
Under review as a conference paper at ICLR 2020

CONTINUOUS CONVOLUTIONAL NEURAL NETWORK
FOR NONUNIFORM TIME SERIES

Anonymous authors
Paper under double-blind review

ABSTRACT

Convolutional neural network (CNN) for time series data implicitly assumes that
the data are uniformly sampled, whereas many event-based and multi-modal data
are nonuniform or have heterogeneous sampling rates. Directly applying regular
CNN to nonuniform time series is ungrounded, because it is unable to recognize
and extract common patterns from the nonuniform input signals. Converting the
nonuniform time series to uniform ones by interpolation preserves the pattern
extraction capability of CNN, but the interpolation kernels are often preset and
may be unsuitable for the data or tasks. In this paper, we propose the Continuous
CNN (CCNN), which estimates the inherent continuous inputs by interpolation,
and performs continuous convolution on the continuous input. The interpolation
and convolution kernels are learned in an end-to-end manner, and are able to learn
useful patterns despite the nonuniform sampling rate. Besides, CCNN is a strict
generalization to CNN. Results of several experiments verify that CCNN achieves a
better performance on nonuniform data, and learns meaningful continuous kernels.

1 INTRODUCTION

Convolutional neural network (CNN), together with recurrent neural network (RNN), is among the
most popular deep learning architectures to process time series data. However, both CNN and RNN
rest on the assumption that both the input and output data are sampled uniformly. However, many
time-series data are event-based and thus not uniform in time, such as stock price (Gençay et al.,
2001), social media data (Chang et al., 2016) and health care data (Johnson et al., 2016).

There are several easy solutions to adapt CNN to accomodate nonuniform time series. The first
solution is to directly append the time stamps or time intervals to the input features, which are then
fed into a regular CNN (Zhang et al., 2017). However, the problem is that, without the uniform
sampling assumptions, the application of the regular CNN is ungrounded, and thus the performance
is compromised. This is because one major justification of CNN is that the filters/kernels are able to
extract useful patterns from input signals. But if the sampling rate varies, the traditional CNN will no
longer be able to recognize the same pattern.

A second obvious solution is to transform the nonuniform time series to uniform by interpolation, and
then feed the transformed signal to a regular CNN. This approach preserves CNN’s ability to extract
signal patterns despite the nonuniform sampling. However, simple interpolation schemes require
preset interpolation kernels, which is not flexible and may not fit the signal or the task well. To sum
up, most existing CNN-based remedies for nonuniform time series either cannot reasonably capture
the signal patterns or are too inflexible to maximize the performance in a data-driven manner.

Motivated by these challenges, we propose Continuous CNN (CCNN), a generalization to CNN for
nonuniform time series. CCNN estimates the implicit continuous signal by interpolation, yet performs
continuous convolution on the continuous signal. As a result, CCNN is capable of capturing the useful
patterns in the implicit input signal, which is of nonuniform sampling rate or naturally has uneven
time interval. Furthermore, the interpolation and convolution kernel functions are not preset, but
rather learned in an end-to-end manner, so that the interpolation is tailored for each task. Finally, we
show that CCNN and CNN are equivalent in terms of representation power under uniform sampling
rate. As shown in section 5, CCNN can achieve much better performance than the state-of-the-art
systems on non-uniform time series data.

1

Under review as a conference paper at ICLR 2020

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t

Input signal
(non-uniform)

CCNN output
(uniform)

Prediction

t ′

[t ′1 LK, t ′1) [t ′3 LK, t ′3)
x(t0) x(t1) x(t2) x(t3) x(t4) x(t5) x(t6) x(t7) x(t8) x(t9) x(t10) x(t11)

y(t ′0) y(t ′1) y(t ′2) y(t ′3) y(t ′4) y(t ′5) y(t ′6) y(t ′7) y(t ′8)

z0 z1 z2 z3 z4 z5

Continuous
Convolution

(Kernel length = LK)

Normal
Convolution

(Kernel length = 4)

Figure 1: CCNN Structure for predicting future events. Given uniform-interval time sequence {t′i},
CCNN layer performs both interpolating non-uniformly sampled signal sequence {x(ti)} to {x(t′i)} and
convolution({y(t′i)}). Now that {y(t′i)} is uniformly resampled, normal convolution layer can be applied.

The proposed CCNN can also be well-combined with temporal point process (TPP). TPP is a random
process of event occurrence, which is capable of modeling nonuniform time intervals. However, most
existing TPPs require inflexible preset parameterization. CCNN is able to expand the power of TPP
by replacing the modeling of the history contribution with a CCNN module.

2 RELATED WORKS

There are some research efforts of adapting RNN for nonuniform series. Some works (Pearlmutter,
2008; Funahashi & Nakamura, 1993; Cauwenberghs, 1996) use continuous-time dynamical system
methods to design RNN structures. Phased-LSTM (Neil et al., 2016) and Time-LSTM (Zhu et al.,
2017) introduce a time gate that passes the data at a certain frequency. Similar ideas can be found
in Clockwork RNN (Koutnik et al., 2014) and DilatedRNN (Chang et al., 2017). (Mei & Eisner,
2017) and (Du et al., 2016) explicitly model the sequence as temporal point process and utilize RNN
structure to encode the sequence history.

For non-neural network based approaches, the probabilistic generation process of both events and
its time stamps is assumed. (Liu & Hauskrecht, 2016) deals with irregularly sampled time series by
direct value interpolation and estimates the model via EM algorithm. (Wang et al., 2016; Du et al.,
2015) base their model on Hawkes process and estimate via conditional gradient algorithm.

The proposed CCNN is well supported by works on spiking neural networks (SNN) (Maass, 1997),
which mimic how human brains process information. The inputs to SNNs are spike chains with
nonuniform intervals that carry information. An important class SNNs (Eliasmith & Anderson, 2004;
Tapson & van Schaik, 2013; Tapson et al., 2013) convolves the input with continuous kernel functions,
which is similar to the key step of CCNN. However, CCNN differs from SNN in two aspects. First,
for SNN, the input information resides in time intervals, not in the inputs values; the goal of the
SNN convolution is to extract time interval information. In contrast, the input information for CCNN
resides in input values, not time intervals; the goal of the continuous convolution is to remove the
interference of nonuniform sampling. Second, CCNN learns the kernel functions in a data-driven
manner, whereas SNN employs predefined kernel functions.

Nonuniform time series processing is related to the task of point set classification, where the input is a
set of points nonuniformly distributed in the Rd space (d = 3 in most cases). Several existing methods
directly work on the coordinates of the points (Qi et al., 2017a;b). Some alternative approaches turn
the point sets into graphs by establishing edge connections among nearest neighbors (Shen et al.,
2017; Wang et al., 2018). The graph approaches utilize the distance information to some degree, but
the distance information is quantized. CCNN, on the other hand, make full use of the time interval
information.

3 THE CCNN ALGORITHM

Our problem is formulated as follows. Given a nonuniform input sequence x(t1), x(t2), · · · , x(tN) ∈
Xin, where the input time stamps tn ∈ Tin can be distributed nonuniformly, our goal is to design a
continuous convolutional layer that can produce output for any arbitrary output time t, y(t).

The proposed CCNN solves the problem via two steps:

2

Under review as a conference paper at ICLR 2020

(1) interpolation to recover the continuous signal x̂(t);

(2) continuous convolution on x̂(t).

Furthermore, rather than applying a preset interpolation, CCNN learns the interpolation kernel and
the convolution kernel in an end-to-end manner. The following two subsections elaborate on the two
steps respectively. The channel dimension and input dimension are set to one for simplification.

3.1 INTERPOLATION

CCNN reconstructs the underlying continuous input signal, x̂(t), by interpolating among nonuniform
input samples.

x̂(t) =

N∑
i=1

x(ti)I(t− ti;Tin,Xin) + ε(t;Tin,Xin) (1)

where the first term is the interpolation term, and I(·) is the interpolation kernel; the second term is
the error correction term. For the first term, a form analogous to the Parzen window approach Parzen
(1962) is used. Many interpolation algorithms can be expressed in this form (refer to Appendix A.1,
illustrated in Fig. 6. Considering the versatility of I(·), the interpolation algorithms representable by
Eq. (1) are vast. The error correction term, ε(·), are assumed to be determined by the input output
time stamps and input values, hence its arguments include t, Tin and Xin.

