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ABSTRACT

Recent work by Jacot et al. (2018) has showed that training a neural network of
any kind with gradient descent in parameter space is equivalent to kernel gradient
descent in function space with respect to the Neural Tangent Kernel (NTK). Lee
et al. (2019) built on this result to show that the output of a neural network trained
using full batch gradient descent can be approximated by a linear model for wide
networks. In parallel, a recent line of studies (Schoenholz et al. (2017), Hayou
et al. (2019)) suggested that a special initialization known as the Edge of Chaos
leads to good performance. In this paper, we bridge the gap between these two
concepts and show the impact of the initialization and the activation function on
the NTK as the network depth becomes large. We provide experiments illustrating
our theoretical results.

1 INTRODUCTION

Deep neural networks have achieved state-of-the-art results on numerous tasks; see, e.g., Nguyen
& Hein (2018), Du et al. (2018b), Zhang et al. (2017). Although the loss function is not convex,
Gradient Descent (GD) methods are often used successfully to learn these models. It has been actually
recently shown that for certain overparameterized deep ReLU networks, GD converges to global
minima ((Du et al., 2018a)). Similar results have been obtained for Stochastic Gradient Descent
(SGD) ((Zou et al., 2018)).

The training dynamics of wide neural networks with GD is directly linked to kernel methods. Indeed,
Jacot et al. (2018) showed that training a neural network with full batch GD in parameter space is
equivalent to a functional GD i.e. a GD in a functional space with respect to a kernel called Neural
Tangent Kernel (NTK). Du et al. (2019) used a similar approach to prove that full batch GD converges
to global minima for shallow neural networks and Karakida et al. (2018) linked the Fisher Information
Matrix to the NTK and studied its spectral distribution for infinite width networks. The infinite
width limit for different architectures was studied by Yang (2019) who introduced a tensor formalism
that can express most of the computations in neural networks. Lee et al. (2019) studied a linear
approximation of the full batch GD dynamics based on the NTK and gave an method to approximate
the NTK for different architectures. Finally, Arora et al. (2019) gives an efficient algorithm to
compute exactly the NTK for convolutional architectures (Convolutional NTK or CNTK). In all of
these papers, authors studied only the effect of infinite width on the NTK. The aim of this paper is to
tackle the infinite depth limit.

In parallel, the impact of the initialization and activation function on the performance of wide
deep neural networks has been studied in Hayou et al. (2019), Lee et al. (2018), Schoenholz et al.
(2017), Yang & Schoenholz (2017). These works analyze the forward/backward propagation of
some quantities through the network at the initial step as a function of the initial parameters and the
activation function. They propose a set of parameters and activation functions so as to ensure a deep
propagation of the information at initialization. While experimental results in these papers suggest
that such selection also leads to overall better training procedures (i.e. beyond the initialization step),
it remains unexplained why this is the case. In this paper, we link the initialization hyper-parameters
and the activation function to the behaviour of the NTK which controls the training of DNNs, this
could potentially explain the good performance. We provide a comprehensive study of the impact
of the initialization and the activation function on the NTK and therefore on the resulting training
dynamics for wide and deep networks. In particular, we show that an initialization known as the Edge
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of Chaos (Yang & Schoenholz, 2017) leads to better training dynamics and that a class of smooth
activation functions discussed in (Hayou et al., 2019) also improves the training dynamics compared
to ReLU-like activation functions (see also Clevert et al. (2016)). We illustrate these theoretical
results through simulations. All the proofs are detailed in the Supplementary Material which also
includes additional theoretical and experimental results.

2 MOTIVATION AND RELATED WORK

NEURAL TANGENT KERNEL

Recent work by Jacot et al. (2018) has shown that the training dynamics of neural networks are
captured by the Neural Tangent Kernel (NTK). In the infinite width limit (wide neural networks),
the NTK converges to a kernel that remains unchanged as the training time grows. While this is
only true in the infinite width limit, Lee et al. (2018) showed that a first order linear approximation
of the training dynamics (approximation of the NTK by its value at the initialization step) leads to
comparable performances for different architectures. More recently, Bietti & Mairal (2019) studied
the RKHS of the NTK for a two layers convolutional neural network with ReLU activation and
provided a spectral decomposition of the kernel, while in Arora et al. (2019), the authors propose an
algorithm to compute the NTK for convolutional neural networks. However, for finite width neural
networks, Arora et al. (2019) observed a gap between the performances of the linear model derived
from the NTK and the deep neural network, which is mainly due to the fact that the NTK changes
with time. To fill this gap, Huang & Yau (2019) studied the dynamics of the NTK as a function of the
training time for finite width neural networks and showed that the NTK dynamics follow an infinite
hierarchy of ordinary differential equations baptised Neural Tangent Hierarchy (NTH). In this paper,
we consider the limit of infinite width neural networks (mean-field approximation).

