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ABSTRACT

We consider learning and compressing deep neural networks (DNNs) that consist
of low-precision weights and activations for efficient inference of fixed-point op-
erations. In training low-precision DNNs, gradient descent in the backward pass
is performed with high-precision weights while quantized low-precision weights
and activations are used in the forward pass for computing the loss function. Thus,
the gradient descent becomes suboptimal, and accuracy loss follows. In order to
reduce the mismatch in the forward and backward passes, we utilize mean squared
quantization error (MSQE) regularization. In particular, we propose using a learn-
able regularization coefficient with the MSQE regularizer to reinforce the con-
vergence of high-precision weights to their quantized values. Furthermore, we
investigate how partial L2 regularization can be employed for weight pruning in
a similar manner. Finally, combining weight pruning, quantization, and entropy
coding, we establish a low-precision DNN compression pipeline. In our exper-
iments, the proposed method produces low-precision MobileNet and ShuffleNet
models on ImageNet classification with the state-of-the-art compression ratios.
Moreover, we examine our method for image super resolution DNNs to produce
low-precision models at negligible performance loss.

1 INTRODUCTION

Deep neural networks (DNNs) have achieved performance breakthroughs in many of computer vi-
sion tasks (LeCun et al., 2015). The revolutionary progress of deep learning comes with over-
parametrized multi-layer network architectures, and nowadays millions or tens of millions parame-
ters in more than one hundred layers are not exceptional anymore. Network compression for effi-
cient inference is of great interest for deployment of large-size DNNs on resource-limited platforms
such as battery-powered mobile devices (Sze et al., 2017; Cheng et al., 2018). In such resource-
constrained hardwares, not only memory and power are limited but also basic floating-point arith-
metic operations are in some cases not supported. Hence, it is preferred and sometimes necessary to
deliver compressed DNNs of low-precision fixed-point weights and activations (feature maps).

In this paper, we propose a network compression scheme that produces low-precision DNNs through
learning with regularization. In particular, we let the regularization coefficient learnable, instead of
treating it as a fixed hyper-parameter, to make a smooth and efficient transition of a high-precision
model into a sparse quantized model. The proposed compression pipeline is summarized in Figure 1.

• For weight pruning, we utilize partial L2 regularization to make a portion of small-value weights
tend to zero so we can safely prune them after training at negligible accuracy loss.

• For weight quantization, we regularize (unpruned) weights with another regularization term of the
mean squared quantization error (MSQE). In this stage, we also quantize the activations (feature
maps) of each layer to mimic low-precision operations at inference time. The quantization bin
sizes for weights and activations are optimized to minimize their MSQEs in each layer.

• The pruned and quantized model is converted into a low-precision model and its low-precision
weights are further compressed in size with lossless entropy coding such as Huffman coding and
universal source coding algorithms (e.g., see Cover & Thomas, 2012, Section 11.3) for memory-
efficient deployment.

It is difficult to train low-precision DNNs with standard gradient descent since the learning rate is
typically set to be a small floating-point value but low-precision weights cannot be adjusted in fine
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Figure 1: Our low-precision DNN compression pipeline. We utilize partial L2 regularization and
MSQE regularization to transform a pre-trained high-precision model into a sparse low-precision
model with fixed-point weights and activations. The low-precision weights are further compressed
in size with lossless entropy source coding.

resolution. To enable training low-precision DNNs, a series of papers on binary neural networks
suggests utilizing high-precision shadow weights to accumulate the negatives of the gradients in fine
resolution, while the gradients are obtained from the network loss function calculated with binarized
(or quantized) weights (Courbariaux et al., 2015; Lin et al., 2016; Hubara et al., 2016). That is, high-
precision weights are quantized in the forward pass, but the quantization function is replaced with
the linear function of slope 1 in the backward pass for gradient descent. This approximate gradient
descent algorithm is further refined in subsequent works (Rastegari et al., 2016; Zhou et al., 2016;
Zhu et al., 2017; Cai et al., 2017; Hou et al., 2017; Hou & Kwok, 2018; Gysel et al., 2018; Zhou
et al., 2018).

The mismatch in the forward and backward passes results in sub-optimal gradient descent that causes
accuracy loss. The mismatch is more problematic for the models using lower-precision weights and
activations, since the quantization error is more significant. There have been some attempts to reduce
this mismatch by introducing better backward pass approximation, e.g., using clipped ReLU and log-
tailed ReLU instead of the linear function (e.g., see Cai et al., 2017). Our approach is different from
these efforts. We use regularization to steer high-precision weights to converge to their quantized
values so that the mismatch between high-precision weights and quantized weights becomes smaller
instead of enhancing the backward pass approximation.

We reduce the mismatch between high-precision weights and quantized weights with MSQE regu-
larization. In particular, we propose making the regularization coefficient learnable. Using learnable
regularization, high-precision weights are reinforced to converge to their quantized values gradu-
ally in training. We empirically show that our learnable regularization yields more accurate low-
precision models than the conventional regularization with a fixed regularization coefficient. Our
scheme is different from the loss-aware weight quantization in Hou et al. (2017); Hou & Kwok
(2018), where optimization solutions using the proximal Newton algorithm are presented to mini-
mize the loss function under the constraints of low-precision weights, which is however impractical
for large-size networks due to the prohibitive computational cost to estimate the Hessian matrix of
the loss function. No regularization is considered in Hou et al. (2017); Hou & Kwok (2018).

