the graph translation problem.

3 THE OVERALL ARCHITECTURE OF GT-GAN

In this section, we first present our problem formulation of graph translation problem. We then
propose our new GT-GAN model for graph translation and discuss each component in detail in the
subsequent sections.

3.1 PROBLEM FORMULATION FOR DEEP GRAPH TRANSLATION

Our goal is to learn an end-to-end translation mapping from an input graph to a target graph. Let an
input graph Gx = (V, &, A, S) such that V is the set of NV nodes, £ C V x V is the set of edges, and
A € RN¥*N i an adjacency matrix (binary or weighted), where Gix can be weighted or unweighted,
directed or undirected. Let S € RV*¥ be a node feature matrix with each row representing a
node feature vector .S;. Denote e; ; € £ as an edge from the node v; € Vtov; € V; A;; € A
therefore denotes the corresponding weight of the edge e; ;. Similarly, we define a target graph
Gy = (V', &', A’,S’) that shares the same node sets and node features with G x but with different
topology and connection weights. Formally, graph translation is to learn a translator from an input
graph Gx € Gx with a random noise U to generate a target graph Gy € Gy, where Gx and Gy
denote the domains of the input and target graphs, respectively. The translation mapping is denoted
asT :U,Gx — Gy.

Note that since our aim is to learn a conditional distribution of the target graphs given an input graph,
we can cast the graph translation as a conditional graph generation problem, where an input graph can
be mapped into any target graph that may have different topologies yet follow the same distribution.
In contrast, the graph generation, that are designed to learn a distribution of graphs and generate a new
graph sample based on this distribution, typically uses variational autoencoder framework for graph
generation. Therefore, the previous graph generation frameworks such as graphVAE (Simonovsky &
Komodakis} 2018) and GraphRNN (You et al., [2018)) do not directly fit into "translation" setting.

The Proposed GT-GAN Framework. Fig[T|shows our proposed generic GAN framework for graph
translation that consists of a graph translator 7 and a conditional graph discriminator D. In this
figure we assume the node feature has only one dimension for simplicity. Since our task is to train
a conditional generater with “one-to-many mapping" instead of a deterministic one, the noise U is
introduced by the dropout function (Seltzer et al.,|2013) in each convolution and deconvolution layer,
as shown (in green lines) in Fig[I] Our graph translator 7 is trained to produce target graphs that
cannot be distinguished from “real” ones by our conditional graph discriminator D. Specifically, the
generated target graph Gy = T (G x, U) cannot be distinguished from the real one, Gy, based on
the current input graph Gx. 7 and D undergo an adversarial training process based on input and
target graphs by solving the following the loss function:

L(T,D) = Ecy 6y [log D(Gy|Gx)] + Ecy vllog(l = D(T(Gx,U)|Gx))], (1)

where 7 tries to minimize this objective while an adversarial D tries to maximize it, i.e. 7" =
arg miny maxp L£(7T, D). We also mix the GAN loss with the L1 loss to enforce sparsity similarity,
which is also found useful in image translation problem (Isola et al., [2017),

Li(T) =Eaaull|lA = T(Gx,U)|l], 2)
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where T'(Gx, U) refers to the adjacent matrix of generated graph. The training process is a trade-off
between £;; and £(7,D), which jointly enforces 7 (Gx,U) and Gy to follow a similar, but not
necessarily identical topological pattern. Specifically, £;; makes 7 (G x, U) share the same rough
outline of sparsity pattern as Gy, while L(7, D) allows T (G x, U) to vary to some degree. Thus,
the optimal objective 7 * of the translator, which generates graphs that are as “real” as possible, is

defined as: T =arg m7i’n max L(T,D)+ L1 (D), 3)

The graph translator 7 is an encoder-decoder architecture, where we propose a new graph encoder to
obtain the node representations of the input graph and propose the graph deconvolution with skips to
generate the target graph, as shown in Fig[I] which we elaborated in the followings sections.

3.2 GRAPH ENCODER

The graph encoder aims to learn the representations
of nodes based on the node features and graph topol-
ogy of the input graph. One of crucial challenges is to
learn both local and global information in the graph (a) Edge convolution (b) Node convolution
embedding. For instance, when learning translation
between two scale-free graphs, one needs to translate
both the local information (i.e. n-hop neighborhood
of each node) and the scale-free property (i.e. node
degree distributions of whole graph) from an input
graph to a target graph.

=

(d) Edge deconvolution (c) Node deconvolution
Figure 2: Graph convolution and deconvolution

The Proposed Graph Convolution. To learn the

local information, the proposed encoder learns each

node representation based on its n-hop neighbors. To learn the global information, it learns each
node representation by looking for more “virtual neighbors” regarding the latent relations from the
aspect of the whole graph. Thus, we first propose the “edge convolution” layers to learn a group
of multi-mode relations from the topology of the input graph, which can include both the n-hop
connections and the latent relations that are derived from their adjacent edges/relations as shown
in Fig[2[a). And then the “node convolution” layer is used to embed each node representations by
aggregating its “virtual neighbors” that related to each latent relations, as shown in Fig[2(b).