EDGE OF CHAOS AND ACTIVATION FUNCTION

Recent works by Hayou et al. (2019) and Schoenholz et al. (2017) have shown that weight initialization
plays a crucial role in the training speed of deep neural networks (DNNs). In Schoenholz et al.
(2017), the authors demonstrate that only a special initialization can lead to good performance. This
initialization is known as the ’Edge of Chaos’ since it represents a transition between two phases : an
ordered phase and a chaotic phase. When the DNN is initialized on the ordered phase, the output
function of the DNN is constant almost everywhere, because the correlation of the outputs of two
different inputs converges to 1 as the number of layers becomes large. On the other hand, when the
DNN is initialized on the Chaotic phase, the output function is discontinuous almost everywhere as
the depth goes to infinity. In this case, the correlation between the outputs of two different inputs
converges to a value c such that |c| < 1, therefore, very close inputs may lead to very different outputs.
In Hayou et al. (2019), authors give a comprehensive analysis of the Edge of Chaos, and further show
that a certain class of smooth activation functions outperform the ReLU-like activation functions in
term of test accuracy on MNIST and CIFAR10.

OUR CONTRIBUTIONS

In this paper, we bridge the gap between the two previous concepts of Neural Tangent Kernel and
Edge of Chaos Initialization for DNNs. More precisely, we study the impact of the Edge of Chaos
initialization and the activation function on the NTK as the depth L goes to infinity. Our main results
are :

1. With an Initialization on the ordered/chaotic phase, the NTK converges exponentially to
a constant kernel with respect to the depth L, making the training impossible for DNNs
(Lemma 1 and Proposition 1)

2. The Edge of Chaos initialization leads to an invertible NTK even in the infinite depth limit,
making the model trainable even for very large depths (Proposition 2)

3. The Edge of Chaos initialization leads to a sub-exponential convergence rate of the NTK
to the limiting NTK (w.r.t to L), which means that the ’information’ carried by the NTK
propagates deeper compared to an initialization on the ordered/chaotic phase (Propositon 2)
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4. Using a certain class S of smooth activation functions can further slow this convergence,
making this class of activation functions more suitable for DNNs

5. When adding Residual connections, we no longer need the initialisation on the Edge of
Chaos, and the convergence of the NTK to the limiting NTK is always at a polynomial rate

3 NEURAL NETWORKS AND NEURAL TANGENT KERNEL

3.1 SETUP AND NOTATIONS

Consider a neural network model consisting of L layers (yl)1≤l≤L, with yl : Rnl−1 → Rnl , n0 = d
and let θ = (θl)1≤l≤L be the flattened vector of weights and bias indexed by the layer’s index and p
be the dimension of θ. Recall that θl has dimension nl + 1. The output f of the neural network is
given by some transformation s : RnL → Ro of the last layer yL(x); o being the dimension of the
output (e.g. number of classes for a classification problem). For any input x ∈ Rd, we thus have
f(x, θ) = s(yL(x)) ∈ Ro. As we train the model, θ changes with time t and we denote by θt the
value of θ at time t and ft(x) = f(x, θt) = (fj(x, θt), j ≤ o). Let D = (xi, yi)1≤i≤N be the data
set and let X = (xi)1≤i≤N , Y = (yj)1≤j≤N be the matrices of input and output respectively, with
dimension d×N and o×N . For any function g : Rd×o → Rk, k ≥ 1, we denote by g(X ,Y) the
matrix (g(xi, yi))1≤i≤N of dimension k ×N .

Jacot et al. (2018) studied the behaviour of the output of the neural network as a function of the
training time t when the network is trained using a gradient descent algorithm. Lee et al. (2019) built
on this result to linearize the training dynamics. We recall hereafter some of these results.

For a given θ, the empirical loss is given by L(θ) = 1
N

∑N
i=1 `(f(xi, θ), yi). The full batch GD

algorithm is given by
θ̂t+1 = θ̂t − η∇θL(θ̂t) (1)

where η > 0 is the learning rate.
Let T > 0 be the training time and Ns = T/η be the number of steps of the discrete GD equation 1.
The continuous time system equivalent to equation 1 with step ∆t = η is given by

dθt = −∇θL(θt)dt (2)

This differs from the result by Lee et al. (2019) since we use a discretization step of ∆t = η. It is
well known that this discretization scheme leads to an error of order O(η) (see Appendix). As in Lee
et al. (2019), Equation (2) can be re-written as

dθt = − 1

N
∇θf(X , θt)T∇z`(f(X , θt),Y)dt

where∇θf(X , θt) is a matrix of dimension oN × p and∇z`(f(X , θt),Y) is the flattened vector of
dimension oN constructed from the concatenation of the vectors ∇z`(z, yi)|z=f(xi,θt), i ≤ N . As a
result, the output function ft(x) satisfies the following ordinary differential equation

dft(x) = ∇θf(x, θt)dθt = − 1

N
∇θf(x, θt)∇θf(X , θt)T∇z`(ft(X ),Y)dt ∈ Ro (3)

The Neural Tangent Kernel (NTK) KL
θ is defined as the o× o dimensional kernel satisfying: for all

x, x′ ∈ Rd,

KL
θ (x, x′) = ∇θf(x, θt)∇θf(x′, θt)

T ∈ Ro×o

=

L∑
l=1

∇θlf(x, θt)∇θlf(x′, θt)
T .