Weight pruning curtails redundant weights completely from DNNs so that one can skip computations
for pruned ones. Some of successful pruning algorithms can be found in Han et al. (2015); Lebedev
& Lempitsky (2016); Wen et al. (2016); Guo et al. (2016); Lin et al. (2017). In this paper, we
discuss how partial L2 regularization can be used for weight pruning. Combining weight pruning,
quantization, and entropy coding, as shown in Figure 1, we achieve the state-of-the-art compression
results for low-precision MobileNet (Howard et al., 2017) and ShuffleNet (Zhang et al., 2018) on
ImageNet classification.

Weight sharing is another network compression scheme studied in Han et al. (2016); Choi et al.
(2017); Ullrich et al. (2017); Molchanov et al. (2017); Agustsson et al. (2017); Louizos et al. (2017);
Choi et al. (2018); Tung & Mori (2018). It reduces the number of distinct weight values in DNNs
by quantization. In contrast to low-precision weights from linear quantization, weight sharing al-
lows non-linear quantization, where quantization output levels do not have to be evenly spaced.
Hence, quantized weights from weight sharing are represented in high precision, implying that high-
precision arithmetic operations are still needed in inference, although the quantized weights can be
compressed in size by lossless source coding.

We finally note that reinforcement learning has been proposed as a promising methodology to search
for quantized and/or compressed models that satisfy certain latency, energy, and/or model size re-
quirements, given hardware specifications to deploy the models (He et al., 2018; Wang et al., 2019).
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Figure 2: Low-precision convolutional layer using fixed-point (FXP) convolution and bias addition.

2 LOW-PRECISION DNN MODEL

We consider low-precision DNNs that are capable of efficient processing in the inference stage by
using fixed-point arithmetic operations. In particular, we focus on the fixed-point implementation of
convolutional and fully-connected layers, since they are the dominant parts of computational costs
and memory requirements in DNNs (see Sze et al., 2017, Table II).

The major bottleneck of efficient DNN processing is known to be in memory accesses (Sze et al.,
2017, Section V-B). Horowitz provides rough energy costs of various arithmetic and memory access
operations for 45 nm technology (see Horowitz, 2014, Figure 1.1.9), where we can find that memory
accesses typically consume more energy than arithmetic operations, and the memory access cost
increases with the read size. Hence, for example, deploying binary models, instead of 32-bit models,
it is expected to reduce energy consumption by 32× at least, due to 32 times fewer memory accesses.

Low-precision weights and activations basically stem from linear quantization (e.g., see Gersho &
Gray, 2012, Section 5.4), where quantization bin boundaries are uniformly spaced and quantization
output levels are the midpoints of bin intervals. Quantized weights and activations are represented
by fixed-point numbers of small bit-width. Scaling factors (i.e., quantization bin sizes) are defined
in each layer for fixed-point weights and activations, respectively, to alter their dynamic ranges.

Figure 2 shows the fixed-point design of a general convolutional layer consisting of convolution,
bias addition and non-linear activation. Fixed-point weights and input feature maps are given with
common scaling factors δl and ∆l, respectively, where l is the layer index. Then, the convolution
operation can be implemented by fixed-point multipliers and accumulators. Biases are added, if
present, after the convolution, and then the output is scaled properly by the product of the scaling
factors for weights and input feature maps, i.e., δl∆l, as shown in the figure. Here, the scaling factor
for the biases is specially set to be δl∆l so that fixed-point bias addition can be done easily without
another scaling. Then, a non-linear activation function follows. Finally, the output activations are
fed into the next layer as the input.

Using rectified linear unit (ReLU) activation, two scaling operations across two layers, i.e., scaling
operations by δl∆l and 1/∆l+1, can be combined into one scaling operation by δl∆l/∆l+1 before
(or after) ReLU activation. Furthermore, if the scaling factors are power-of-two numbers, then one
can even implement scaling by bit-shift. Similarly, low-precision fully-connected layers can be
implemented by replacing convolution with matrix multiplication in the figure.

3 LEARNABLE REGULARIZATION FOR LOW-PRECISION DNNS

In this section, we present the regularizers that are utilized to learn pruned and quantized DNNs of
low-precision weights and activations. We first define the quantization function. Given the number
of bits, i.e., bit-width n, the quantization function yields

Qn(x; δ) =

{
δ clipn(round(x/δ)), n ≥ 2,

δ sign(x), n = 1,
(1)

where x is the input and δ is the scaling factor; round(x) = sign(x)b|x| + 0.5c and clipn(x) =
min(max(x,−2n−1), 2n−1 − 1), where bxc is the largest integer smaller than or equal to x. For
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(a) Iterations=10k (b) Iterations=21k (c) Iterations=23k (d) Iterations=30k

Figure 3: Weight histogram snapshots of the MNIST LeNet-5 second convolutional layer captured
at different training batch iteration numbers while a pre-trained model is quantized to have 4-bit
weights and activations with the proposed regularization method.