3.2 CONTINUOUS CONVOLUTION

Analogous to a standard CNN layer, after the continuous input is estimated by interpolation, the
CCNN layer performs a continuous convolution to produce the final output.

y(t) = x̂(t) ∗ C(t) + b (2)

where ∗ denotes continuous convolution, C(t) denotes the convolution kernel, and b denotes bias.

Unfortunately, I(·), ε(·) and C(·) are not individually identifiable. To see this, we combine Eqs. (1)
and (2).

y(t) =

N∑
i=1

x(ti) [I(t− ti;Tin,Xin) ∗ C(t)]︸ ︷︷ ︸
collapsed kernel function

+ [ε(t;Tin,Xin) ∗ C(t) + b]︸ ︷︷ ︸
collapsed bias function

=

N∑
i=1

x(ti)K(t− ti;Tin,Xin) + β(t;Tin,Xin)

(3)

whereK(t;Tin,Xin) is the collapsed kernel function, representing the combined effect of interpolation
and convolution; β(t;Tin,Xin) is the collapsed bias function, representing the combined effect of
error correction and convolution.

Eq. (3) shows that learning the interpolation and convolution kernels and errors is now simplified
into learning the collapsed kernel and bias functions. Once these two functions are learned, the final
output can be readily computed using Eq. (3). The next section will explain how CCNN is structured
to learn these functions in an end-to-end manner.

4 THE CCNN STRUCTURE

Following the discussion in Sec. 3, a CCNN layer is divided into three parts: the kernel network
learning the collapsed kernel function, the bias network learning the collapsed bias function, and the
main network producing the final output using Eq. (3).

4.1 THE KERNEL NETWORK

The basic idea of the kernel network is to represent the kernel function using a neural network, based
on the fact that a neural network can represent any function given enough layers and nodes (Hornik,
1991). In order to regularize the complexity, a few assumptions on K(·) are introduced:

3

Under review as a conference paper at ICLR 2020

Two-hot Encoding

K(t − ti; 𝒯in, 𝒳in)

Feedforward Network

L(s)
K < Δtk < L(e)

K

Concatenate

t − ti−OK
••• t − ti ••• t − ti+OK

x(ti−OK
) ••• x(ti) ••• x(ti+OK

)

time difference ⃗Δt = t − 𝒯in

input sequence 𝒳in

⃗0
T

F

(a) Kernel network.

Two-hot Encoding

β(t; 𝒯in, 𝒳in)

Feedforward Network

Concatenate

t − tj*−OB
••• t − tj* ••• t − tj*+OB

x(tj*−OB
) ••• x(tj*) ••• x(tj*+OB

)

time difference ⃗Δt = t − 𝒯in

input sequence 𝒳in

(b) Bias network.

β(t; 𝒯in, 𝒳in) Sum

Inner Product

x(t0) ••• x(ti) ••• x(tN)
input sequence 𝒳in

K(t − t0) ••• K(t − ti) ••• K(t − tN)
kernel network output ⃗K(t)

y(t)

bias network output β

(c) Compute y(t) by collapsed interpolation
and convolution. K(t− ti) is the shorthand
for K(t− ti;Tin,Xin)

Figure 2: CCNN structure.

Stationarity and Finite Dependency: The dependency of K(·) on Tin is relative to the output time
t, and is constrained to among the adjacent time stamps, i.e.

K(t− ti;Tin,Xin) = K({t− ti±k, x(ti±k)}k=0:OK
) (4)

where {t − ti±k, x(ti±k)}k=0:OK
denotes the set of t − ti±k and x(ti±k) where k runs from 0 to

OK , and OK is the order of the kernel network. Notice that the examples in Eqs. (14)-(16) and many
other interpolation kernels still satisfy this assumption.

Finite Kernel Length: The collapsed kernel function has finite length.

K(t− ti;Tin) = 0,∀|t− ti| > LK (5)

where LK is the kernel length. This assumption implies the interpolation and the convolutional kernels
both have finite length. While many interpolation kernels do have finite length (e.g. Eqs. (14) and
(15)), others do not (e.g. Eq. (16)). Nevertheless, most infinite-length interpolation kernels, including
Eq. (16), have tapering tails, and thus truncation on both sides still provides good approximations.
Regarding the convolutional kernel, the finite length assumption naturally extends from the standard
CNN.

Fig. 2(a) shows the kernel network structure, which is a feedforward network. According to Eq. (4),
the input is ({t− ti±k, x(ti±k)}k=0:OK

. The output represents the kernel function, which is forced
to be zero when |t− ti| > LK . To reduce learning difficulties, the time differences are fed into an
optional two-hot encoding layer, which will be discussed later in details.

4.2 THE BIAS NETWORK

For the bias network, a similar stationarity and finite dependency assumption is applied as follows.

β(t;Tin,Xin) = β({t− tj∗±k, x(tj∗±k)}k=0:OB
), (6)

where tj∗ is the closest input time stamp to output time t:

tj∗ = argmin
tj∈Tin

|tj − t| (7)

and OB denotes the order of the bias network. The only difference from Eq. (4) is that the closest
input time stamp, tj∗ , is chosen as a reference on which the time difference and the adjacent input
time stamps are defined, because the major argument of the bias function is the output time itself, t,
instead of the input-output time difference t− ti. Fig. 2(b) shows the bias network, which is also a
feedforward network.

4.3 CAUSAL SETTING

For causal tasks, current output should not depend on future input, and therefore the t− ti±k terms
that are greater than 0, as well as the corresponding x(ti±k), are removed from Eq. (4). Similarly,
t− tj∗±k that are greater than 0, as well as the corresponding x(tj∗±k), are removed from Eq. (6).
Also, the condition bound in Eq. (5) is replaced with t− ti > LK or t− ti < 0.

4

Under review as a conference paper at ICLR 2020

k-2 k-1 k k+1 k+2
0.0
0.4
0.6
1.0

k 2 k 1 k k + 1 k + 2
k-2 k-1 k k+1 k+2

0.0
0.4
0.6
1.0

k 2 k 1 k k + 1 k + 2

Figure 3: Two-hot encoding. Each cross on the 1-D axis denotes a value of ∆t. The stem plot above shows its
two-hot vector. Assuming d = 5, the left plot shows when ∆t = πk−1 + 0.4δ, the two-hot encoding of ∆t is [0,
0.6, 0.4, 0, 0]. The left plot shows when ∆t = πk−1, the encoding is [0, 1, 0, 0, 0]

4.4 TWO-HOT ENCODING

The kernel and bias functions can be complicated functions of the input times, so model complexity
and convergence can be serious concerns. Therefore, we introduce a two-hot encoding scheme for the
input times, which is an extension to the one-hot scheme, but which does not lose information.

Denote the time difference value to be encoded as ∆t. Similar to one-hot, the two-hot encoding
scheme partitions the range of ∆t into D − 1 intervals, whose edges are denoted as π1, π2, · · · , πd.
However, rather than having a length-D − 1 vector representing the intervals, two-hot introduces a
length-D vector representing the edges. When ∆t falls in an interval, the two elements corresponding
to its two edges are lit. Formally, denote the encoded vector as g, and suppose ∆t falls in interval
[πk, πk+1). Then

gk =
πk+1 −∆t

δ
, gk+1 =

∆t− πk

δ
; gl = 0, ∀l /∈ {k, k + 1} (8)

where δ = πk − πk−1 denotes the interval width (all the intervals are set to have equal width); gk
denotes the k-th element of g. Fig. 3 gives an intuitive visualization of the encoding process.

As an example explanation of why two-hot helps, it can be easily shown that a one-layer feedforward
network can only learn a linear function (a straight line) without any encoding, but a piecewise
constant function with one-hot encoding, and yet a piecewise linear function with two-hot encoding.