(4)

We also define KL
θt

(X ,X ) as the oN × oN matrix defined blockwise by

KL
θt(X ,X ) =


KL
θt

(x1, x1) KL
θt

(x1, x2) · · · KL
θt

(x1, xN )
KL
θt

(x2, x1) · · · · · · KL
θt

(x2, xN )
· · · · · · · · · · · ·

KL
θt

(xN , x1) KL
θt

(xN , x2) · · · KL
θt

(xN , xN )
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By applying equation 3 to the vector X , one obtains

dft(X ) = − 1

N
KL
θt(X ,X )∇z`(ft(X ),Y)dt, (5)

meaning that for all j ≤ N dft(xj) = − 1
NK

L
θt

(xj ,X )∇z`(ft(X ),Y)dt.

Infinite width dynamics : In the case of a fully connected feedforward neural network (FFNN)
of depth L and widths n1, n2, ..., nL, Jacot et al. (2018) proved that, with GD, the kernel KL

θt

converges to a kernel KL which depends only on L (number of layers) for all t < T when
n1, n2, ..., nL → ∞, where T is an upper bound on the training time, under the technical as-
sumption

∫ T
0
||∇z`(ft(X ,Y))||2dt <∞ almost surely with respect to the initialization weights. The

infinite width limit of the training dynamics is given by

dft(X ) = − 1

N
KL(X ,X )∇z`(ft(X ),Y)dt, (6)

We note hereafter K̂L = KL(X ,X ). As an example, with the quadratic loss `(z, y) = 1
2 ||z − y||

2,
equation 6 is equivalent to

dft(X ) = − 1

N
K̂L(ft(X )− Y)dt, (7)

which is a simple linear model that has a closed-form solution given by

ft(X ) = e−
1
N K̂

Ltf0(X ) + (I − e− 1
N K̂

Lt)Y. (8)

For general input x ∈ Rd, we then have

ft(x) = f0(x) +KL(x,X )KL(X ,X )−1(I − e− 1
N K̂

Lt)(Y − f0(X )) (9)

Note that in order for ft(x) to be defined, K̂L must be invertible. Indeed, it turns out that training
with dynamics 6 is only possible if the NTK is invertible. We shed light on this behaviour in the
following Lemma.
Lemma 1 (Trainability of the Neural Network and Invertibility of the NTK). Assume f0(X ) 6= Y .
Then with dynamics defined by equation 8, ||ft(X )− Y|| converges to 0 as t→∞ if and only if K̂L

is non-singular.
Moreover, if K̂L is singular, there exists a constant C > 0 such that for all t > 0,

||ft(X )− Y|| ≥ C

Lemma 1 shows that an invertible NTK is crucial for trainability. Since KL
θt

= KL is constant w.r.t to
training time, it is completely determined at the initialization step. It is therefore intuitive to study the
impact of the initialization on the NTK, particularly as the number of layers L grows (Deep Neural
Networks), which is our focus in this paper. Another interesting aspect is the impact of the NTK on
the generalization error of the neural network model. To see this, if the NTK is constant for example
(i.e. KL(x, x′) = cte for all x 6= x′, this example is useful in the next section), then the second part
of ft(x) in equation 9 is constant w.r.t x. Therefore, ft(x) is entirely given by its value at time zero
f0(x), which means that the generalisation error Ex,y[||ft(x)− y||] remains of order O(1).

In the next section, we show that the initialization and the activation function have major impact on
the invertibility and ’expressivity’ of NTK. More precisely, we show that :

1. Under some constraints, the NTK KL (or a scaled version of the NTK) converges to a
limiting NTK K∞ as L goes to infinity (otherwise it diverges)

2. A special initialization known as the Edge of Chaos (EOC) leads to an invertible K∞ which
makes it useful for training DNNs

3. The EOC initialization gives a sub-exponential rate for this convergence (w.r.t L), which
means for the same depth L, the EOC gives ’richer’ limiting NTK, and therefore leading to
better generalization properties

4. The smoothness of the activation can further slow this convergence, leading to ’richer’
limiting NTK

5. Adding Residual connections leads to sub-exponential convergence rate for the NTK (w.r.t
to L) and we no longer need the Edge of Chaos
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4 IMPACT OF THE INITIALIZATION AND THE ACTIVATION FUNCTION ON THE
NEURAL TANGENT KERNEL

In this section we study the impact of the initialization and the activation function on the limiting NTK
for Fully-connected Feed-forward Neural Networks (FFNN). We prove that only an initialization on
the Edge of Chaos (EOC) leads to an invertible NTK for deep neural networks. All other initializations
will lead to a trivial non-invertible NTK. We also show that the smoothness of the activation function
plays a major role in the behaviour of NTK. To simplify notations, we restrict ouerselvs to the case
s(x) = x and o = 1, since generalization to any function s and any nL is straightforward.