ReLU activation, the ReLU output is always non-negative, and thus we use the unsigned quantization
function given by

Q+
n (x; δ) = δ clip+

n (round(x/δ)), (2)
for n ≥ 1, where clip+

n (x) = min(max(x, 0), 2n − 1).

3.1 REGULARIZATION FOR WEIGHT QUANTIZATION

Consider a general non-linear DNN model consisting of L layers. LetW1,W2, . . . ,WL be the sets
of high-precision weights in layers 1 to L, respectively. For notational simplicity, we let AL1 =
A1, A2, . . . , AL for any symbol A. We define the MSQE regularizer for weights of all L layers as

Rn(WL
1 ; δL1 ) =

1

N

L∑
l=1

∑
w∈Wl

|w −Qn(w; δl)|2, N =

L∑
l=1

|Wl|, (3)

where n is the bit-width for quantized weights, δl is the scaling factor (i.e., quantization bin size) for
quantized weights, and |Wl| is the number of weights in layer l. We assumed that bit-width n is the
same for all layers, just for notational simplicity, but it can be easily extended to more general cases
such that each layer has a different bit-width.

Including the MSQE regularizer in (3), the cost function to optimize in training is given by

Cn(X ;WL
1 , δ

L
1 ) = E(X ;Qn(WL

1 ; δLl )) + λRn(WL
1 ; δL1 ), (4)

for λ > 0, where, with a slight abuse of notation, Qn(WL
1 ; δLl ) denotes the set of quantized weights

of all L layers, E(X ;Qn(WL
1 )) is the target loss function evaluated on the training dataset X using

the quantized weights, and λ is the regularization coefficient. We set the scaling factors δL1 to be
learnable parameters and optimize them along with weightsWL

1 .
Remark 1. We clarify that we use high-precision weights in the backward pass for gradient descent
by replacing approximately the quantization function Qn with the linear function of slope 1. In the
forward pass, we use quantized weights and activations, and the main target network loss functionE
is also calculated with the quantized weights and activations to mimic the low-precision inference-
stage loss. Hence, the final trained models are low-precision models, which can be operated on
low-precision fixed-point hardwares in inference with no accuracy loss. Note that our method still
has the gradient mismatch problem, similar to the existing approaches (see Section 1). However, by
adding the MSQE regularizer, we encourage high-precision weights to converge to their quantized
values so that we reduce the mismatch.

Learnable regularization coefficient. The regularization coefficient λ in (4) is a hyper-parameter
that controls the trade-off between the loss and the regularization. It is conventionally fixed ahead of
training. However, searching for a good hyper-parameter value is usually time-consuming. Hence,
we propose the learnable regularization coefficient, i.e., we let the regularization coefficient be an-
other learnable parameter.

We start training with a small initial value for λ, i.e., with little regularization. However, we pro-
mote the increase of λ in training by adding a penalty term for a small regularization coefficient,
which is −α log λ for λ, α > 0, in the cost function (see (5)). The increasing coefficient λ rein-
forces the convergence of high-precision weights to their quantized values for reducing the MSQE.
It consequently alleviates the gradient mismatch problem that we mentioned earlier (see Remark 1).
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Table 1: Comparison of the weight regularization methods with learnable and fixed regularization
coefficients for ResNet-18 on ImageNet classification.

Weights Activations Top-1 / Top-5 accuracy (%)

Learnable λ Fixed λ = 0.05 Fixed λ = 0.5 Fixed λ = 5

32-bit FLP 32-bit FLP 68.1 / 88.4

1-bit FXP

8-bit FXP 61.3 / 83.7 60.0 / 83.1 60.0 / 83.0 57.9 / 81.6
4-bit FXP 60.2 / 83.2 58.1 / 81.5 57.4 / 81.1 58.6 / 82.2
2-bit FXP 55.6 / 79.6 53.5 / 78.2 52.9 / 77.8 53.1 / 78.1
1-bit FXP 38.9 / 65.4 37.0 / 63.4 36.5 / 63.1 37.0 / 63.1

(a) Learnable λ

(b) Fixed λ = 0.5

Figure 4: ResNet-18 model training convergence curves for binary weights and 2-bit activations.
We compare the convergence curves with learnable and fixed regularization coefficients.

The cost function in (4) is altered into

Cn(X ;WL
1 , δ

L
1 , λ) = E(X ;Qn(WL

1 ; δLl )) + λRn(WL
1 ; δL1 )− α log λ, (5)

where we introduce a new hyper-parameter α, while making the regularization coefficient learnable.
We note that the trade-off between the loss and the regularization is now actually controlled by the
new parameter α instead of λ, i.e., the larger the value of α, eventually the more the regularization.
This transfer is however beneficial since the new parameter α does not directly impact either the loss
or the regularization, which leads to a smooth transition of high-precision weights to their quantized
values. For gradient descent, we need the gradients of (5) with respect to weights, scaling factors
and the regularization coefficient, respectively, which are provided in Appendix A.1.