In each “edge convolution” layer, each node pair’s latent relation is computed by its adjacent edges
or the extracted adjacent relations from the last layer. In the directed graph, each node have in-
coming edge(s) and out-going edge(s). Thus, there are two learnable parametric vectors ¢ and 1 as
convolution filters for two directions to convolute the adjacent edges/relations for each node pairs.
The relation El ;" in the mth relation mode of the /th layer is learned by the out-going edges/relations
of node v; and the in-coming edges/relations of node Uy,

I,m Ri—y N l 1,n ,I,m N l 1,n Im
EiJ :Z — (O’(Zkl: k1 ¢k1 )+G(Zk2 kzd 1’[}762 ) S

n=1

where El1 Jl = Aand ¢"™ € RV *! refers to the filter vector to be learned and <;Sk’:” refers to the

element of ¢lvm that is related to node vy, . [2;— refers to the number of relation modes extracted for
the (I — 1)th layer of the graph encoder.

After learning the various modes of relations, the “node convolution* layer learns each node’s
representations by aggregating its “virtual neighbors” in terms of each mode of relation. The mth
feature vector of node representation tensor H™ € R for node v; is computed as:

rTm Rl*l N 1 MmN m N 1 ,Mn.m
H' =3 "0, B S) oY B viSk). 5)

n=1

where H; € RFtXF and R, refers to the number of feature vectors in the “node comvolution”
layer. Here u™,v™ € RNV*! refer to the filter vectors for the two directions to be learned and
py. refers to the element of p™ that is related to node vy, . H; is then flattened and transformed
into a node representation vector H; € R'*® by a fully connected layer. C is the length of the
node representation. Note that our graph encoder is designed for a directed graph, and it is easily
generalized to an undirected graph, where the weight vector is shared by both directions.
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3.3 GRAPH DECODER

The decoder aims to generate the edges of the target graph by taking the extracted latent information
of the input graph. It is straightforward to directly use the embedded node representation of the last
layer to generate the target graph. However, the extracted information from each layer in the encoder
could also be useful for generating the target graph. Thus, we consider all possible information
learned in the encoder to be fed into a graph decoder.

Motivated by these observations, we propose a graph U-Net consisting of graph skips and dedicated
graph deconvolution layers. The graph deconvolution decodes the single node (or edge) information
to yield its incoming and outgoing adjacent edges as a mirrored graph convolution process. In
addition, several skips are implemented to map the learned information of each layer in the encoder
to mirror the corresponding layers in the decoder. Similar Graph U-Net was proposed in (Gao & Ji,
2019)). The key difference is that their U-Net is barely a graph embedding method by using the old
graph topology from pooling part to embed nodes during unpooling part. However, our Graph U-Net
can not only do node embedding in graph encoder but also generate the new graph’s topology in the
graph decoder, which is necessary for the graph translation problem.

The proposed Graph Deconvolution. The proposed graph deconvolution technique incorporates
both “node deconvolution” and “edge deconvolution” layers. First, the “node deconvolution” layer
are used to generates the latent multi-mode relations of the target graph based on the learned latent
node representations. As shown in Fig.[2{c), “node deconvolution” is a reversed process of the “node”
convolution Since each node has an influence to its relations connecting to other nodes. Then the
relation E i ™ between node v; and node v; in the mth relation mode of the /th “node” deconvolution
layer in the decoder can be computed as follows:

C
B =% (o(H!) +o(HD")), 6)

where o (H'[i"") means the deconvolution contribution of node v; to its relation with node v; made
by the nth element of its node representations, and i7" represents the element of the deconvolution

filter vector g™ € R that is related to node v;.

We can now recursively apply our proposed “edge deconvolution® layer to decode the latent relation
between each pair of nodes from the upper layer to those of lower layer. As a reversed way of
“edge” convolution, the relation of each pair of nodes in the (I — 1)th layer can make contribution to
generating itself and its adjacent relations in the Ith layer, as shown in Fig.[2(d). Thus, the relation

Ef ;” between node v; and node v; in the Ith layer is computed as follows:

lm R£71 Tlm N -1, n -l,m l 1, n
Eij = Zn:1 (o(¢; Z,ﬁ:l Eig) oy Z Biyd ) D

where ¢l ZkN1:1 Eﬁ}’" is interpreted as the decoded contribution of node ¢ to its relations with

node v;, and ¢!'™ refers to the element of deconvolution filter vector that is related to node v;. Rj_,
refers to the number of relation modes extracted by the (I — 1)th layer in the graph decoder. The
output of the last “edge” deconvolution layer denotes the edges of the target graph.

Skips for graph deconvolution. Based on the graph deconvolution above, it is possible to utilize
skips to link the extracted latent relation sets of each layers in the graph encoder with those in the
graph decoder. Specifically, the output of the /th “edge deconvolution” layer with R; channels in
the decoder is concatenated with the output of the /th “edge convolution” layer with R] channels in
encoder to form joint R; + R; channels, which are then input into the ({ 4+ 1)th deconvolution layer.