Consider a FFNN of depth L, widths (nl)1≤l≤L, weights wl and bias bl. For some input x ∈ Rd, the
forward propagation is given by

y1
i (x) =

d∑
j=1

w1
ijxj + b1i , yli(x) =

nl−1∑
j=1

wlijφ(yl−1
j (x)) + bli, for l ≥ 2, (10)

where φ is the activation function.

We initialize the model with wlij
iid∼ N (0,

σ2
w

nl−1
) and bli

iid∼ N (0, σ2
b ), where N (µ, σ2) denotes the

normal distribution of mean µ and variance σ2. For some x, we denote by ql(x) the variance of yl(x).
The convergence of ql(x) as l increases is studied in Lee et al. (2018), Schoenholz et al. (2017) and
Hayou et al. (2019). In particular, under weak regularity conditions they prove that ql(x) converges to
a point q(σb, σw) > 0 independent of x as l→∞. Also the asymptotic behaviour of the correlations
between yl(x) and yl(x′) for any two inputs x and x′ is driven by (σb, σw); the authors define the
EOC as the set of parameters (σb, σw) such that σ2

wE[φ′(
√
q(σb, σw)Z)2] = 1 where Z ∼ N (0, 1).

Similarly the Ordered, resp. Chaotic, phase is defined by σ2
wE[φ′(

√
q(σb, σw)Z)2] < 1, resp.

σ2
wE[φ′(

√
q(σb, σw)Z)2] > 1; more details are recalled in Section 2 of the supplementary material.

It turns out that the EOC plays also a crucial role on the NTK. Let us first define two classes of
activation functions.

Definition 1. Let φ : R→ R be a measurable function. Then

1. φ is said to be ReLU-like if there exist λ, β ∈ R such that φ(x) = λx for x > 0 and
φ(x) = βx for x ≤ 0.

2. φ is said to be in S if φ(0) = 0, φ is twice differentiable, and there exist n ≥ 1, a
partition (Ai)1≤i≤n of R and infinitely differentiable functions g1, g2, ..., gn such that
φ(2) =

∑n
i=1 1Ai

gi, where φ(2) is the second derivative of φ.

The class of ReLU-like activations includes ReLU and Leaky-ReLU, whereas the S class includes,
among others, Tanh, ELU and SiLU (Swish). The following proposition establishes that any initial-
ization on the Ordered or Chaotic phase, leads to a trivial limiting NTK as the number of layers L
becomes large.

Proposition 1 (Limiting Neural Tangent Kernel with Ordered/Chaotic Initialization). Let (σb, σw)
be either in the ordered or in the chaotic phase. Then, there exist λ, γ > 0 such that

sup
x,x′∈Rd

|KL(x, x′)− λ| ≤ e−γL →L→∞ 0

As a result, as L goes to infinity,KL converges to a constant kernelK∞(x, x′) = λ for all x, x′ ∈ Rd.
The training is then impossible. Indeed, we have KL(X ,X ) ≈ λU where U is the matrix with
all elements equal to one, i.e. K̂L is at best degenerate and asymptotically (in L) non invertible,
rendering the training impossible by Lemma 1. We illustrate empirically this result in Section 5.

Recall that the (matrix) NTK for input data X is given by

KL
θt(X ,X ) = ∇θf(X , θt)∇θf(X , θt)T =

L∑
l=1

∇θlf(X , θt)∇θlf(X , θt)T
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As shown in Schoenholz et al. (2017) and Hayou et al. (2019), an initialization on the EOC preserves
the norm of the gradient as it back-propagates through the network. This means that the terms
∇θlf(X , θt)∇θlf(X , θt)T are of the same order. Hence, it is more convenient to study the average
NTK (ANTK hereafter) with respect to the number of layers L. Note that the invertibility of the NTK
is equivalent to that of the ANTK. The next proposition shows that on the EOC, the ANTK converges
to an invertible kernel as L → ∞ at a sub-exponential rate. Moreover, by choosing an activation
function in the class S , we can slow the convergence of ANTK with respect to L, which means that,
for the same depth L, a smooth activation function from the class S leads to ’richer’ NTK which
is crucial for the generalization error of deep models as discussed in Section 3. This confirms the
findings in (Hayou et al., 2019).
Proposition 2 (Neural Tangent Kernel on the Edge of Chaos). Let φ be a non-linear activation
function and (σb, σw) ∈ EOC.