Learnable versus fixed regularization coefficients. In Table 1, we compare the performance of
quantized ResNet-18 (He et al., 2016) models for ImageNet ILSVRC 2012 dataset (Russakovsky
et al., 2015) when we use learnable and fixed regularization coefficients, respectively. Observe that
the proposed learnable regularization method outperforms the conventional regularization method
with a fixed coefficient in various low-precision settings.
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(a) Iterations=4k (b) Iterations=6k (c) Iterations=8k (d) Iterations=10k

Figure 5: Weight histogram snapshots of the MNIST LeNet-5 at different training batch iteration
numbers when trained from scratch with the partial L2 regularizer for 90% sparsity (r = 90).

In Figure 4, we compare the convergence curves when learnable and fixed regularization coefficients
are used, respectively. Using a learnable regularization coefficient, the MSQE regularization term
decreases (although there is a bump in the middle) while λ increases in training. However, using
a fixed regularization coefficient, the MSQE regularization term saturates and even increases after
some point as training goes on, which implies that the mismatch of the forward and backward passes
is not resolved. The unresolved mismatch eventually turns into accuracy loss, as shown in the figure.

Evolution of weight histogram. Figure 3 presents an example of how high-precision weights are
gradually quantized by our regularization scheme. We plotted weight histogram snapshots captured
at the second convolutional layer of the MNIST LeNet-5 model1 while a pre-trained model is quan-
tized to a 4-bit fixed-point model. The histograms in the figure from the left to the right correspond
to 10k, 21k, 23k, and 30k batch iterations in training, respectively. Observe that the weight dis-
tribution gradually converges to the sum of uniformly spaced delta functions and all high-precision
weights converge to quantized values completely in the end.

Comparison to soft weight sharing. In soft weight sharing (Nowlan & Hinton, 1992; Ullrich
et al., 2017), a Gaussian mixture prior is assumed, and the model is regularized to form groups of
weights that have similar values around the Gaussian component centers (e.g., see Bishop, 2006,
Section 5.5.7). The learnable regularization coefficient can be related to the learnable variance in
the Gaussian mixture prior. However, our weight regularization method is different from soft weight
sharing since we consider linear quantization and optimize quantization bin sizes, instead of opti-
mizing individual Gaussian component centers for non-linear quantization. We employ the simple
MSQE regularization term for quantization, so that it is applicable to large-size DNNs. Note that
soft weight sharing yields the regularization term of the logarithm of the summation of exponential
functions, which is sometimes too complex to compute for large-size DNNs. In our method, the
additional computational complexity for MSQE regularization is not expensive. It only scales in the
order of O(N), where N is the number of weights. Hence, the proposed scheme is easily applicable
to the state-of-the-art DNNs with millions or tens of millions weights.

3.2 QUANTIZATION OF ACTIVATIONS

We quantize the output activation (feature map) x of layer l for 1 ≤ l ≤ L and yield Q+
m(x; ∆l),

where Q+
m is the quantization function in (2) for bit-width m and ∆l is the learnable scaling factor

for quantized activations of layer l.2 Similar to (3), we assumed that activation bit-width m is the
same for all layers, but this constraint can be easily relaxed to cover the cases where each layer has a
different bit-width. We assumed ReLU activation and used the unsigned quantization function Q+

m
while we can replace Q+

m with Qm in case of general non-linear activation.

We optimize ∆l by minimizing the MSQE for activations of layer l, i.e., we minimize

Sm(Al; ∆l) =
1

|Al|
∑
x∈Al

|x−Q+
m(x; ∆l)|2, (6)

1https://github.com/BVLC/caffe/tree/master/examples/mnist
2We note that ∆l is the scaling factor for activations of layer l whereas it denotes the scaling factor for input

feature maps of layer l in Section 2 (see Figure 2). This is just one index shift in the notation, since the output
of layer l is the input to layer l + 1. We adopt this change just for notational simplicity.
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Figure 6: Ablation study of ResNet-18 quantization on ImageNet classification. We use “W: Weight
precision” and “A: Activation precision” to denote weight and activation precisions, respectively.
FLP and FXP stands for floating-point and fixed-point formats, respectively.

where Al is the set of activations of layer l for 1 ≤ l ≤ L. In the backward pass, we first perform
gradient descent for weights and their scaling factors using the loss function in (5), and then we
update ∆l with gradient descent using (6). We do not utilize (6) in gradient descent for weights.

Backpropagation through quantized activations: Backpropagation is not feasible through quan-
tized activations analytically since the gradient is zero almost everywhere. For backpropagation
through the quantization function, we adopt the straight-through estimator (Bengio et al., 2013).
In particular, we pass the gradient through the quantization function when the input is within the
clipping boundary. If the input is outside the clipping boundary, we pass zero.