3.4 CONDITIONAL GRAPH DISCRIMINATOR

The graph discriminator must distinguish between the “translated” target graph and the “real” ones
based on the input graphs, as this helps to train the generator in an adversarial way. Technically,
this requires the discriminator to accept two graphs simultaneously as inputs (a target graph and an
input graph or a generated graph and an input graph), and classify the two graphs as either related or
not. Thus, we propose a conditional graph discriminator (CGD) which leverages the same graph
convolution layers in the translator for the graph classification, as shown in Fig[I] Specifically, the
input and target graphs are both ingested by CGD and stacked into a N x [N x 2 tensor which can be
considered a 2-channel input. After obtaining the node representations, the graph-level embedding is
computed by summing these node embeddings. Finally, a softmax layer is implemented to distinguish
the input graph-pair from the real graph or generated graph.
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3.5 COMPUTATIONAL COMPLEXITY ANALYSIS

The graph encoder and decoder shares the same time complexity. Without loss of generality, we
assume all the hidden layers have the same number of feature maps as M. P is the length of
the fully connected layer in CGD. The worst-case total complexity of GT-GAN (i.e., the dense
graph) is now O(9N?M? + 3N2M? + N2M P), where the first, second, and third terms represent
“edge convolutions”, “node convolutions”, and fully connected layers in the graph discriminator,
respectively. Similarly, the total memory consumption for GT-GAN is O((ONM? + 9N2M) +
(BNM? +3NM) + (N?2MP + P)). In practice, many graphs are likely be sparse, thus it further
reduces the computational and memory cost to O(N) by using sparse matrix-vector operations (You
et al.|[2018)), which paves the way toward modest scale graphs with hundreds or thousands of nodes.

4 EXPERIMENT

This section reports the results of extensive experiments and ablation studies carried out to test the per-
formance of GT-GAN on two synthetic and two real-world datasets. All experiments were conducted
on a 64-bit machine with Nvidia GPU (GTX 1070,1683 MHz, 8 GB GDDRS5). The code and data uti-
lized are available athhttps://github.com/anonymous1025/Deep-Graph-Translation-.

4.1 DATASETS

The experimental settings for each dataset were as follows. The rules for generating synthetic
input-target graph pairs and the process of collecting the real-world graphs is provided in Appendix.

Two synthetic datasets: Two groups of synthetic datasets were used to validate the performance of
the proposed GT-GAN: a scale-free graph dataset and a Poisson-random graph dataset. Each group
has five subsets with different graph sizes (number of nodes): 10, 20, 50, 100 and 150. Each subset
consists of 5000 input-target graph pairs; 2500 pairs were used for training and the remaining 2500
for testing.

User authentication datasets. The goal of this application was to forecast future potential malicious
authentication graphs given the user’s normal authentication graph. Each user authentication graph is
a directed weighted graph, where nodes represent computers and the weights of the edges represent
the authentication activities at certain frequencies. There are 78 pairs of graphs (malicious and normal
behavior) of graph size 50 and 315 pairs of graphs of graph size 300 from 97 users in two subsets.
We performed a 2-fold cross-validations and 3-fold cross-validation, respectively, for the two subsets.

Internet of Things (IOT) datasets . This application focused IOT network malware confinement
prediction (predicting optimal network operation given a compromised one). There are three subsets
of graph pairs with different sizes (20, 40 and 60), where the nodes represent devices and the node
attributes indicating the compromised status of the nodes. The weights of the edges represent the
distance between two devices. There are 334 pairs of input (compromised IOT) and target graphs
(optimal IOT) in each subset and each is divided into two parts for the 2-fold cross-validation.

4.2 BASELINE METHODS

We compare our GT-GAN against five state-of-the-art graph generation methods: 1) GraphRNN
(You et al.,[2018)) is a new graph generation method based on sequential generation with the LSTM
model; 2) GraphVAE (Simonovsky & Komodakis| [2018) is a probability-based graph generation
method for small graphs; 3) GraphGMG (Li et al., 2018)is a framework based upon graph neural
networks for small single graphs; 4) RandomVAE (Samanta et al., 2018)) was described earlier; and
5) S-Generator is the part of our full model GT-GAN, which essentially is a graph translator with L1
loss but no discriminator. We propose this S-Generator model in order to evaluate the necessity of the
proposed GT-GAN framework to learn the one-to-many mappings. All the comparison methods were
trained on the malicious graphs without conditioning on the input graphs due to the models’ inherent
capability limitations. The datasets were assigned to each comparison model for the experiment
based on their scalability in terms of graph size.
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Table 1: Node degree distribution distance between the generated and real graphs scale-free graphs

Size  Methods JS HD BD WD En-dist C-dist wl-sim It-sim
Random-VAE 042 0.98 Inf 758 03787 04528 0.3333 0.2494
GraphRNN 0.47 0.98 Inf 1.64 0.7226 0.5319 0.2470 0.0055
GraphVAE 0.67 1.00 Inf 285 0.6849 0.6664 03723 0.1576

10 GraphGMG 043 0.98 Inf 1.69 0.6849 0.4763 0.3701 0.0120
S-Generator 035 098 345 0.80 02097 0.2465 04185 0.5431
GT-GAN 035 098 344 0.77 0.2034 0.2379 0.4195 0.5469
RandomVAE 051 0.97 Inf 1.74 04513 0.5400 0.3333 0.3813