1. If φ is ReLU-like, then for all x ∈ Rd, K
L(x,x)
L =

σ2
w||x||

2

d + K0(x,x)
L . Moreover, there exist

A, λ ∈ (0, 1) such that

sup
x 6=x′∈Rd

∣∣KL(x, x′)

L
−λσ

2
w

d
||x||||x′||

∣∣ ≤ A

L
, K∞(x, x′) =

σ2
w||x||‖x′‖

d
(1−(1−λ)1x 6=x′)

2. If φ is in S , then, there exists q > 0 such that K
L(x,x)
L = q + K0(x,x)

L → q. Moreover, there
exist B,C, λ ∈ (0, 1) such that

B log(L)

L
≤ sup
x 6=x′∈Rd

∣∣KL(x, x′)

L
−qλ

∣∣ ≤ C log(L)

L
, K∞(x, x′) = q(1−(1−λ)1x 6=x′)

Since 0 < λ < 1, on the EOC there exists a matrix J invertible such thatKL(X ,X ) = L×J(1+o(1))
as L → ∞. Hence, although the NTK grows linearly with L, it remains asymptotically invertible.
This makes the training possible for deep neural networks when initialized on the EOC, contrariwise
to an initialization on the Ordered/Chaotic phase, see Proposition 1). However the limiting kernels
K∞ carry (almost) no information on x, x′ and have therefore little expressive power. Interestingly
the convergence rate of the ANTK to K∞ is slow in L (O(L−1) for ReLU-like activation functions
andO(log(L)L−1) for activation functions of type S). This means that as L grows, the NTK remains
expressive compared to the Ordered/Chaotic phase case (exponential convergence rate). This is
particularly important for the generalization part (see equation 9). The log(L) gain obtained when
using smooth activation functions of type S means we can train deeper neural networks with this
kind of activation functions compared to the ReLU-like activation functions and could explain why
ELU and Tanh tend to perform better than ReLU and Leaky-ReLU (see Section 5).

Another important feature of deep neural network which is known to be highly influential is their
architecture. The next proposition shows that adding residual connections to a ReLU network leads
to a polynomial rate for wide range of initialization parameters.
Proposition 3 (Residual connections). Consider the following network architecture (FFNN with
residual connections)

yli(x) = yl−1
i (x) +

nl−1∑
j=1

wlijφ(yl−1
j (x)) + bli, for l ≥ 2. (11)

with initialization parameters σb = 0 and σw > 0. Let KL
res be the corresponding NTK. Then for all

x ∈ Rd, K
L
res(x,x)
αL×2L = ||x||2

d +O(γL) and there exists λ ∈ (0, 1) such that

sup
x 6=x′∈Rd

∣∣KL
res(x, x

′)

αL × 2L
− ||x|| × ||x

′||
d

λ
∣∣ = O(L−1),

where αl and γl are given by

• if σw <
√

2, then αL = 1 and γL = (
1+σ2

w/2
2 )L

• if σw =
√

2, then αL = L and γL = L−1
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(a) EOC (b) Ordered phase (c) FFNN with residual connections

Figure 1: Convergence rates for different initializations and architectures. (a) Edge of Chaos. (b)
Ordered phase. (c) Adding residual connections.

• if σw >
√

2, then αL = (
1+σ2

w/2
2 )L and γL = (

1+σ2
w/2

2 )−L

Proposition 3 shows that the NTK of a ReLU FFNN with residual connections explodes exponentially
with respect to L. However, the normalised kernel KL

res(x, x
′)/αL2L where x 6= x′ converges to a

limiting kernel similar to K∞ with a rateO(L−1) for all σw > 0. We say that residual networks ’live’
on the Edge of Chaos, i.e. no matter what the choice of σw is, the convergence rate of the NTK w.r.t
L is polynomial and there is no Ordered/Chaotic phase in this case. This could potentially explain
why residual networks perform better than FFNN (RELU) in many tasks when the initialization is
not on the EOC. We illustrate this result in section 5.

5 EXPERIMENTS

In this section, we illustrate empirically the theoretical results obtained in the previous sections. We
first illustrate the results of Propositions 1, 2 and 3. Then, we confirm the impact of the EOC and
Activation function on the overall performance of the model (FFNN), on MNIST and CIFAR10
datasets.

5.1 CONVERGENCE RATE OF KL AS L GOES TO INFINITY

Propositions 1, 2 and 3 give theoretical convergence rates for quantities of the form
∣∣KL

αL
−K∞|.

We illustrate these results in Figure 1. Figure 1a shows a convergence rate approximately equal to
O(L−1) for ReLU and ELU. Recall that for ELU the exact rate is O(log(L)L−1) but one cannot
observe experimentally the logarithmic factor. However, ELU performs indeed better than ReLU (see
Table 1) which might be explained by this log(L) factor. Figure 1b demonstrates that this convergence
occurs at an exponential convergence rate in the Ordered phase for both ReLU and ELU, and Figure
1c the convergence rate in the case of FFNN with residual connections. As predicted by Proposition
3, the convergence rate O(L−1) is independent of the parameter σw.