3.3 REGULARIZATION FOR WEIGHT PRUNING

For weight pruning, we propose using partial L2 regularization. In particular, given a target pruning
ratio r, we find the r-th percentile of weight magnitude values. Assuming that we prune the weights
below this r-th percentile value in magnitude, we define a L2 regularizer only for them as follows:

Pr(WL
1 ) =

1

N

L∑
l=1

∑
w∈Wl

|w|21|w|<θ(r),

where θ(r) is the r-th percentile of weight magnitude values, which is the threshold for pruning.
Adopting the learnable regularization coefficient as in (5), we have

Cr(X ;WL
1 , λ) = E(X ;WL

1 ) + λPr(WL
1 )− α log λ. (7)

The partial L2 regularizer encourages the weights below the threshold to move towards zero, while
the other unregularized weights are updated to minimize the loss due to pruning. The threshold θ(r)
is also updated at every iteration of training based on the instant weight distribution. We note that
the threshold θ(r) decreases as training goes on since the regularized weights gradually converge to
zero (see Figure 5). After finishing the regularized training, we finally have a set of weights clustered
very near zero. The loss due to pruning these small-value weights is negligible.

4 EXPERIMENTS

We evaluate the proposed low-precision DNN compression for ImageNet classification and image
super resolution. Image super resolution is included in our experiments as a regression problem since
its accuracy is more sensitive to quantization than classification. Note that Tensorflow Lite3 already
supports a very efficient 8-bit weight and activation quantization tool for network development on
mobile platforms. Thus, our experimental results focus on more extreme cases of quantization using
less than 8 bits, where a more sophisticated algorithm is needed for smaller loss. The detailed exper-
imental settings and some of the experimental results are provided in Appendix B due to the space
constraints. We use FLP and FXP to denote the floating-point and fixed-point formats, respectively.

4.1 EXPERIMENTAL RESULTS

ResNet-18 quantization on ImageNet classification. Figure 6 presents the accuracy of the low-
precision ResNet-18 (He et al., 2016) models obtained from our quantization method. For ablation

3https://www.tensorflow.org/lite
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Table 2: Low-precision MobileNet and ShuffleNet compression results for ImageNet classification.
For ablation study, we compare pruning-only results and pruning+quantization results with various
low-precision setting. We also show the compression results with and without entropy coding, where
we used bzip2 as a specific entropy coding scheme.

Method Weights Activations MobileNet v1 ShuffleNet

Top-1 / Top-5 Compression ratio Top-1 / Top-5 Compression ratio
accuracy (%) with / without bzip2 accuracy (%) with / without bzip2

Pre-trained model 32-bit FLP 32-bit FLP 70.9 / 89.9 - 65.4 / 86.4 -

Ours: pruning (50%) 32-bit FLP 32-bit FLP 70.2 / 89.7 2.01 / 1.00 65.3 / 86.4 1.99 / 1.00
pruning (55%) 32-bit FLP 32-bit FLP 70.0 / 89.5 2.22 / 1.00 64.7 / 86.0 2.20 / 1.00
pruning (60%) 32-bit FLP 32-bit FLP 69.5 / 89.3 2.49 / 1.00 63.6 / 85.5 2.45 / 1.00

Ours: pruning (50%)
+ quantization

8-bit FXP 8-bit FXP 70.8 / 90.1 4.83 / 4.00 65.8 / 86.7 4.99 / 4.00
6-bit FXP 6-bit FXP 70.5 / 89.9 6.11 / 5.33 65.7 / 86.7 5.81 / 5.33
5-bit FXP 5-bit FXP 69.7 / 89.3 7.13 / 6.40 64.0 / 85.6 6.78 / 6.40
4-bit FXP 4-bit FXP 66.9 / 87.7 9.87 / 8.00 59.5 / 82.6 9.59 / 8.00

6-bit FXP
8-bit FXP

70.6 / 90.0 6.11 / 5.33 66.3 / 87.1 5.81 / 5.33
5-bit FXP 70.3 / 89.7 7.13 / 6.40 65.8 / 86.7 6.79 / 6.40
4-bit FXP 69.7 / 89.2 8.65 / 8.00 64.8 / 86.2 8.26 / 8.00

6-bit FXP
32-bit FLP

70.7 / 90.0 6.12 / 5.33 66.3 / 87.1 5.81 / 5.33
5-bit FXP 70.4 / 89.8 7.13 / 6.40 65.8 / 86.9 6.78 / 6.40
4-bit FXP 69.3 / 89.0 10.01 / 8.00 64.1 / 85.8 9.71 / 8.00

Tensorflow 8-bit model* 8-bit FXP 8-bit FXP 70.1 / 88.9 N/A / 4.00 N/A / N/A N/A
* https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet_v1.md
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Compressed ShuffleNet, W: 4/5/6-bit FXP, A: 8-bit FXP (Ours)

Compressed ShuffleNet, W: Quantized 32-bit FLP, A: 32-bit FLP (Park et al., 2017)

Compressed ShuffleNet, W: Quantized 32-bit FLP, A: 32-bit FLP (Tung & Mori, 2018)

Figure 7: Comparison of our low-precision MobileNet and ShuffleNet compression results to the
ones of the state-of-the-art network compression methods on ImageNet classification. We use “W:
Weight precision” and “A: Activation precision” to denote weight and activation precisions used in
the compressed models, respectively.