20 GraphRNN 0.50 0.98 Inf 144 0.7222 0.6087 0.2652 0.2373

S-Generator 036 096 284 0.67 0.1367 0.1903 0.4665 0.7017
GT-GAN 035 096 2.74 0.66 0.1367 0.1894 0.4681 0.7018
GraphRNN 048 0.88 Inf 090 0.7147 0.6519 0.2713 0.2138
100 S-Generator 0.14 0.68 0.64 030 0.1149 0.1501 0.3522 0.8891

GT-GAN 0.15 043 024 031 0.1153 0.2087 0.4078 0.9217

GraphRNN 042 0.74 Inf 095 07494 0.6266 0.2891 0.1874
150  S-Generator 0.08 031 011 029 0.09499 0.1101 0.3493 0.8493
GT-GAN 007 030 0.11 027 0.0931 0.2105 0.3926 0.8714

4.3 EVALUATION RESULTS ON SYNTHETIC DATASETS

Results for the synthetic datasets. To evaluate the similarity between the generated and real target
graphs for scale-free dataset, we selected eight performance metrics: 1) two metrics are distances
between generated and real graph in terms of Eigenvector centrality (En-dist) (Bonacich, [1987)
and Closeness centrality (C-dist) (Freeman), [1978]), where the lower the distance, the better the
performance; 2) two metrics are similarity score based on the graph kernels of Weisfeiler Lehman
kernel(wl-sim) (Shervashidze et al.,2011) and Lovasz Theta Kernel(lt-sim) (Johansson & et al, [2014]),
where the higher the score, the better the performance; 3) four metrics are used to evaluate the the
node degree distribution correlation between the generated and real target graphs by: Jensen-Shannon
distances (JS), the Hellinger Distance (HD), the Bhattacharyya Distance (BD) and the Wasserstein
Distances (WD), where the lower the score, the better the performance.

As shown in table |1} our GT-GAN consistently outperforms all other baselines by a large margin,
especially when the graph size becomes large (i.e.having the superiority of 34.6% than other methods
when size is 150). The “Inf” entries represent distance over 1000. S-Generator is generally the second
best methods in terms of these four evaluation metrics, highlighting the effectiveness of our proposed
graph encoder and decoder.

To verify whether GT-GAN can indeed discover the underlying ground-truth translation rules between
input-target pairs, we draw the node degree distribution curve for three pairs of generated and real
target graphs by GT-GAN, as shown in Fig. [3] The curves of the generated graphs closely follow
the power-law rule and become even closer to the real graphs as the graph size increases, which is
consistent with the findings in Table [T} This demonstrates that our GT-GAN model successfully
learns the inherent properties of scale-free graphs during translation. Similar observations for the
evaluation metrics (e.g. average degree, repository and density) of the Poisson random datasets and
remaining scale-free subsets can be found in Appendixes B and C.

(a) Graph Size 50 (b) Graph Size 100 5 (c) Graph Size 150
'§ ~\ —— Generated Graph ié \ i‘é 10 N
R Real Graph @ @
20\ N . F
g g1f 510’
2 z S~ z
E E —— Generated Graph \ E —— Generated Graph \1
S 100 S 100 Real Graph S ]00 Real Graph
2 4 6 8 101214 16 2 4 6 8 10 12 14 2 4 6 8 10 12
Node Degree Node Degree Node Degree

Figure 3: Examples of node degree distributions of generated and target graphs for scale-free graphs

4.4 EVALUATION RESULTS ON REAL APPLICATION DATASETS

Results for the user authentication datasets. For the real world dataset, we design an indirect
evaluation metric inspired from a real-world classification problem: label imbalance issues. For
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example, we may want to build a classifier to determine whether an authentication graph of a user is
malicious (positive) or normal (negative), but this user has few malicious records. For this difficult
task, the graphs (i.e., malicious graphs) generated by GT-GAN, which has been trained on other users’
records, can be utilized as positive samples to train the classifier. Specifically, when evaluating, the
test set is further split evenly into two subsets. The first subset is used to train a graph classifier, as
proposed by |Nikolentzos et al.|(2017), using only the normal graphs plus the generated malicious
graphs. The second subset, which contains both the normal and real malicious graphs can then
be used to validate the trained classifier. In addition, a “gold standard” classifier trained on both
normal and real malicious graphs acts as the “best-possible-performer” and is used to evaluate all the
different generative models to judge how “real” the graphs they generate are. We refer readers to the
detailed evaluations in Appendix E.