5.2 IMPACT OF THE INITIALIZATION AND SMOOTHNESS OF THE ACTIVATION ON THE
OVERALL PERFORMANCE

We train FFNN of width 300 and depths L ∈ {200, 300} and width ∈ {200, 300} with SGD and
categorical cross-entropy loss. Training with full batch GD is practically impossible for DNNs, so we
use SGD instead (see Section D in the Appendix for more details about how the results extend to
SGD) with a batchsize of 64 and a learning rate 10−3 for L = 100 and 10−4 for L ∈ 200, 300 (this
learning rate was found by a grid search of exponential step size 10). For each activation function,
we use an initialization on the EOC when it exists, we add the symbol (EOC) after the activation
when this is satisfied. We use (σb, σw) = (0,

√
2) for ReLU, (σb, σw) = (0.2, 1.227) for ELU

and (σb, σw) = (0.2, 1.302) for Tanh. These values are all on the EOC (see Hayou et al. (2019)
for more details). Table 1 displays the test accuracy for different activation functions on MNIST
and CIFAR10 after 10 and 100 training epochs for depth 300 and width 300. Functions in class S
(ELU and Tanh) perform much better than ReLU-like activation functions (ReLU, Leaky-Relu−α
with α ∈ {0.01, 0.02, 0.03}). Even with Parametric ReLU (PReLU) where the parameter of the
leaky-ReLU is also learned by backpropagation, we obtain only a small improvement over ReLU. For
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(a) (width,depth) = (200,100) (b) (width,depth) = (200,200)

Figure 2: Test accuracy for different Activation Functions and (width, depth) on MNIST

Table 1: Test accuracy for a FFNN with width 300 and depth 300 for different activation functions on
MNIST and CIFAR10. We show test accuracy after 10 epochs and 100 epochs

MNIST CIFAR10

Activation Epoch 10 Epoch 100 Epoch 10 Epoch 100

ReLU (EOC) 46.53± 12.01 82.11± 4.51 20.38± 1.85 35.88± 0.6
LReLU0.01 (EOC) 48.10± 3.31 84.71± 3.39 22.62± 1.15 29.44± 4.14
LReLU0.02 (EOC) 49.09± 3.58 84.3.± 3.98 18.62± 4.56 30.78± 6.33
LReLU0.03 (EOC) 50.94± 4.48 85.49± 2.71 21.19± 6.53 34.54± 2.32
PReLU 51.94± 5.51 87.49± 1.58 22.95± 3.57 36.13± 3.83
ELU (EOC) 91.63 ± 2.21 96.07 ± 0.13 33.81 ± 1.55 46.14 ± 1.49
Tanh (EOC) 91.16± 1.21 95.75± 0.27 32.37± 1.88 42.40± 1.13
Softplus 10.11± 0.09 10.13± 0.18 11.13± 0.15 11.09± 0.36
Sigmoid 9.85± 0.11 9.87± 0.10 10.65± 0.25 10.33± 0.17

activation functions that do not have an EOC, such as Softplus and Sigmoid, we use He initialization
for MNIST and Glorot initialization for CIFAR10 (see He et al. (2015) and Glorot & Bengio (2010)).
For Softplus and Sigmoid, the training algorithm is stuck at a low test accuracy ∼ 10% which is the
test accuracy of a uniform random classifier with 10 classes.

6 CONCLUSION AND LIMITATIONS

That the training dynamics of deep neural networks is equivalent to a Functional Gradient Descent
with respect to the Neural Tangent Kernel. In the infinite width limit, the NTK has a closed-form
expression. This approximation sheds light on how the NTK impacts the training dynamics: it
controls the training rate and the generalization function. Using this approximation for wide neural
networks (Mean-field approximation), we show that for an initialization in the Ordered/Chaotic
phase, NTK converges exponentially fast to a non-invertible kernel as the number of layers goes
to infinity, making training impossible. An initialization on the EOC leads to an invertible ANTK
(and NTK) even for an infinite number of layers: the convergence rate is O(L−1) for ReLU-like
activation functions and O(log(L)L−1) for a class of smooth activation functions.

However, recent findings showed that the infinite width approximation of the NTK does not fully
capture the dynamics of the training of DNNs. A recent line of work showed that the NTK for
finite width neural networks changes with time and might even be random (Chizat & Bach (2018),
Ghorbani et al. (2019), Huang & Yau (2019), Arora et al. (2019)). Therefore, we believe that the NTK
is a useful tool to partially understand wide deep neural networks (have insights on hyper-parameters
choices for example) and not a tool to train neural networks.
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We provide in Section A and Section B the proof of the theoretical results presented in the main
document. Section C provides additional theoretical results while Section ?? presents additional
experimental results.