4.5 COMBINING WITH TEMPORAL POINT PROCESSES

For tasks like predicting the time interval till the next event, the output of CCNN will be the predicted
probability distribution of the time interval, which requires a good probabilistic model characterizing
the likelihood of these intervals. Temporal point process (TPP) is a popular and general model for
the time stamps of the random processes {x(ti), ti} whose time intervals are nonuniform. It turns
out that CCNN can be well combined with TPPs in modeling the time interval prediction task, in a
similarly way to Du et al. (2016).

A TPP is parameterized by λ∗(t), which depicts the rate of the probability of the event occurrence.
Formally

λ∗(t)dt = Pr

(
Event i happens in [t, t+ dt)

∣∣∣∣∣⋃
j<i

{x(tj), tj}

)
(9)

It can be shown that the probability density function (PDF) of an event happening at time t conditional
on the history of the events

⋃
j≤i−1{x(tj), tj} can be expressed as

f∗(t) = λ∗(t) exp

(
−
∫ t

ti−1

λ∗(τ)dτ

)
. (10)

Rather than applying some preset functional form for λ∗(t) as in conventional TPPs, we propose to
use a CCNN to model λ∗(t) as follows. First, we pass the historical time series to a CCNN to learn a
history embedding

hi−1 = CCNN

 ⋃
j≤i−1

{x(tj), tj}

 , (11)

where CCNN (·) is just a functional abstraction of CCNN. Then λ∗(t) is obtained by combining the
history information and the current time information as follows

λ∗(t) = exp(vhi−1 + w(t− ti−1) + b), (12)

5

Under review as a conference paper at ICLR 2020

Alg. Sine MG Lorenz
CNN 46.0 (8.22) 12.8 (3.92) 9.90 (3.33)
CNNT 20.2 (7.65) 3.50 (1.29) 5.97 (2.41)
CNNT-th 8.44 (4.58) 3.00 (1.21) 8.37 (3.24)
ICNN-L 1.13 (0.87) 0.97 (0.53) 5.81 (2.78)
ICNN-Q 0.75 (0.65) 0.83 (0.46) 5.08 (2.59)
ICNN-C 0.72 (0.83) 0.72 (0.42) 4.22 (2.27)
ICNN-P 20.5(6.43) 1.95(0.79) 8.50(3.32)
ICNN-S 17.2(5.57) 3.51(1.36) 8.20(3.31)
RNNT 36.1(12.9) 8.15(3.32) 13.4(3.95)
RNNT-th 19.5(6.48) 8.48(3.11) 13.9(4.36)
CCNN 0.88 (0.61) 2.46 (0.89) 3.93 (1.73)
CCNN-th 0.42 (0.36) 0.53 (0.97) 3.25 (1.67)

Table 1: Mean squared error of prediction on simulated
data (×10−2).

0 1 2 3 4 5 6 7
(a) t (Period=4)

2

1

0

1

K
er

ne
l W

ei
gh

t K
(

t)

T/2 = 2.0

0 1 2 3 4 5 6 7
(b) t (Period=5)

2

1

0

1

K
er

ne
l W

ei
gh

t K
(

t)

T/2 = 2.5

0 1 2 3 4 5 6 7
(c) t (Period=6)

2

1

0

1

K
er

ne
l W

ei
gh

t K
(

t)

T/2 = 3.0

0 1 2 3 4 5 6 7
(d) t (Period=7)

2

1

0

1

K
er

ne
l W

ei
gh

t K
(

t)

T/2 = 3.5

Figure 4: The learned continuous kernel function on
the sine, as functions of ∆t = t− ti.

where v,w and b are trainable parameters. Combining Eqs. (10) and (12), we can obtain a closed-form
expression for f∗(t)

f∗(t) = exp

(
vhi−1 + w(t− ti−1) + b+

1

w

(
exp(vhj−1 + b)− exp(vhj−1 + w(t− tj−1) + b)

))
.

(13)
By maximizing this likelihood on the training data, we can estimate of the conditional distribution of
the time intervals. To obtain a point estimate of the time interval till the next event, we compute the
expectation under Eq. (13) numerically.

Du et al. (2016) also applies the same approach, but the history embedding hi−1 is computing by
a regular RNN. CCNN, with its improved processing of nonuniform data, is expected to produce a
better hitory embedding, and thereby a better estimate of the time intervals.

4.6 SUMMARY AND GENERALIZATION

Fig. 2 illustrates the structure of a CCNN layer. To sum up, the kernel network and bias network
learn the continuous kernel and bias as functions of t, Tin and Xin. The main network applies these
functions to produce the output according to Eq. (3). The hyperparameters include OK (Eq. (4)), LK

(Eq. (5)), OB (Eq.(6)) and δ (Eq. (8)).

It is worth highlighting that CCNN not only accommodates arbitrary input time stamps, it can also
produce output at any output time stamps, by simply adjusting the value of t in Eqs. (3), (4) and (6).
So a CCNN layer can accept input at a set of time stamps, and produces output at a different set of
time stamps, which is very useful for resampling, interpolation and continuous sequence prediction.

When the inputs x(ti) and output y(t) need to be multidimensional, according to Eq. (3), K(·) and
β(·) become vectors or matrices with matching dimensions. Therefore, we simply need to adapt
the output of the kernel and the bias networks from scalars to vectors or vectorized matrices. Also,
a multi-layer CCNN can be constructed by stacking individual CCNN layers, with the input time
stamps of a layer matching the output time stamps of its previous layer.

5 EVALUATION

In this section, CCNN is evaluated on a set of prediction tasks on both simulated and realworld data.

5.1 PREDICTING SIGNAL VALUE ON SIMULATED DATA

The prediction task predicts the next sample x(tN+1), given the previous nonuniform samples
x(t1) · · ·x(tN).

Datasets The synthetic datasets are generated by unevenly sampling from three standard time series:
Sine, Mackey-Glass(MG) and Lorenz. The details of the time series are introduced in Appendix C.1

Baselines The following algorithms are compared:

• CCNN: The proposed algorithm. The first layer is a CCNN layer which takes both the sampling
time intervals and the signal sequence. After the CCNN layer, the sequence is resampled onto a

6

Under review as a conference paper at ICLR 2020

uniform time interval. For predicting future label, signal value, and interval, the CCNN is configured
using only past value, i.e. CCNN kernel has non-zero value only when t′ − LK < ti < t′, shown
in Fig. 1. The time information is either two-hot encoded (Adams et al., 2010) (CCNN-th), or not
encoded (CCNN).

• CNN: data are directly fed into a regular CNN, with no special handling of nonuniform sampling.

• CNNT: The sampling time intervals are appended to the input data, which are fed to a regular CNN.
The time information is either two-hot encoded (CNNT-th), or not encoded (CNNT).

• ICNN: data are interpolated to be uniform before being fed to a regular CNN. Piecewise Const-
nat (ICNN-P), linear (ICNN-L), quadratic (ICNN-Q), cubic spline (ICNN-C) and sinc (ICNN-S)
interpolation algorithms are implemented.

• RNNT: the sampling time intervals are appended to the input data, then are fed into a vanilla
RNN.The time information is either two-hot encoded (RNNT-th), or not encoded (RNNT).

All the networks have two layers with ReLU activations in the hidden layers and no activations in the
output layer. For CNN, ICNN and CNNT, the convolution kernel length of each layer is set to 7. For
ICNN, the input signal is interpolated at time stamps tN+1 − k, k = 1, · · · , 13 to form a uniform
sequence before feeding into two-layers regular CNN. For CCNN, the output time stamps of the first
layer are tN+1 − k, k = 1, · · · , 13. The kernel length LK = 3. Since its input is uniform, the second
layer of CCNN is a regular convolutional layer, with kernel length 7. These configurations ensure
that all the neural networks have the same expected receptive field size of 13.

The rest of the hyperparameters are set such that all the networks have comparable number of
parameters, as in Appendix C.2. All the networks are trained with Adam optimizer Kingma & Ba
(2014) and mean squared error (MSE) loss. The training batch size is 20. The number of training
steps is determined by validation. The validation set size is 10,000.