study, we compare weight and activation quantization for various low-precision settings. The loss
due to weight quantization is relatively less than the loss due to activation quantization, which is con-
sistent with the results from DoReFa-Net (Zhou et al., 2016). We compare our method to DoReFa-
Net for AlexNet (Krizhevsky et al., 2012) quantization, which can be found in Appendix B.2. We
also compare the low-precision models obtained with and without the power-of-two scaling con-
straint. In fixed-point computations (see Figure 2), it is more appealing for the scaling factors (i.e.,
quantization bin sizes) to be powers of two so they can be implemented by simple bit-shift, rather
than with scalar multiplication. For power-of-two scaling factors, we perform rounding of scaling
factors into their closest power-of-two integers in the forward pass, while the rounding function is
replaced with the linear function of slope 1 in the backward pass. We observe small performance
degradation due to the constraint of power-of-two scaling factors in our experiments.

MobileNet/ShuffleNet compression on ImageNet classification. We mainly evaluate our method
to obtain compressed low-precision MobileNet (Howard et al., 2017) and ShuffleNet (Zhang et al.,
2018) models for ImageNet classification. For MobileNet and ShuffleNet compression, we prune
50% weights from their pre-trained models as described in Section 3.3 so that the accuracy loss
due to pruning is marginal. Then, we employ our weight and activation quantization method. After
converting into sparse low-precision models, universal source coding with bzip2 (Seward, 1998)
follows to compress the fixed-point low-precision weights.
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Table 3: CT-SRCNN (9-layer) quantization results for upscaling factor 3.

Model Method Weights Activations Set-14 PSNR (dB) Set-14 SSIM PSNR (dB) loss SSIM loss

CT-SRCNN
9-layer

Pretrained model 32-bit FLP 32-bit FLP 29.71 0.8300 - -

Ours

8-bit FXP

8-bit FXP

29.67 0.8288 0.04 0.0012
4-bit FXP 29.63 0.8285 0.08 0.0015
2-bit FXP 29.37 0.8236 0.34 0.0064
1-bit FXP 29.20 0.8193 0.51 0.0107

Gysel et al. (2018)* 8-bit FXP 8-bit FXP 29.05 0.8065 0.74 0.0234

Bicubic - - - 27.54 0.7742 - -
* from our experiments using their code at https://github.com/pmgysel/caffe.

In Figure 7, we compare the compression ratios of our scheme and the existing network compression
methods in Han et al. (2016); Park et al. (2017); Tung & Mori (2018); Wang et al. (2019). Our low-
precision network compression scheme shows comparable compression ratios to the state-of-the-art
weight compression schemes. We emphasize that our compression scheme produces low-precision
models of fixed-point weights and activations that support efficient inference of fixed-point opera-
tions, while the previous compression schemes, except the one from Wang et al. (2019), produces
quantized weights that are still floating-point numbers and thus floating-point operations are nec-
essary to achieve the presented accuracy of them. The hardware-aware automated quantization in
Wang et al. (2019) achieved impressive compression results by searching for a quantized model with
“mixed” precisions for different layers with reinforcement learning, but not all hardwares support
mixed precision arithmetic operations. Our method used a fixed precision for all layers assuming
more limited hardware capability.

Image super resolution. The image super resolution problem is to synthesize a high-resolution
image from a low-resolution one. The DNN output is the high-resolution image corresponding to the
input low-resolution image, and thus the loss due to quantization is more prominent. We evaluate the
proposed method on SRCNN (Dong et al., 2016) and cascade-trained SRCNN (CT-SRCNN) (Ren
et al., 2018) for image super resolution. The objective image quality metric measured by the peak
signal-to-noise ratio (PSNR) and the perceptual score measured by the structural similarity index
(SSIM) (Wang et al., 2004) are compared for Set-14 image dataset (Zeyde et al., 2010) in Table 3
for 9-layer CT-SRCNN. Additional experimental results for 3-layer SRCNN and 5-layer CT-SRCNN
can be found in Appendix B.2. Observe that our method successfully yields low-precision models
of 8-bit weights and activations at negligible loss, and they are better than the results that we obtain
with one of the previous works, Ristretto (Gysel et al., 2018). It is interesting to see that the PSNR
loss of using binary weights and 8-bit activations is 0.5 dB only.

5 CONCLUSION

In this paper, we proposed a method to quantize deep neural networks (DNNs) by regularization
to produce low-precision DNNs for efficient fixed-point inference. The proposed scheme alleviates
the mismatch problem in the forward and backward passes of low-precision network training by
using MSQE regularization. Moreover, we proposed a novel learnable regularization coefficient
to reinforce the convergence of high-precision weights to their quantized values when using MSQE
regularization. We also discussed how a similar regularization technique can be employed for weight
pruning with partial L2 regularization.