Table 2: User authentication datasets Table 3: 10T datasets

Size  Method R2 MSE P ACC

Size Method P R AUC F1
GraphRNN  0.16 177558 023  83.97%
RandomVAE 032 051 026 039 20 GraphVAE 039  2109.64 032  81.19%
GraphRNN 034 036 050 0.36 GT-GAN 0.67 37091 085 92.00%
50  S-Generator 0.72 0.61 074  0.66 GraphRNN 044 195046 029  70.54%
GT-GAN 079 0.68 078 073 40 GraphVAE 073 241057 0.16  66.60%
Gold Standard ~—_0.97 0.9 097 09 GT-GAN 0.69 40850 0.86 93.94%
S-Generator _ 0.77 058 0.62 _ 0.66 GraphRNN 052 183143 004  61.07%
300 GT-GAN 084 0.66 079 074 60 GraphVAE  0.00  2453.61 0.04  50.64%
~Gold Standard 098 096 097 097 GT-GAN 0.62 566.88 0.80 94.63%

As shown in Table 2] classifiers trained by the graphs generated by GT-GAN can classify normal
and hacked behaviors effectively with AUC above 0.78, which is well above the 0.5 obtained using
a random model. GT-GAN significantly outperforms other methods by around 25%, 16%, 24.5%
and 22.1%, respectively, on the four metrics: precision (P), recall (R), AUC and F1-score for the
trained classifier. GT-GAN performs consistently better than other methods when the graph size
rises from 50 to 300. In addition, GT-GAN clearly outperformed the S-Genertor in this evaluation
setting. This confirms that using a translator alone to learn a deterministic output given an input graph
is not sufficient to capture the generic distribution of the target graphs. In addition, the four direct
evaluation mentioned above are also tested and the results can be found in Appendix C.

Results on IOT dataset. Table [3| compared the performance of GT-GAN and other comparison
methods for the IOT dataset by examining the edges of the generated and real target graphs for four
metrics: MSE (mean squared error), R2 (coefficient of determination score), Pearson Correlation
(P) of adjacent matrix, and ACC (Accuray) for the correct existence of edges among all the pairs of
nodes. The results show that GT-GAN performed almost the best for all the three subsets. GT-GAN
got highest Pearson Correlation of around 0.8 for all three subsets compared to the other methods
which had Pearson Correlations below 0.4. Due to the L1-loss required to maintain the topology
pattern similarity, GT-GAN also outperformed the comparison methods with around 8% ,26% and
40% superiority in ACC for the three subsets, respectively, and had the smallest MSE, at just one
tenth of those achieved by comparison methods.

4.5 ABLATION STUDY ON THE GRAPH ENCODERS AND DECODER

To further validate the superiority of the proposed graph convolution and deconvolution layers, an
ablation experiment was conducted by replacing the encoder and decoder with node embedding and
decoder methods normaly used. The graph encoder was replaced by the GCN (Kipf & Welling, [2017),
DCNN (Atwood & Towsleyl [2016) and Graph U-NET (Gao & Ji, [2019), both of which consider
edge and node features for graph embedding. The graph decoder was replaced by the decoder in
VGAE (Kipf & Welling| [2016)). There were thus three method combinations for comparison.

Table. ] shows the results of the ablation study of the proposed encoder and decoder on part of the
scale-free (Scale), user authentication (Auth) and IOT datasets. There are two major findings here.
First, the encoder of GT-GAN outperformed both the GCN- and DCNN- based encoders by a large
margin on these datasets, especially for the real-world datasets, where the edges of the graphs can
have a very complex meaning. For example, on Auth-I, GT-GAN performed 43%, 50%, 31%, and
38% better on average, when compared with the GCN and DCNN encoders in terms of precision,
recall, AUC and F1-scores, respectively. Second, the proposed decoder in GT-GAN was deemed both
effective and irreplaceable for graph generation. For example, on IOT-III, GT-GAN performed 6.97%,
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Table 4: Ablation study on four datasets

Dataset Method JS HD BD WD  En-dist C-dist wl-sim
GCN+decoder 0.18 0.48 0.27 1884 0.6903 0.6751 0.4031

Scale-III DCNN-+decoder 0.65 0.96 Inf 0.77 0.6907 0.6745 0.4032
Graph-U+decoder  0.69 0.99 Inf 577 0.6931 0.6496 0.4040
Encoder+VGAE 0.31 0.63 0.51 4378 0.0922 0.2559 0.4003

GT-GAN 0.15 0.43 0.24 0.31 0.1153 0.2087 0.4078

P R AUC F1  En-dist C-dist wl-sim

GCN+decoder 0.31 035 0.2 033 0.7394 0.7494 0.6632

Auth-I DCNN-+decoder 0.59 0.55 0.55 0.57 0.0186 0.3349 0.6851
Graph-U+decoder  0.41 0.60 0.30 0.49 0.6789 0.6859 0.9239
Encoder+VGAE 0.49 046 0.61 047 0.0231 03129 0.6111

GT-GAN 0.79 0.68 0.78 0.73 0.0134 0.1924 0.9439

Auth-I1 DCNN-+decoder 0.58 0.42  0.62 0.5T  0.0007 0.1896 0.7033
Graph-U+decoder  0.42 044  0.23 032  0.6931 0.6842 0.9744

GT-GAN 0.84 0.66 0.79 0.74 0.0054 0.0681 0.9864

R2 MSE P ACC En-dist C-dist wl-sim

GCN-+decoder 0.46 81825 071 92.69 04990 0.4349 0.3304
DCNN-+decoder 0.52 72198 0.74 9326 0359 0.3217 0.3292
Graph-U+decoder  0.45 826.63 0.70 9246 0.3526 0.2771 0.3310
Encoder+VGAE 0.12 1337.16 044 88.14 04811 0.4876 0.3333
GT-GAN 0.62 56688 0.80 94.63 0.3350 0.3051 0.3899

I0T-1I

45.00%, and 83.33% better than the decoder in VGAE in terms of ACC, P and R2, respectively, as
well as a low MSE below 1000.