Results and Analysis Table 11 lists the MSEs. There are three observations. First, CCNN-th out-
performs the other baselines in terms of prediction accuracy. Notice that the number of convolution
channels of CCNN are significantly smaller than most of the other baselines, in order to match
the number of parameters. Nevertheless, the advantage in properly dealing with the nonuniform
sampling still offsets the reduction in channels in most tasks. Second, interpolation methods (ICNNs
and CCNN) generally outperform the other baselines, particularly CNNT. This again shows that
interpolation is more reasonable for dealing with nonuniform time series than simply appending the
time intervals. Furthermore, preset interpolation algorithms (ICNNs) can rarely match CCNN that
has the flexibility to learn its own interpolation kernel. Third, two-hot encoding usually improves
the performance. Again, there are fewer channels with two-hot encoding in order to match model
complexity, but the advantage of two-hot encoding still stands out.

Kernel Analysis In order to visualize the learned continuous kernels K(t− ti;Tin,Xin), we set the
CCNN network has the same configuration except CCNN filter number is 1, and is trained separately
with nonuniformly sampled (λ = 1) sine signals with T = 4, 5, 6, 7. The learned continuous kernel
function is quite interpretable. Each kernel is a sine-like function with estimated period equaling the
underlying signal period shown in Fig. 4

5.2 PREDICTING TIME INTERVALS TO NEXT EVENT

We then evaluate CCNN on realworld data to to predict the time intervals to the next event.

Datasets and Configurations Four time series datasets with nonuniform time intervals are intro-
duced, i.e. NYSE, Stackoverflow2, MIMIC ((Johnson et al., 2016)) and Retweet ((Zhao et al., 2015)).
Detailed information are provided in Appendix C.3. The input sequence is the time stamps and the
one-hot encoded types of a series of events. The task is to predict the time interval till the next event
of a specific type, given the previous events. As mentioned in Sec. 4.5, following the design in (Du
et al., 2016), the input sequence is assumed to be generated via an underlying marked TPP, where the
time stamps follow a TPP, and the marker, i.e. the type of the event, is generated from a multinomial
distribution conditioned on history. The output of the networks is a condition intensity function λ∗(t)

1Hereafter, in tables, the numbers in parentheses show standard deviation.
2https://archive.org/details/stackexchange

7

https://archive.org/details/stackexchange

Under review as a conference paper at ICLR 2020

0 25 50 75 100
Time Index

0

1

2

3

4

5

Ev
en

t I
nt

er
va

l

CCNN
Data

0 20 40 60 80
Time Index

0

1

2

3

4

5

Ev
en

t I
nt

er
va

l

CCNN
Data

0 10 20 30 40
Time Index

0

1

2

3

4

5

Ev
en

t I
nt

er
va

l

CCNN
Data

0 20 40 60
Time Index

0

2

4

6

8

10

Ev
en

t I
nt

er
va

l

CCNN
Data

Models
0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

R
M

SE

NYSE

RMTPP
N-SM-MPP
CCNN
CCNN-th

Models
8.4

8.6

8.8

9.0

9.2

9.4

9.6

9.8

10.0

R
M

SE

StackOverflow

RMTPP
N-SM-MPP
CCNN
CCNN-th

Models
4.0

4.5

5.0

5.5

6.0

6.5

7.0

R
M

SE

MIMIC

RMTPP
N-SM-MPP
CCNN
CCNN-th

Models
0.0

0.1

0.2

0.3

0.4

0.5

R
M

SE

ReTweet

RMTPP
N-SM-MPP
CCNN
CCNN-th

Figure 5: Example predicted time intervals, which is the expectation over Eq. (10) (upper) and RMSE (lower)
on the predicting time interval to next event (section 5.2). Standard deviation is calculated among 5 train-test-
validation splits. ReTweet dataset has only one split so no standard deviation is reported. N-SM-MPP did not
report RMSE on retweet dataset.

as in Eq. (12). The loss function is the log-likelihood of training set as in (Du et al., 2016). As the
model prediction, the expected duration is computed numerically from the estimated conditional
distribution. The evaluation metric is the MSE of the expected duration and the actual duration to the
next event. Configurations of all the models are the same as in previous experiments except that: the
one-hot encoded event types, {x(ti)}, are first passed through an embedding layer, which is a 1× 1
convolutional layer with a channel dimension of 8, and the resulting embedded vectors are then fed
into the networks.

This task is a causal task, where current output should not depend on future input. Therefore, the
CCNN configuration is adapted to the causal setting, as discussed in section 4.3.

Baselines We benchmark with two baselines specialized for this type of tasks, Recurrent Marked
Temporal Point Process (RMTPP) (Du et al., 2016) and N-SM-MPP (Mei & Eisner, 2017). N-SM-
MPP is the current state-of-the-art deep learning method. For NYSE, StackOverflow and MIMIC,
we direcly compare to the results (Mei & Eisner, 2017) reported, and re-inplemented RMTPP to
benchmark ReTweet. Configurations for CCNNs are provided in Appendix C.4.

Results and Analysis Fig. 5 shows the estimated event interval (expectation of Eq. (10)) and RMSEs.
The upper plots show that the predicted interval aligns well with ground truth and result in smaller
RMSE in MIMIC and Retweet dataset. In NYSE and StackOverflow, though the groud truth shows
extremely fluctuation on event intervals and CCNNs fail to predict accurately as in MIMIC and
ReTweet, the predicted interval still tend to capture the increase and decrease trend. The lower plots
compare the RMSE with the baselines. CCNN algorithms outperformed two baselines in all datasets.
There is a slight advantage of CCNN-th over CCNN, which verifies the effectiveness of two-hot
encoding.

5.3 ADDITIONAL EXPERIMENTS

Two additional experiments on real-world data, which are prediction on Data Market and interpolation
on speech, are presented in Appendix D.

6 CONCLUSION

In this paper, we have introduced CCNN for nonuniform time series with two takeaways. First, inter-
polation before continuous convolution is shown to be a reasonable way for nonuniform time series.
Second, learning task specific kernels in a data-driven way significantly improves the performance.
There are two promising directions. First, we have focused on 1D convolution, but this framework can
be generalized to multi-dimensional nonuniform data. Second, while the computational complexity
is similar for CCNN and CNN, the runtime of the former is much longer, because of the lack of
parallelization. Fast implementation of CCNN is thus another research direction.

8

Under review as a conference paper at ICLR 2020

REFERENCES

Andrew Adams, Jongmin Baek, and Myers Abraham Davis. Fast high-dimensional filtering using the permuto-
hedral lattice. In Computer Graphics Forum, volume 29, pp. 753–762. Wiley Online Library, 2010.

Przemyslaw Bogacki and Lawrence F Shampine. A 3 (2) pair of runge-kutta formulas. Applied Mathematics
Letters, 2(4):321–325, 1989.

Gert Cauwenberghs. An analog VLSI recurrent neural network learning a continuous-time trajectory. IEEE
Transactions on Neural Networks, 7(2):346–361, 1996.

Shiyu Chang, Yang Zhang, Jiliang Tang, Dawei Yin, Yi Chang, Mark A Hasegawa-Johnson, and Thomas S
Huang. Positive-unlabeled learning in streaming networks. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 755–764. ACM, 2016.

Shiyu Chang, Yang Zhang, Wei Han, Mo Yu, Xiaoxiao Guo, Wei Tan, Xiaodong Cui, Michael Witbrock,
Mark A Hasegawa-Johnson, and Thomas S Huang. Dilated recurrent neural networks. In Advances in Neural
Information Processing Systems, pp. 76–86, 2017.

Nan Du, Yichen Wang, Niao He, Jimeng Sun, and Le Song. Time-sensitive recommendation from recurrent user
activities. In Advances in Neural Information Processing Systems, pp. 3492–3500, 2015.

Nan Du, Hanjun Dai, Rakshit Trivedi, Utkarsh Upadhyay, Manuel Gomez-Rodriguez, and Le Song. Recurrent
marked temporal point processes: Embedding event history to vector. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1555–1564. ACM, 2016.

Chris Eliasmith and Charles H Anderson. Neural Engineering: Computation, Representation, and Dynamics in
Neurobiological Systems. MIT press, 2004.