We showed by experiments that the proposed quantization algorithm successfully produces low-
precision DNNs of binary weights for classification problems, such as ImageNet classification, as
well as for regression and image synthesis problems, such as image super resolution. For MobileNet
and ShuffleNet compression, we obtained sparse (50% weights are pruned) low-precision models
of 5-bit weights and 8-bit activations with compression ratios of 7.13 and 6.79, respectively, at
marginal accuracy loss. For image super resolution, we only lost 0.04 dB PSNR when using 8-bit
weights and activations, instead of 32-bit floating-point numbers.
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Appendices

A GRADIENT DESCENT

A.1 GRADIENTS FOR WEIGHTS

The gradient of the cost function Cn in (5) with respect to weight w satisfies

∇wCn = ∇wE + λ∇wRn, (8)

for weight w of layer l, 1 ≤ l ≤ L. The first partial derivative in the right side of (8) can be obtained
efficiently by the backpropagation algorithm. For backpropgation through the weight quantization
function, we adopt the following approximation similar to straight-through estimator (Bengio et al.,
2013):

∇wQn(w; δl) ,

{
1 w
δl
∈[−2n−1− 1

2 ,2
n−1− 1

2 ]
, n > 1,

1 w
δl
∈[−2,2], n = 1,

(9)

where 1E is an indication function such that it is one if E is true and zero otherwise. Namely, we
pass the gradient through the quantization function when the weight is within the clipping boundary.
To give some room for the weight to move around the boundary in stochastic gradient descent, we
additionally allow some margin of δl/2 for n ≥ 2 and δl for n = 1. Outside the clipping boundary
with some margin, we pass zero.

For weight w of layer l, 1 ≤ l ≤ L, the partial derivative of the regularizer Rn satisfies

∇wRn =
2

N
(w −Qn(w; δl)), (10)

almost everywhere except some non-differentiable points ofw at quantization bin boundaries Un(δl)
given by

Un(δl) =

{
2i+ 1− 2n

2
δl, i = 0, 1, . . . , 2n − 2

}
, (11)

for n > 1 and U1(δl) = {0}. If the weight is located at one of these boundaries, it actually makes
no difference to update w to either direction of w − ε or w + ε, in terms of its quantization error.
Thus, we let

∇wRn , 0, if w ∈ Un(δl). (12)
From (8)–(12), we finally have

∇wCn = ∇wE +
2λ

N
(w −Qn(w; δl))1w/∈Un(δl). (13)

Remark 2. If the weight is located at one of the bin boundaries, the weight gradient is solely deter-
mined by the network loss function derivative and thus the weight is updated towards the direction to
minimize the network loss function. Otherwise, the regularization term impacts the gradient as well
and encourages the weight to converge to the closest bin center as far as the loss function changes
small. The regularization coefficient trades off these two contributions of the network loss function
and the regularization term.

A.2 GRADIENT FOR THE REGULARIZATION COEFFICIENT

The gradient of the cost function for λ is given by

∇λCn = Rn(WL
1 ; δL1 )− α

λ
. (14)

Observe that λ tends to α/Rn in gradient descent.
Remark 3. Recall that weights gradually tend to their closest quantization output levels to reduce
the regularizer Rn (see Remark 2). As the regularizer Rn decreases, the regularization coefficient λ
gets larger by gradient descent using (14). Then, a larger regularization coefficient further forces
weights to move towards quantized values in the following update. In this manner, weights gradually
converges to quantized values.
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A.3 GRADIENTS FOR SCALING FACTORS

For scaling factor optimization, we approximately consider the MSQE regularization term only for
simplicity. Using the chain rule, it follows that

∇δlCn ≈ ∇δlRn = −2λ

N

∑
w∈Wl

(w −Qn(w; δl))∇δlQn(w; δl), (15)

for 1 ≤ l ≤ L. Moreover, it can be shown that

∇δlQn(w; δl) = rn(w; δl) ,

{
clipn(round(w/δl)), n > 1,

sign(w), n = 1,
(16)

almost everywhere except some non-differentiable points of δl satisfying

w

δl
∈
{

2i+ 1− 2n

2
, i = 0, 1, . . . , 2n − 2

}
, (17)

for n > 1. Similar to (12), we let

∇δlQn(w; δl) , 0, if w ∈ Un(δl), (18)

so that the scaling factor δl is not impacted by the weights at the bin boundaries. From (15)–(18), it
follows that

∇δlCn ≈ −
2λ

N

∑
w∈Wl

(w −Qn(w; δl))rn(w; δl)1w/∈Un(δl).

Similarly, one can derive the gradients for activation scaling factors ∆L
0 , which we omit here.

B EXPERIMENTS

B.1 EXPERIMENTAL SETTINGS

Datasets. For ImageNet classification, we use the ImageNet ILSVRC 2012 dataset (Russakovsky
et al., 2015). For image super resolution, we use the Open Images dataset4, which is pre-processed
as described in Ren et al. (2018).

Computing infrastructure. We use NVIDIA GeForce GTX TITAN X in our experiments. The
proposed network pruning, quantization, and compression pipeline is implemented with Caffe5.

Pre-trained models. The pre-trained models used in our ImageNet classification experiments are
obtained from the following links.

AlexNet https://github.com/BVLC/caffe/tree/master/models/bvlc_alexnet
ResNet-18 https://github.com/HolmesShuan/ResNet-18-Caffemodel-on-ImageNet
MobileNet https://github.com/shicai/MobileNet-Caffe
ShuffleNet https://github.com/msnqqer/ShuffleNet

For image super resolution, we train (CT-)SRCNNs from scratch following Ren et al. (2018).