A APPENDIX: PROOFS OF SECTION 3: NEURAL NETWORKS AND NEURAL
TANGENT KERNEL

Lemma 1 (Trainability of the Neural Network and Invertibility of the NTK). Assume f0(X ) 6= Y .
Then with dynamics (8), ||ft(X )− Y|| converges to 0 as t→∞ if and only if K̂L is non-singular.
Moreover, if KL is singular, there exists a constant C > 0 such that for all t > 0,

||ft(X )− Y|| ≥ C

Proof. Assume f0(X ) 6= Y . Let K̂L = QTDQ be the spectral decomposition of the empirical NTK;
i.e. Q is an orthogonal matrix and D is a diagonal matrix.

We have that e−
1
N K̂

Lt = QT e−
1
NDtQ = QTDiag(e−

di
N t)1≤i≤oNQ where (di)1≤i≤oN are the

eigenvalues. We also have ||ft(X ) − Y|| = ||e− 1
N K̂

Lt(f0(X ) − Y)||. Therefore, the equivalence
holds true.

Moreover, assume K̂L in singular. Let Zt = Q(ft(X ) − Y)QT . We have that Zt = e−
1
NDtZ0.

Since D has at least one zero diagonal value, then there exists j ∈ {1, 2, ..., oN} such that for all t,
(Zt)j = (Z0)j , and we have

||ft(X )− Y|| = ||Zt||
≥ |(Zt)j| = |(Z0)j|

Lemma 2 (Discretization Error for Full-Batch Gradient Descent). Assume∇θL is C-lipschitz, then
there exists C ′ > 0 that depends only on C and T such that

sup
k∈[0,T/η]

||θtk − θ̂k|| ≤ ηC ′

Proof. For t ∈ [0, T ], we define the stepwise constant system θ̃t = θ̂bt/ηc. Let t ∈ [0, T ], we have

θ̃t = θ0 − η
bt/ηc−1∑
k=0

∇θL(θ̂k)

= θ0 −
∫ t

0

∇θL(θ̃s)ds+ η

∫ t/η

b∗ct/η−1

∇θL(θ̂b∗cs)ds

Therefore,

||θt − θ̃t|| ≤
∫ t

0

||∇θL(θs)−∇θL(θ̃s)||ds+ η

∫ t/η

b∗ct/η−1

||∇θL(θ̂b∗cs)||ds

≤ C
∫ t

0

||θs − θ̃s||ds+ η(t/η − b∗ct/η)||∇θL(θ̂b∗ct/η)||+ η||∇θL(θ̂b∗ct/η−1)||

Moreover, for any k ∈ [0, b∗cT/η], we have

||θ̂k − θ0|| ≤ (1 + ηC)||θ̂k−1 − θ0||
≤ (1 + ηC)T/η||θ̂1 − θ0||
≤ eCT ||θ̂1 − θ0||

11
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where we have used log(1 + ηC) ≤ ηC. Using this result, there exists a constant C̃ depending on T
and C such that

η(t/η − b∗ct/η)||∇θL(θ̂b∗ct/η)||+ η||∇θL(θ̂b∗ct/η−1)|| ≤ η(2||∇θL(θ̂0)||+ C||θ̂b∗ct/η − θ0||+ C||θ̂b∗ct/η−1 − θ0||)
≤ ηC̃

Now we have

||θt − θ̃t|| ≤ C
∫ t

0

||θs − θ̃s||ds+ ηC̃,

so we can conclude using Gronwall’s lemma.

B PROOFS OF SECTION 4: IMPACT OF THE INITIALIZATION AND THE
ACTIVATION FUNCTION ON THE NEURAL TANGENT KERNEL

We first recall the results obtained in Lee et al. (2018), Schoenholz et al. (2017) and Hayou et al.
(2019) where the impact of the EOC (Edge of Chaos) on the initialization is studied. We also present
some results that we will be used below.

Consider a FFNN of depth L, widths (nl)1≤l≤L, weights wl and bias bl. For some input x ∈ Rd, the
forward propagation is given by

y1
i (x) =

d∑
j=1

w1
ijxj + b1i , yli(x) =

nl−1∑
j=1

wlijφ(yl−1
j (x)) + bli, for l ≥ 2, (12)

where φ is the activation function.

We initialize the model with wlij
iid∼ N (0,

σ2
w

nl−1
) and bli

iid∼ N (0, σ2
b ), where N (µ, σ2) denotes the

normal distribution of mean µ and variance σ2. For some x, we denote by ql(x) the variance of yl(x).
In general, ql(x) converges to a point q(σb, σw) > 0 independent of x as l→∞. The EOC is defined
by the set of parameters (σb, σw) such that σ2

wE[φ′(
√
q(σb, σw)Z)2] = 1 where Z ∼ N (0, 1).

Similarly the Ordered, resp. Chaotic, phase is defined by σ2
wE[φ′(

√
q(σb, σw)Z)2] < 1, resp.