Ken-ichi Funahashi and Yuichi Nakamura. Approximation of dynamical systems by continuous time recurrent
neural networks. Neural Networks, 6(6):801–806, 1993.

Ramazan Gençay, Michel Dacorogna, Ulrich A Muller, Olivier Pictet, and Richard Olsen. An Introduction to
High-frequency Finance. Academic press, 2001.

Leon Glass and Michael C Mackey. Pathological conditions resulting from instabilities in physiological control
systems. Annals of the New York Academy of Sciences, 316(1):214–235, 1979.

Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural Networks, 4(2):251–257,
1991.

Alistair EW Johnson, Tom J Pollard, Lu Shen, H Lehman Li-wei, Mengling Feng, Mohammad Ghassemi,
Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G Mark. Mimic-iii, a freely accessible
critical care database. Scientific data, 3:160035, 2016.

Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Accurate image super-resolution using very deep convolutional
networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1646–
1654, 2016.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Jan Koutnik, Klaus Greff, Faustino Gomez, and Juergen Schmidhuber. A clockwork RNN. In International
Conference on Machine Learning, pp. 1863–1871, 2014.

Kehuang Li and Chin-Hui Lee. A deep neural network approach to speech bandwidth expansion. In Acoustics,
Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on, pp. 4395–4399. IEEE,
2015.

Zitao Liu and Milos Hauskrecht. Learning adaptive forecasting models from irregularly sampled multivariate
clinical data. In AAAI, pp. 1273–1279, 2016.

Edward N Lorenz. Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 20(2):130–141, 1963.

Wolfgang Maass. Networks of spiking neurons: the third generation of neural network models. Neural networks,
10(9):1659–1671, 1997.

Hongyuan Mei and Jason M Eisner. The neural hawkes process: A neurally self-modulating multivariate point
process. In Advances in Neural Information Processing Systems, pp. 6754–6764, 2017.

9

Under review as a conference paper at ICLR 2020

Daniel Neil, Michael Pfeiffer, and Shih-Chii Liu. Phased LSTM: Accelerating recurrent network training for
long or event-based sequences. In Advances in Neural Information Processing Systems, pp. 3882–3890, 2016.

Emanuel Parzen. On estimation of a probability density function and mode. The Annals of Mathematical
Statistics, 33(3):1065–1076, 1962.

Barak A Pearlmutter. Learning state space trajectories in recurrent neural networks. Learning, 1(2), 2008.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets for 3d
classification and segmentation. Proc. Computer Vision and Pattern Recognition (CVPR), IEEE, 1(2):4,
2017a.

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical feature learning
on point sets in a metric space. In Advances in Neural Information Processing Systems, pp. 5099–5108,
2017b.

Yiru Shen, Chen Feng, Yaoqing Yang, and Dong Tian. Neighbors do help: Deeply exploiting local structures of
point clouds. arXiv preprint arXiv:1712.06760, 2017.

Jonathan Tapson and André van Schaik. Learning the pseudoinverse solution to network weights. Neural
Networks, 45:94–100, 2013.

Jonathan C Tapson, Greg Kevin Cohen, Saeed Afshar, Klaus M Stiefel, Yossi Buskila, Tara Julia Hamilton, and
André van Schaik. Synthesis of neural networks for spatio-temporal spike pattern recognition and processing.
Frontiers in Neuroscience, 7:153, 2013.

Yichen Wang, Nan Du, Rakshit Trivedi, and Le Song. Coevolutionary latent feature processes for continuous-time
user-item interactions. In Advances in Neural Information Processing Systems, pp. 4547–4555, 2016.

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M Solomon. Dynamic
graph cnn for learning on point clouds. arXiv preprint arXiv:1801.07829, 2018.

Junbo Zhang, Yu Zheng, and Dekang Qi. Deep spatio-temporal residual networks for citywide crowd flows
prediction. In AAAI, pp. 1655–1661, 2017.

Qingyuan Zhao, Murat A Erdogdu, Hera Y He, Anand Rajaraman, and Jure Leskovec. Seismic: A self-exciting
point process model for predicting tweet popularity. In Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 1513–1522. ACM, 2015.

Yu Zhu, Hao Li, Yikang Liao, Beidou Wang, Ziyu Guan, Haifeng Liu, and Deng Cai. What to do next: Modeling
user behaviors by Time-LSTM. In Twenty-Sixth International Joint Conference on Artificial Intelligence
(IJICAI), pp. 3602–3608, 2017.

10

Under review as a conference paper at ICLR 2020

A THEOREM PROOFS

A.1 INTERPOLATION KERNELS EXAMPLES

• Piecewise Constant Interpolation:

I(t− ti;Tin,Xin) = 1[0 < t− ti ≤ ti+1 − ti] (14)

where 1[·] denotes the indicator function.

• Linear Interpolation:

I(t− ti;Tin,Xin) =

t−ti−1

ti−ti−1
if 0 < t− ti−1 < ti − ti−1

ti+1−t
ti+1−ti if 0 < ti+1 − t < ti+1 − ti
0 otherwise.

(15)

• Sinc Interpolation:

I(t− ti;Tin,Xin) = a sin

(
π(t− ti)

a

)
/(t− ti). (16)

These examples are illustrated in Fig 6. Notice that in Eqs. (14) and (15), the interpolation kernels
depend not only on t− ti, but also on adjacent input times, ti+1 and/or ti−1, and hence all the input
times Tin are put in the argument. In some nonlinear interpolations, the interpolation kernel is also
affected by the input values Xin.

A.2 PROOF OF THE THEOREMS

This appendix provides the proof to the theorems stated in the original paper.

Proof to Theorem 1. We will only consider the 1D case. The generalization to multi-dimensional
cases is straightforward. The regular 1×W CNN performs the following operation to generate the
output sequence

y(τk) =

k+(W−1)/2∑
i=k−(W−1)/2

x(ti)Kk−i + b (17)

where
{
K−(W−1)/2, · · · ,K(W−1)/2

}
and b are trainable parameters. Here we implicitly assume

that W is odd. We will prove the theorem by primarily utilizing the correspondence between
Equations (25) and (17).

•F ⊂ G:

∀K({tj − tj+k}k=±0:±OK
) represented by the kernel network, and ∀β({tj − tj+k}k=1:OB

) repre-
sented by the bias network, and thereby ∀f ∈ F.

By Eq. (4) and Cond. 1, the arguments of the kernel function K(·), namely the input to the kernel
network, can only be a set of consecutive multiples of ∆t, i.e.

K({(w + k)∆t}k=±0:±OK
) (18)

!"!"#$!"%$

(a) Piecewise Constant

!"!"#$!"%$

(b) Linear

!"!"#$!"%$

(c) Sinc

Figure 6: Illustration of interpolation kernels. The red crosses denote the input data samples. The black line
shows the interpolation kernel for x(ti); the gray lines show the kernels for the other two points. The blue line
shows the interpolated result.

11

Under review as a conference paper at ICLR 2020

where w is an integer.

Moreover, from Eq. (5) and Cond. 5, K(·) is non-zero iff w lies in the interval [−(W − 1)/2, (W −
1)/2].

Similarly, from Eq. (25) and Cond. 1, the arguments of the bias function β(·) can only take one set of
values:

β({k∆t}k=±1:±OB
) (19)

Then, Eq. (17) can be made equivalent to Eq. (25) by setting
Kw = K({(w + k)∆t}k=±0:±OK

)

b = β({k∆t}k=±1:±OB
)

(20)

which means f ∈ G. Here concludes the proof that any CCNN layer can be matched by a CNN layer.

•G ⊂ F

Here we would only prove the case where both the weight network and bias network of CCNN has
only one layer, which is the most difficult case. If either network has more than one layers, the proof
is easily generalizable by setting the bottom layers to identity, which is feasible because of Cond. 4.
Also, we only consider the case where the kernel network order and the bias network order are both
one, i.e.

OK = 1, OB = 1 (21)
The proof can be generalized to larger orders by setting the additional weights to zero. In the special
case defined above, the kernel network in Eq. (18) is further simplified to K(w∆t). The bias network
in Eq. (19) is further simplified to β(0).