4.6 MODEL SCALABILITY ANALYSIS

We compare the scalability of GT-GAN against three graph generation methods as shown in Fig[4]
Our GT-GAN model significantly outperforms other state-of-the-art baselines in terms of both com-
putational time and memory consumption. As the graph size increases up to 50, both computational
time and the memory consumption of the GT-GAN remains almost constant. In contrast, the runtime
and memory consumption of RandomVAE and the runtime of GraphVAE increase super-linearly as
the graph size increases, making it hard to scale even to a graph size of 50. Interestingly, the runtime
and memory consumption of GraphRNN also increases only slightly as the graph size increases.
However, our GT-GAN model achieves around ten times speedups while requiring almost half of
memory, compared to GraphRNN, highlighting the strong linear complexity of GT-GAN in practice.

5000 7000
—#— RandomVAE —=— RamdomVAE
—+— GraphRNN —— GraphRNY
4000 —— grapl;l\’/\E / 6000 — ga:::}:;
—&— GT-GAN 6\5000 —— GT-GAN
Z3000 g
g 2‘4000
2000 g 3000
=2000__, ——t
1000
1000—
G5 10 15 20 25 30 35 40 45 50 05 10 15 20 25 30 35 40 45 50
Graph size Graph size
(a) Time Cost (b) Memory Cost

Figure 4: Scalability plots for memory and time cost of GT-GAN, RandomVAE, GraphVAE and GraphRNN

5 CONCLUSIONS

This paper focuses on a new problem: deep graph translation. To achieve this, we propose a novel
GT-GAN which translates an input graph to a target graph. To learn both global and local mapping
between graphs, a new graph encoder-decoder model have been proposed while preserving the graph
patterns in various scales. Extensive experiments have been conducted on the synthetic and real-world
dataset to compare with the state-of-the-art graph generation models. Experimental results show
that our GT-GAN can discover the ground-truth translation rules, and significantly outperform other
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baselines in terms of both effectiveness and scalability. This paper opens a thread of research for
deep graph translation in many practical applications.
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A MORE DESCRIPTIONS AND EXPERIMENTS FOR SCALE FREE DATASET

Generation of graph pairs. Each input graph is generated as a directed scale-free network, whose
degree distribution follows power-law property [Bollobas et al.| (2003). A node will be selected as
target node with probability proportional to its in-degree, which will be linked to a new source
node with probability of 0.41. Similarly, a node will be selected as source node with probability
proportional to its out-degree, which will be linked to a new target node with probability of 0.54.
Then, in the target graph, each weight between two connected nodes will be added by m, where m
could be any value larger than 1. Thus, both input and target graphs are scale-free graphs.

Indirect evaluation and ablation study. Other

than directly measuring the node degree distribu-  Taple 5: Indirect evaluation for scale-free graphs

tion similarity between the generated and real tar-  “paaser  Method P R AUC _ FI
get graphs, we also conduct an indirect evaluation RandomVAE 083 029 031 042

done f thentication dataset. Tabl GraphRNN 031 011 049 0.16
as done for user authentication dataset. Table GraphVAE 075 023 065 035

shows the average results of graph classifiers: Pre-  ScaleI ~ GraphGMG 042 012 049  0.18
S-Generator 046  0.83 043 059

cision, Recall, AUC, and F1-measure for different GT-GAN 100 050 052 067
methods. For small graphs (e.g., nodes less then Gold Standard _ 0.81  0.74 082 0.7
10). th 1 f seale-f K RandomVAE 050 1.00  0.54  0.66
. ), the power-law property ot scale-free networks GraphRNN 067 012 050 021
is less obvious compared to the larger size graphs,  Scale-Il  S-Generator 050 1.00 050  0.67
. . GT-GAN 1.00 050 050 0.67
which may explain why the tasks on smaller scale- Gold Standard 076 067 072 071
free graphs are more difficult. However, when the RandomVAE 089 067 084 0.76
. . GraphRNN 052 053 070 052
sizes of graph increase, GT-GAN become more  scle-I1 S-Generator ~ 0.50 100 037  0.67
close to the performance of “Gold Standard” with 8Tl_((]}SAtN dard g-gi 8‘33 3-3‘7‘ g-g?
. () andara . . . .
average difference of 10%, 4%, 5% and 9% on F1 GraphRNN 06T 065 067 060
accordingly, and significantly outperforms other . S-Generator 050 100 050  0.67
gy gnit y oulp Scale-lV. GT.GAN 072 069 068 070
methods by large margin up to 51%, 35%, 10%, Gold Standard 099  0.61 081 075
nd 1 n Fl. 1 ively. GraphRNN 073 092 092 08I
and 19% o ’ espect vely Scale-V S-Generator 1.00 0.50 0.50 0.67
. - GT-GAN 094 079 096 0.86
Table E] shows the ablation study on dataset of Gold Standard 099 093 096 005

Scale-IIT and Scale-IV in both metric evaluation
and indirect distribution evaluation.