Hyper-parameters. We employ the Adam optimizer (Kingma & Ba, 2014). The learning rate is
set to be 10−5 and we train 300k batches with the batch size of 256, 128, 32 and 64 for AlexNet,
ResNet-18, MobileNet and ShuffleNet, respectively. Then, we decrease the learning rate to 10−6

and train 200k more batches. We use α = 0.5. For the learnable regularization coefficient λ, we let
λ = eω and learn ω instead in order to make λ always positive in training. The initial value of ω is
set to be 0, and it is updated with the Adam optimizer using the learning rate of 10−4. For image
super resolution networks, we train the quantized models using the Adam optimizer for 3M batches
with the batch size of 128. We use the learning rate of 10−5. We set α = 5 · 10−4. The initial value
for ω is set to be 0 and it is updated by the Adam optimizer using the learning rate of 10−5.

4https://github.com/openimages/dataset
5https://github.com/BVLC/caffe
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Table 4: AlexNet quantization results on ImageNet classification.

Quantized
layers

Weights Activations Top-1 / Top-5 accuracy (%)

Ours DoReFa-Net (Zhou et al., 2016)*

Pretrained model 32-bit FLP 32-bit FLP 58.0 / 80.8

(1) All layers

8-bit FXP 8-bit FXP 57.7 / 80.5 57.6 / 80.8
4-bit FXP 4-bit FXP 56.5 / 79.4 56.9 / 80.3
2-bit FXP 2-bit FXP 53.5 / 77.3 43.0 / 68.1

1-bit FXP

8-bit FXP 52.2 / 75.8 47.5 / 72.1
4-bit FXP 52.0 / 75.7 45.1 / 69.7
2-bit FXP 50.5 / 74.6 43.6 / 68.3
1-bit FXP 41.1 / 66.6 19.3 / 38.2

(2) Except the first
and the last layers

8-bit FXP 8-bit FXP 57.7 / 80.6 57.5 / 80.7
4-bit FXP 4-bit FXP 56.6 / 79.8 56.9 / 80.1
2-bit FXP 2-bit FXP 54.1 / 77.9 53.1 / 77.3

1-bit FXP

8-bit FXP 54.8 / 78.1 51.2 / 75.5
4-bit FXP 54.8 / 78.2 51.9 / 75.9
2-bit FXP 53.0 / 76.8 49.3 / 74.1
1-bit FXP 43.9 / 69.0 40.2 / 65.5

* from our experiments using their code.

Table 5: SRCNN and CT-SRCNN (5-layer) quantization results for upscaling factor 3.

Model Method Weights Activations Set-14 PSNR (dB) Set-14 SSIM PSNR (dB) loss SSIM loss

SRCNN
3-layer

Pretrained model 32-bit FLP 32-bit FLP 29.05 0.8161 - -

Ours

8-bit FXP

8-bit FXP

29.03 0.8141 0.02 0.0020
4-bit FXP 28.99 0.8133 0.06 0.0028
2-bit FXP 28.72 0.8075 0.33 0.0086
1-bit FXP 28.53 0.8000 0.52 0.0161

Gysel et al. (2018)* 8-bit FXP 8-bit FXP 28.58 0.7827 0.46 0.0328

CT-SRCNN
5-layer

Pretrained model 32-bit FLP 32-bit FLP 29.56 0.8273 - -

Ours

8-bit FXP

8-bit FXP

29.54 0.8267 0.02 0.0006
4-bit FXP 29.48 0.8258 0.08 0.0015
2-bit FXP 29.28 0.8201 0.28 0.0072
1-bit FXP 29.09 0.8171 0.47 0.0102

Gysel et al. (2018)* 8-bit FXP 8-bit FXP 29.04 0.8111 0.53 0.0148

Bicubic - - - 27.54 0.7742 - -
* from our experiments using their code at https://github.com/pmgysel/caffe.

B.2 ADDITIONAL EXPERIMENTAL RESULTS

In Table 4, we compare our quantization method to DoReFa-Net (Zhou et al., 2016) for the AlexNet
model in Krizhevsky et al. (2012). The DoReFa-Net results in Table 4 are (re-)produced by us from
their code6. We evaluate two cases where (1) all layers are quantized, and (2) all layers except the
first and the last layers are quantized. The results in Table 4 show that 4-bit quantization is needed
for accuracy loss less than 1%. For binary weights, we observe some accuracy loss of more or less
than 10%. However, we can see that our quantization scheme performs better than DoReFa-Net in
particular for low-precision cases, where the quantization error is larger and the mismatch problem
of the forward and backward passes is more severe.

We also provide additional experimental results for image super resolution networks in Table 3. The
experimental results show that our method successfully yields low-precision models of 8-bit weights
and activations at negligible loss, which is better than Ristretto (Gysel et al., 2018).

6https://github.com/ppwwyyxx/tensorpack/tree/master/examples/DoReFa-Net
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