Further, notice that the w∆t, as the input to the kernel network, has to go through two-hot encoding.
By Cond. 2 and 3, the two-hot encoding of w∆t is a one-hot vector, where only the w-th dimension
is activated and the rest is zero. Since the kernel network is a one-layer feedforward network, denote
the weight connected to the w-th dimension of the two-hot vector as Pw, then we have

K(w∆t) = Pw (22)

∀{Cw} and b that define a CNN layer, and thereby ∀g ∈ G, let

Pw =

{
Kw if− W−1

2
≤ w ≤ W−1

2
0 otherwise (23)

Cond. 3 ensures that there are enough number of nontrivial Pws to cover all the w in the case specified
in line 1 of the equation above; and let

β (0) = b (24)
which means the bias network learns a constant. Then the CCNN layer can be made equivalent to the
CNN layer, i.e. g ∈ F. Here concludes the proof that any CNN layer can be matched by a CCNN
layer.

B REPRESENTATION POWER ANALYSIS

In this section, we study how the proposed CCNN layer relates to and compares against two CNN
baselines in terms of representation power. The first baseline is simply a regular convolutional layer,
and the second baseline is a convolutional layer with input time intervals, ∆ti, appended to the input
features, which we will call CNNT throughout.

B.1 CASE 1: OUTPUT TIME STAMPS SAME AS INPUT

This subsection intuitively explains why CCNN has a superior representation power to CNNT.
Suppose the output time stamps are the same as input time stamps, i.e. t ∈ Tin. Then, combining
Eq. (3) with Eqs. (4)-(6), we have

y(tj) =
∑
i

x(ti)K(tj − ti;Tin,Xin)

+ β(0; {tj − tj±k, x(tj±k)}k=0:OB
).

(25)

12

Under review as a conference paper at ICLR 2020

Table 2: Mean squared error of prediction on realworld data.

Alg. DM1 DM2 DM3 DM4 DM5 DM6 DM7 DM8 DM9 DM10 DM11 DM12 DM13
CNNT-th 0.86 0.81 0.91 0.99 0.42 0.76 0.52 0.55 0.43 0.69 0.84 0.99 0.47
ICNN-L 0.52 0.27 0.70 1.03 0.06 0.30 0.02 0.24 0.26 0.44 0.51 0.84 0.13
ICNN-Q 0.61 0.28 0.69 0.98 0.06 0.30 0.06 0.23 0.29 0.45 0.57 0.84 0.13
ICNN-C 0.63 0.29 0.71 1.02 0.06 0.30 0.04 0.25 0.29 0.43 0.56 0.82 0.13
ICNN-P 0.71 0.40 0.74 0.99 0.09 0.37 0.02 0.28 0.33 0.45 0.60 0.94 0.17
ICNN-S 0.53 0.26 0.66 1.00 0.07 0.28 0.21 0.26 0.31 0.43 0.49 0.87 0.15
RNNT-th 0.79 0.27 0.70 1.06 0.05 0.38 0.42 0.20 0.33 0.48 0.57 1.01 0.11
CCNN-th 0.49 0.23 0.65 1.00 0.05 0.27 0.04 0.22 0.29 0.41 0.50 0.80 0.12

In contrast, for a CNNT layer, if we separate the convolution on time interval from the rest

y(tj) =
∑
i

x(ti)Kj−i +

[∑
i

(tj − tj−1)K ′j−i + b

]
. (26)

The second term of Eq. (25) represents a feedforward network on {tj − tj±k, x(tj±k)}k=0:OB
,

whereas the second term of Eq. (26) can be regarded as a one-layer feedforward network on {tj −
tj−1}, which is equivalent to a one-layer feedforward network on {tj − tj±k}k=1:OB

. In other words,
appending the time interval feature to the convolution layer is only a weak version of the CCNN bias
network.

Yet a more fundamental disadvantage of CNNT lies in the first term, where the convolution kernel
of CNNT, Kj−i, does not depend on the actual time difference, but the order in which the sample
arrives. This makes CNNT very vulnerable to the sampling variations. CCNN, on the other hand, has
a more robust kernel function for nonuniform data.

B.2 CASE 2: UNIFORM TIME STAMPS

Both CNNT and CCNN have the same representation power as CNN under uniform sampling rate,
and thus both are strict generalizations to CNN. For CNNT this is trivial because the second term of
Eq. (26) reduces to a constant. For CCNN, we have the following theorem.

Theorem 1. Let F be the set of all functions that can be represented by a CCNN layer, and G be
the set of all functions that can be represented by a 1×W convolutional layer. Then F = G, if the
following conditions hold:

1. the input and output time stamps are uniform and the same, i.e. ∆ti = ∆t, ∀i.
2. The two-hot encoding interval boundaries are at multiples of ∆t, i.e. πk = k∆t.

3. The dimension of the two-hot vector of CCNN is no smaller than the CNN kernel length, i.e.
D ≥W .

4. If the kernel network has hidden layers, the hidden node dimension is no smaller than W .

5. CCNN and CNN have the same receptive field size, i.e. 2LK = W∆t.

6. The kernel and bias networks do not depend on Xin.

The proof is shown in the appendix. Thm. 1 implies that in the uniform case where the increased
model complexity of CCNN is not needed, it will not harm the performance either. Replacing CNN
or CNNT with CCNN will not be worse off regardless of how the data are distributed in time.

As a final remark, readers may argue that the improved representation power of CCNN is merely a
trivial result of increased model complexity, not because CCNN handles the time information more
correctly. However, as will be shown in the next section, even with matching model complexity, CNN
and CNNT are still unable to match the performance of CCNN. CCNN does not just increase the
model complexity, but increases the model complexity the right way.

13

Under review as a conference paper at ICLR 2020

C EXPERIMENT SETTINGS

C.1 PREDICT FUTURE SIGNAL VALUE TASK: DATA GENERATION

Three standard time series functions are introduced as x(t).

• Sine:

x(t) = sin

(
2πt

T

)
(27)

where T = 5. The sampling time intervals follow the Poisson distribution with mean parameter
λ = 1.

• Mackey-Glass (MG): a chaotic time series inspired by biological control systems (Glass & Mackey,
1979). MG is the solution to the following delay differential equation.

ẋ(t) = β
x(t− τ)

1 + x(t− τ)n
− γx(t) (28)

where ẋ denotes dx/dt. We choose β = 0.2, τ = 17, n = 10, and γ = 0.2. There is no closed-form
solution to Eq. (28), so the Runge-Kutta method Bogacki & Shampine (1989) is applied to obtain
a discrete numerical solution, which is a uniform sequence with sampling interval ∆t. A set of
N -sample short uniform sequences are generated from the long sequence by a sliding window with
window shift of one. The uniform sequences are subsampled into nonuniform sequences by choosing
M (M < N) sample points uniformly at random.1 ∆t = 2, N = 42, M = 14 on this dataset. The
time stamps are normalized such that the expected interval of the nonuniform sequences is one.

• Lorenz: a simplified system describing the 2D flow of fluid (Lorenz, 1963). The Lorenz function is
the solution to the following differential equation system.

ẋ(t) = σ(y(t)− x(t))

ẏ(t) = −x(t)z(t) + rx(t)− y(t)

ż(t) = x(t)y(t)− bz(t)
(29)

We choose σ = 10, r = 28, b = 8/3. The nonuniform subsequences are generated the same way as
in MG with ∆t = 0.05. Only x(t) is observed and predicted.

C.2 PREDICT FUTURE SIGNAL VALUE TASK HYPERPARAMETERS

As mentioned, the hyperparameters are set such that all the architectures share the same number of
layers, receptive field size and number of parameters. All the hidden activation functions are ReLU,
and all the output activation functions are linear.

CNN: CNN has two 1 × 7 layers, and the number of hidden channels is 84. The total number of
parameters is 1,261.

CNNT: CNNT has two 1× 7 layers, and the number of hidden channels is 60. The total number of
parameters is 1,261. The sampling time intervals are appended as input features. The time interval
appended to the last sample of the sequence is the difference between the prediction time and the
time of the last sample.