Table 6: Ablation study on Scale-free datasets

Dataset Method Indirect Direct

GCN-+decoder 0.85 0.16 089 027 032 065 058 2.87
DCNN+decoder  0.64  0.93 083 076 068 0.99 Inf 5.59

Seale-lll  ploodertVGAE 066 026 059 037 028 059 045 49.15
GT-GAN 093 082 094 087 043 089 166 243
GCN+decoder 074 051 080 060 008 048 027 884

Sealeqy  DCNNidecoder 050 100 083 067 065 096 Inf 077

Encoder+VGAE  0.50  0.62 050 055 031 063 051 4378
GT-GAN 072 0.69 068 070 015 043 024 0.31

Fig.[9]shows 18 examples of the node degree distribution curve in generated and real target graphs
for scale free dataset from size 50 to 150.

B DESCRIPTIONS AND EXPERIMENTS FOR POISSON RANDOM DATASET

Generation for graph pairs. Each input graph
is generated by |Krapivsky & Redner (2001), .| — K Distribuion of Generated Graph
which is a directed growing random network. K Pistribution of Real Graph

Then for an input graph with EX number of edges,

0.30

50.25/
we randomly add kE' number of edges on it = §,,|
to form the target graph, where k follows the g, .|
Poisson distribution with the mean of 5. 0.10]
Experiment results. For Poisson random — %% /
graphs, the distributions of k in the real target %% o0 25 50 75 160 125 150

. . . _Number of added edges
graphs and those generated graphs are compared.  Fjgyre 5: Distribution of k for generated and real
The mean of edge increasing ratio k for gener-  graphs in Poisson random dataset

ated graphs by our GT-GAN is 3.6, compared
to the real value of 5, which implies that the GT-GAN generally is able to discover the underlying
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increasing ratio between input and target graphs. More evaluation results (e.g. degree and repository)
can be found in Appendix B. We draw the probability density curve of the proportion k. Fig. [5]shows
the distribution of the & in graphs generated by GT-GAN and the real graphs. The distribution plot
is drew based on 3000 samples. Both of the two distribution have main degree values in the range
from 2 to 7, while there is difference in the max frequency due to the limit of the samples amount.
However, it prove that the proposed GT-GAN do learn the distribution type of translation parameter
k in this task.

Results for indirect evaluation on Poisson Random graphs are listed in Table|7} Though the Poisson
random task is easier than scale-free graphs, the GT-GAN still outperforms others on AUC and F1,
and its performance is highly close to the “Gold Standard”. Table §|shows the distance measurement
between generated graphs and real graphs in several metrics. For the metric "degree", we use
Wasserstein distances to measure the distance of two degree distribution. For other metrics, we
calculate the MSE between generated graphs and real graphs.

Table 7: Distribution evaluation for Poisson ran- Typle 8: MSE of Graph properties measurements

dom datasets for Poisson random dataset
Dataset Method P R AUC Fl
RandomVAE 0.98 075 099 085 Dataset Method Density gve- Reciprocity
GraphRNN 098 099 099 098 cgree
) GraphVAE 098 092 097 094 RandomVAE ~ 0.1772 28172 03917
Poisson-I  GraphGMG 098 098 098 0.98 GraphRNN 0.2665 2.2078 0.1344
S-Generator 050 1.00 0.50 0.66 Poi | GrapgGMG 03519 24286  0.1338
GT-GAN 100 087 094 090 OISSO-L - GraphVAE 0.2881 3.1986  0.3103
Gold Standard 099  1.00  1.00 _ 0.99 S-Generator 02993  1.5751  0.0737
RandomVAE 1.00 070 099 0.82 GT-GAN 03084 1.7707 0.1327
, GraphRNN 100 1.00 100  1.00 RandomVAE 02078 7.0860 04182
Poisson-II  S-Generator 1.00 1.00 1.00 1.00 . GraphRNN 0.2305 4.9256 0.1190
GT-GAN 100 099 100 099 Poisson-Il g Gonerator 02111 32207 0.0430
Gold Standard 0.99 1.00 1.00  0.99 GT-GAN 0.2013  3.2047 0.0388
RandomVAE 093 046 1.00 0.63 RandomVAE Tnf 23.680 0.5362
Poisson-I] STaPhRNN 100 099 099 099 Poisson_1] OraPhRNN 0.0110  3.6000  0.0125
S-Generator 049 098 035  0.65 o1sson-tL g_Generator 0.0120 2.9082  0.0125
GT-GAN 100 099 1.00 099 GT-GAN 0.0155 32960  0.0047
Gold Standard 099 1.00 1.00 0.99 GraphRNN 00123 3.5475 0.0034
gréthNN (l)-gg 233 (1)-(5"11 g-gg Poisson-IV S-Generator 0.0029 2.9167  0.0034
Poisson-IV Six &“ﬁﬁmr 050 100 0sb 0 GT-GAN 0.0142 43730  0.0043
- - . . : GraphRNN 0.0012  3.6619 _ 0.0016
optimal 100 100 100 100 Poisson-V S-Generator ~ 0.0013  2.9467  0.0016
GraphRNN 095 099 100 096 GT-GAN 0.0061  5.0410  0.0019
Poisson-V S-Generator 050 100 049 0.66
OISSON-V - GT.GAN 097 1.00 1.00 0.98