CNNT-th: The two-hot encoding interval width δ = 0.5, and the two-hot vector dimension is 14.
The network has two 1 × 7 layers, and the number of hidden channels is 10. The total number of
parameters is 1,261.

ICNN: ICNN takes the interpolated signal at tn+1− k, k = 1, · · · , 13 as input. The network has two
1× 7 layers, and the number of hidden channels is 84. The total number of parameters is 1,261.

RNNT:RNNT and RNNT-th have two layers and the number of hidden channels is 32. The total
number of parameters is 1153 for RNNT and 1633 for RNNT-th.

CCNN: CCNN has two layers. The first layer is a CCNN layer with output time stamps at tn+1 − k,
k = 1, · · · , 13. The bias network has two layers and 72 hidden channels. Its order OB is 7. The

1Equivalent to a Poisson process conditional on the event that the number of occurrences by the timeN isM .

14

Under review as a conference paper at ICLR 2020

kernel network has two layers and 4 hidden nodes. Its order OK is 3. The kernel length Lk = 3. The
second layer is a regular 1× 7 convolutional layer. The total number of parameters is 1,273.

CCNN-th: CCNN-th has almost the same structure as CCNN, except that the number of hidden
channels is 36. The total number of parameters is 1,261.

C.3 DESCRIPTION OF REALWORLD DATASET FOR PREDICTING INTERVALS TO NEXT EVENT

Stackoverflow: The dataset contains 26535 training samples, 3315 test samples and 3315 validation
samples. Each sequence represents the history awarding badges to a single user. The sampling
timestamps are the time of awarding each badge, and the signal value is the type of the badge (e.g.,
Guru, Nice Question, Great Answer, etc.). There are 22 types of badges in total.

Retweet: The dataset contains 20000 training samples, 1000 test samples and 1000 validation samples.
The sequence is the history of a tweet being re-posted by other users. According to the number of
followers of the users retweeted the post, the label of each retweet, in the whole retweet history, is
one of the 3 the user groups.

MIMIC: The dataset is the collection of clinical visit history. The training set contains 2925 se-
quences; test and validation set contains 312 each. The diagnosis are filtered to preserve only top-10
common diseases as label.

NYSE The dataset is book order data collected from NYSE of high frequency transaction in one day.
The dataset contrains 2 types of events (sell and buy) with 298710 training sequences, 33190 testing
sequences and 82900 validation sequences.

C.4 CONFIGURATION OF PREDICTING TIME INTERVAL TO NEXT EVENT

The input sequence length to NYSE, Stackoverflow, and ReTweet dataset is 13, and the CCNN uses
two 1× 7 kernels with 16 filters for each. MIMIC contains only very short sequence, so CCNN uses
two 1× 2 kernels and predicts only based on past 3 events.

D ADDITIONAL EXPERIMENTS

D.1 PREDICT FUTURE SIGNAL VALUE ON REALWORLD DATASET WITH MISSING DATA

In order to test the advantage of CCNN in realworld scenarios with missing observations, 13 time
series datasets are randomly chosen from the Data Market2, named DM1 through DM13. A brief
description of these datasets are given below. Each dataset consists of a univariate uniform time
series, which is split into training, test and validation sequences by a ratio of 6:2:2. Nonuniform
subsequences are generated the same way as in MG with N = 28 and M = 14. All of the data
are monthly data. The network configurations are the same as those in the simulated experiment. In
particular, the receptive field size is set to seven, which means the prediction is based on an average
of 14 months of historic data. This should lend adequate information for prediction.

DM1: Australia monthly production of cars and station wagons from Jul 1961 to Aug 1995.3 The
total length of the sequence is 414.

DM2: Monthly data on Clearwater River at Kamiah, Idaho from 1911 to 1965.4 The total length of
the sequence is 604.

DM3: Monthly data on James River at Buchanan, VA from 1911 to 1960.5 The total length of the
sequence is 604.

2https://datamarket.com
3https://datamarket.com/data/set/22lf/australia-monthly-production-of-cars-and-station-wagons-jul-1961-aug-1995#

!ds=22lf&display=line
4https://datamarket.com/data/set/22zg/clearwater-river-at-kamiah-idaho-1911-1965#!ds=22zg&display=

line
5https://datamarket.com/data/set/22y3/james-river-at-buchanan-va-1911-1960

15

https://datamarket.com
https://datamarket.com/data/set/22lf/australia-monthly-production-of-cars-and-station-wagons-jul-1961-aug-1995#!ds=22lf&display=line
https://datamarket.com/data/set/22lf/australia-monthly-production-of-cars-and-station-wagons-jul-1961-aug-1995#!ds=22lf&display=line
https://datamarket.com/data/set/22zg/clearwater-river-at-kamiah-idaho-1911-1965#!ds=22zg&display=line
https://datamarket.com/data/set/22zg/clearwater-river-at-kamiah-idaho-1911-1965#!ds=22zg&display=line
https://datamarket.com/data/set/22y3/james-river-at-buchanan-va-1911-1960

Under review as a conference paper at ICLR 2020

DM4: Mean monthly precipitation from 1907 to 1972.6 The total length of the sequence is 796.

DM5: Mean monthly temperature from 1907 to 1972.7 The total length of the sequence is 796.

DM6: Monthly data on Middle Boulder Creek at Nederland, CO from 1912 to 1960.8 The total length
of the sequence is 592.

DM7: Monthly electricity production in Australia (million kilowatt hours) from Jan 1956 to Aug
1995.9 The total length of the sequence is 480.

DM8: Monthly flows of Chang Jiang (Yangtze River) at Han Kou, China from 1865 to 1979.10 The
total length of the sequence is 1372.

DM9: Monthly production of clay bricks (million units) from Jan 1956 to Aug 1995.11 The total
length of the sequence is 480.

DM10: Monthly rain in Coppermine (mm) from 1933 to 1976.12 The total length of the sequence is
532.

DM11: Monthly riverflow (cms) in Pigeon River near Middle Falls, Ontario from 1924 to 1977.13

The total length of the sequence is 640.

DM12: Monthly riverflow (cms) in Turtle River near Mine Centre, Ontario from 1921 to 1977.14 The
total length of the sequence is 676.

DM13: Monthly temperature in England (F) from 1723 to 1970.15 The total length of the sequence is
2980.

Table 2 shows the mean squared prediction errors. CCNN-th maintains its lead on most datasets.
Where it does not, different ICNNs alternately take the lead by small margins. Here are two comments.
First, note that the kernel length in ICNN-C and ICNN-Q is much larger than LK , so it falls beyond
the representation power of CCNN. Nevertheless, this result shows that an interpolation kernel
within the scope of Eq. (1) usually suffices to outperform the standard interpolation methods that fall
beyond. Second, unlike in the simulated test, ICNN-L generally performs better than ICNN-C, which
emphasizes the importance of choosing a suitable interpolation scheme for each task. CCNN, with its
ability to choose its own kernels, avoids such trouble.

D.2 SPEECH INTERPOLATION

Since CCNN is motivated by interpolation, it is insightful to see CCNN’s performance in interpolation
tasks. The speech interpolation task involves restoring the high resolution speech signal from the
downsampled signal.

THE DATASET

To mitigate the complexity in directly working on speech waveforms, the sampling rate of the high
resolution speech is set to 4 kHz, and that of the downsampled signals is 2 kHz. Three different
downsampling schemes are tested. The first scheme, called uniform filtered, uniformly downsamples
the speech to 2 kHz after passing it to an anti-aliasing filter. The second scheme, called uniform
unfiltered, uniformly downsamples the signal without the anti-aliasing filter. The third scheme, called
nonuniform, randomly preserves half of the speech samples, and thus the resulting signal has an
average sampling rate of 2 kHz.