Gold Standard .00 099 1.00 0.99

C DESCRIPTION OF IOT DATASET

There are three sets of IoT nodes at different amount (20, 40 and 60) encompassing temperature
sensors connected with Intel ATLASEDGE Board and Beagle Boards (BeagleBone Blue), commu-
nicating via Bluetooth protocol. Benign and malware activities are executed on these devices to
generate the initial attacked networks as the input graphs. Benign activities include MiBench and
SPEC2006, Linux system programs, and word processor. The real target graphs are generated by the
classical malware confinement methods: stochastic controlling with malware detection.

D MORE EXPERIMENTAL RESULTS FOR USER AUTHENTICATION GRAPH SET

About Original Dataset This dataset includes the authentication activities of 97 users on their
accessible computers and servers in an enterprise computer network (Kent, 2015). Each user account
generates a log file recording the computer accessing history, which could be formulated as a directed
weighted graph called authentication graph, where nodes represent computers and the directed edges
weights represent the authentication activities with certain frequencies. This data set spans one
calendar year of contiguous activity spanning 2012 and 2013. It originated from 33.9 billion raw
event logs (1.4 terabytes compressed) collected across the LANL enterprise network of approximately
24,000 computers. Here we consider two sub dataset. First is the user log-on activity set. This data
represents authentication events collected from individual Windows-based desktop computers, servers,
and Active Directory servers. Another dataset presents specific events taken from the authentication
data that present known red team compromise events, as we call malicious event. The red team
data can used as ground truth of bad behavior which is different from normal user. Each graph can
represent the log-on activity of one user in a time window. The event graphs are defined like this: The
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node refers to the computers that are available to a user and the edge represents the log-on activity
from one computer to another computer of the user.

Direct evaluation of User authentication

Graph Set. For the user authentication graphs, Table 9: MSE of Graph properties measurements
the real target graphs and those generated are  for user authentication dataset

compared under well-recognized graph metrics  Dataset Method Density  Reciprocity ~ Ave-Degree
including degree of nodes, reciprocity, and den- RandomVAE 0.0005 00000 6.4064
X i . GraphRNN 0.0032  0.0000 2.7751
sity. We calculate the distance of degree dis- S-Generator 0.0244  0.0342 24.130
‘buti Auth- GCN+decoder  0.0006  0.0000 03510
tI’lb.utIOI} and Mean. Sqaured Error (MSE) for DCNNideooder  0.0000 0.0000 00137
reciprocity and density. Table [9]shows the mean Encoder+VGAE 11050 0.0000 0.1052
GT-GAN 0.0003  0.0000 0.0002
square error of the generated graphs and real S CerTer T e
graphs for all users evaluated for both graph  Auth-Il DCNN+decoder ~ 0.0000  0.0000 0.0039
generation methods and ablation models. GT-GAN 0.0004 00000 0.0006

(a) Regular activity (b) Malicious activity (c) Generated malicious activity

Two connections added Five connections added

Figure 6: Regular graphs, malicious graphs and generated graphs of User 049
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Figure 7: Regular graphs, malicious graphs and generated graphs for User 006

Case Studies on the generated target graphs.

Fig[6]shows the example of User 049 with regular activity graph, real malicious activity graph and
malicious activity graph generated by our GT-GAN from left to right. Only those of edges with
difference among them are drawn for legibility. It can be seen that, the hacker performed attacks
on Computer 192, which has been successfully simulated by our GT-GAN. In addition, GT-GAN
also correctly identified that the Computer 192 is the end node (i.e., with only incoming edges) in
this attack. This is because GT-GAN can learn both the global hacking patterns (i.e., graph density,
modularity) but also can learn local properties for specific nodes (i.e., computers). GT-GAN even
successfully predicted that the hacker connect from Computers O and 1, with Computers 7 and 14
as false alarms. For User006 in Fig. [/] the red team attackers make more connections on Node 36
compared to user’s regular activity, as marked in red rectangle. GT-GAN leans how to choose the
Node 36 and it generated more connections too in the Node 36.

E APPENDIX E: FLOWCHART OF INDIRECT EVALUATION PROCESS

Fig. 8] shows the process of the indirect evaluation
process for evaluating whether the generated and the ________________ v
real target graphs follow the same distribution.
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each layer through graph generator can be expressed

as:
NXNXx1I—->NXNX53>NXNXx1I0->Nx1x10—->NXxNx10—->NXxNx5—-NxNx1
Discriminator: Given the graph size (number of nodes)

N of a graph. The output feature map size of each layer

through graph discriminator can be expressed as:
NXNXx1=3NXNx5=3NXNx10—-+Nx1x10—-1x1x10

For the edge to edge layers, the size of two kernels in two directions are N x 1 and 1 X N. For the node to edge
layer, the kernel size is 1 x N
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Figure 9: Examples of node degree distrbution for generated graphs and real graphs
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