6https://datamarket.com/data/set/22w1/mean-monthly-precipitation-1907-1972
7https://datamarket.com/data/set/22o4/mean-monthly-temperature-1907-1972
8https://datamarket.com/data/set/22vt/middle-boulder-creek-at-nederland-co-1912-1960
9https://datamarket.com/data/set/22l0/monthly-electricity-production-in-australia-million-kilowatt-hours-jan-1956-aug-1995

10https://datamarket.com/data/set/22r8/monthly-flows-chang-jiang-at-han-kou-1865-1979
11https://datamarket.com/data/set/22lv/monthly-production-of-clay-bricks-million-units-jan-1956-aug-1995
12https://datamarket.com/data/set/22n8/monthly-rain-coppermine-mm-1933-1976
13https://datamarket.com/data/set/22mi/monthly-riverflow-in-cms-pigeon-river-near-middle-falls-ont-1924-1977
14https://datamarket.com/data/set/22mf/monthly-riverflow-in-cms-turtle-river-near-mine-centre-ont-1921-1977
15https://datamarket.com/data/set/22vp/monthly-temperature-in-england-f-1723-1970

16

https://datamarket.com/data/set/22w1/mean-monthly-precipitation-1907-1972
https://datamarket.com/data/set/22o4/mean-monthly-temperature-1907-1972
https://datamarket.com/data/set/22vt/middle-boulder-creek-at-nederland-co-1912-1960
https://datamarket.com/data/set/22l0/monthly-electricity-production-in-australia-million-kilowatt-hours-jan-1956-aug-1995
https://datamarket.com/data/set/22r8/monthly-flows-chang-jiang-at-han-kou-1865-1979
https://datamarket.com/data/set/22lv/monthly-production-of-clay-bricks-million-units-jan-1956-aug-1995
https://datamarket.com/data/set/22n8/monthly-rain-coppermine-mm-1933-1976
https://datamarket.com/data/set/22mi/monthly-riverflow-in-cms-pigeon-river-near-middle-falls-ont-1924-1977
https://datamarket.com/data/set/22mf/monthly-riverflow-in-cms-turtle-river-near-mine-centre-ont-1921-1977
https://datamarket.com/data/set/22vp/monthly-temperature-in-england-f-1723-1970

Under review as a conference paper at ICLR 2020

Table 3: Signal-to-Noise Ratio (dB) in Speech Interpolation.

Alg. Uniform Non-uniformfiltered non-filtered
Speech DNN 9.13 -∗ -∗

Speech DNN (CP) 13.64 -∗ -∗

ICNN-C 9.74 7.49 2.33
ICNN-Q 9.66 5.67 2.77
ICNN-L 9.72 5.81 3.16
ICNN-P 3.17 2.63 1.82
ICNN-S 9.62 5.90 2.83

CCNN-th 9.61 7.80 6.58
∗ Speech DNN does not work with non-filtered down-sampled signals and nonuniformly down-sampled signals.

Our dataset consists of one hour of lab-recorded speech of one speaker reading structured composite
sentences. We use 80% of the dataset as training, 10% as validation, and the rest of 10% as test. The
high resolution speech is chunked into 40-point sequences without overlap, and the corresponding
downsampled speech into 20-point sequences.

CONFIGURATIONS

Similar to the prediction experiment, the ICNN approaches interpolates the low resolution speech into
high resolution speech (4 kHz) before it is fed to a two-layer regular CNN. A similar practice has also
been adopted in Kim et al. (2016). CCNN also has two layers. The first layer outputs at the uniform
time stamps at the rate of 4 kHz, and the second layer is a regular convolutional layer. Detailed
configurations are shown below. Again, the hyperparameters are set such that the two architectures
have the same number of layers, receptive field size and model complexity. The activation functions
for CCNN and ICNN are both sigmoid. The hypterparameters are detailed below.

CCNN-th: The time stamps are normalized such that the sampling interval of the original 4 kHz
speech is 0.5. CCNN-th has two layers. The first layer is a CCNN layer that outputs the time stamps
uniformly distributed at the rate of 4 kHz. The number of hidden channels is 16. The bias network has
one layer, and the order OB = 28. The bias kernel network has one layer, and the order OK = 7. The
kernel length LK = 10. The two-hot encoding time interval δ = 0.5. The second layer is a 1× 28
convolutional layer.

ICNN-C: The CNN contains two 1× 28 convolutional layers with 80 number of hidden filters.

Speech DNN & Speech DNN CP: Speech DNN converts both the high resolution and downsampled
speech into amplitude spectra using FFT with 64ms window length and 48ms window shift. Speech
DNN has 3 hidden layers, each of which has 1024 hidden nodes. Because our temporal resolution is
a half of that in Li & Lee (2015), our hidden node number is a half of that in Li & Lee (2015) too.
The number of parameters in Speech DNN is around 2.3× 106, which is much larger than that in
CCNN and the ICNN baseline models (both have around 5× 103 parameters).

Since sample-based speech interpolation methods have yet to achieve the state-of-the-art, we also
include a spectrum-based benchmark from Li & Lee (2015) called Speech DNN. Speech DNN only
works on the uniform filtered case. It predicts the higher half of the amplitude spectrum of the high
resolution speech of that of the low resolution speech. The flipped phase spectrum of the down-
sampled speech is used as an estimate of the higher half of phase spectrum of the high resolution
speech.

Since the phase spectrum estimate of Speech DNN can be inaccurate, we introduced another version,
called Speech DNN with cheated phase (CP), where the ground truth phase spectrum is applied. Note
that this version is given too much oracle information to be fairly compared with. Nevertheless, we
will include its results for reference.

RESULTS AND ANALYSIS.

Tab. 3 shows the Signal-to-Noise Ratio (SNR) of the signals recovered from different input signals
by different models. The Speech DNN with cheated phase yields the best SNR, because it uses the
phase information from ground truth. However, the Speech DNN without cheated phase has similar

17

Under review as a conference paper at ICLR 2020

0 10 20 30 40 50 60 70

Sample Index

-0.2

-0.1

0

0.1

S
ig

n
a

l
M

a
g

n
it
u

d
e

Groundtruth

Prediction

Input

(a) By CCNN

0 10 20 30 40 50 60 70

Sample Index

-0.2

-0.1

0

0.1

S
ig

n
a

l
M

a
g

n
it
u

d
e

Groundtruth

Prediction

Input

(b) By ICNN

Figure 7: Examples for CCNN and ICNN in restoring nonuniformly down-sampled speech. CCNN generates
better approximation at especially at crests and troughs.

performance to CNN and CCNN, even though it has much more weights, largely because of the
inaccurate phase estimates.

As for the comparison between CCNN and ICNN, they have similar SNR under uniform sampling
cases. This verifies that both architectures have similar representation power given uniform data.
However, CCNN has much higher SNR than ICNN in nonuniform case. One important reason is
that CCNN, by construction, is aware whether neighboring samples are dense or sparse, and outputs
robust interpolation kernels accordingly, despite the variation in sampling patterns; whereas CNN is
unable to deal with various random sampling instances.

Fig. 7 shows an example of the restored signal from the nonuniform samples by CCNN and CNN
respectively. CCNN can restore some spikes (e.g. ones at 25 and 40) even without an input sample
point in the spike, because CCNN can learn the continuous kernels and restore the original spikes.
CNN model does poorly in restoring spikes even when there are input sample points in the spikes.

18

	Introduction
	Related Works
	The CCNN Algorithm
	Interpolation
	Continuous Convolution

	The CCNN Structure
	The Kernel Network
	The Bias Network
	Causal Setting
	Two-Hot Encoding
	Combining with Temporal Point Processes
	Summary and Generalization

	Evaluation
	Predicting Signal Value on Simulated Data
	Predicting Time Intervals to Next Event
	Additional Experiments

	Conclusion
	Theorem Proofs
	Interpolation Kernels Examples
	Proof of the Theorems

	Representation Power Analysis
	Case 1: Output Time Stamps Same as Input
	Case 2: Uniform Time Stamps

	Experiment Settings
	Predict Future Signal Value Task: Data Generation
	Predict Future Signal Value Task Hyperparameters
	Description of Realworld Dataset for Predicting Intervals to Next Event
	Configuration of Predicting Time Interval to Next Event

	Additional Experiments
	Predict Future Signal Value on Realworld Dataset with Missing Data
	Speech Interpolation
	The Dataset
	Configurations
	Results and Analysis.