σ2
wE[φ′(

√
q(σb, σw)Z)2] > 1 (see Hayou et al. (2019) for more details). For two inputs x, x′ ∈ Rd,

define Σl(x, x′) = E[yl(x)yl(x′)] and let cl(x, x′) be the corresponding correlation. Let f be the
correlation function defined implicitly by cl+1 = f(cl). In the limit of infinitely wide networks, we
have the following results (Hayou et al. (2019)) :

• Σl(x, x′) = σ2
b + σ2

wEz∼N (0,Σl−1)[φ(z(x))φ(z(x′))].

• There exist q, λ > 0 such that, for all supx∈Rd |Σl(x, x)− q| ≤ e−λl.
• On the Ordered phase, there exists γ > 0 such that supx,x′∈Rd |cl(x, x′)− 1| ≤ e−γl.

• On the chaotic phase, there exist γ > 0 and c < 1 such that supx 6=x′∈Rd |cl(x, x′)− c| ≤
e−γl.

• For ReLU network on the EOC, we have that Σl(x, x) =
σ2
w

d ||x||
2 for all l ≥ 1. Moreover,

we have

f(x) =
x→1−

x+
2
√

2

3π
(1− x)3/2 +O((1− x)5/2)

• In general, we have

f(x) =
σ2
b + σ2

wE[φ(
√
qZ1)φ(

√
qZ(x))]

q

where Z(x) = xZ1 +
√

1− x2Z2 and Z1, Z2 are iid standard Gaussian variables.
• On the EOC, we have f ′(1) = 1

• If φ is k-times differentiable, then f is k-times differentiable and for all 1 ≤ j ≤ k, we have
f (j)(x) = σ2

wq
j−1E[φ(j)(Z1)φ(j)(Z(x))]

12
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• From Jacot et al. (2018), we have that

Kl(x, x′) = Kl−1(x, x′)Σ̇l(x, x′) + Σl(x, x′).

where the definition of Σ̇l(x, x′) is given in Proposition 1 below.

Definition 1. Let φ : R→ R be a measurable function. Then

1. φ is said to be ReLU-like if there exist λ, β ∈ R such that φ(x) = λx for x > 0 and
φ(x) = βx for x ≤ 0.

2. φ is said to be in S if φ(0) = 0, φ is twice differentiable, and there exist n ≥ 1, a
partition (Ai)1≤i≤n of R and infinitely differentiable functions g1, g2, ..., gn such that
φ(2) =

∑n
i=1 1Aigi, where φ(2) is the second derivative of φ.

The following two lemmas will be useful to prove the results of Section 3 in the main paper.
Lemma 2. Let (al) be a sequence of non-negative real numbers such that ∀l ≥ 0, al+1 ≤ αal+ke−βl,
where α ∈ (0, 1) and k, β > 0. Then there exists γ > 0 such that ∀l ≥ 0, l ≤ e−γl.

Proof. Using the inequality on al, we can easily see that

al ≤ a0α
l + k

l−1∑
j=0

αje−β(l−j)

≤ a0α
l + k

l

2
e−βl/2 + k

l

2
αl/2

where we divided the sum into two parts separated by index l/2 and upper-bounded each part. The
existence of γ is straightforward.

Proposition 1 (Limiting Neural Tangent Kernel with Ordered/Chaotic Initialization). Let (σb, σw)
be in the ordered or chaotic phase. Then, there exist λ, γ > 0 such that

sup
x,x′∈Rd

|KL(x, x′)− λ| ≤ e−γL →L→∞ 0

Proof. From Jacot et al. (2018), we have that

Kl(x, x′) = Kl−1(x, x′)Σ̇l(x, x′) + Σl(x, x′)

where Σ1(x, x′) = σ2
b +

σ2
w

d x
Tx′ and Σl(x, x′) = σ2

b + σ2
wEf∼N (0,Σl−1)[φ(f(x))φ(f(x′))] and

Σ̇l(x, x′) = Ef∼N (0,Σl−1)[φ
′(f(x))φ′(f(x′))]. In the ordered/chaotic phase, Hayou et al. (2019)

showed that there exist k, γ, l0 > 0 and α ∈ (0, 1) such that for all l ≥ l0 we have

sup
x,x′∈Rd

|Σl(x, x′)− k| ≤ e−γl

and
sup

x,x′∈Rd

Σ̇l(x, x′) ≤ α.

Therefore we have for any l ≥ l0 and x, x′ ∈ Rd

Kl(x, x′) ≤ αKl−1(x, x′) + k + e−γl.

Letting rl = Kl(x, x′)− k
1−α , we have

rl ≤ αrl−1.

We can now conclude using Lemma 2.

Now, we show that the Initialization on the EOC leads to an invertible NTKl even if the number of
layers L goes to infinity. We first prove two preliminary lemmas that will be useful for the proof of
the next proposition.

13
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Lemma 3. Let (al), (bl), (λl) be three sequences of real numbers such that

al = al−1λl + bl

λl = 1− α

l
+O(l−1−β)

bl = q +O(l−1)

where α ∈ N∗, β, q ∈ R+ and α > β − 1.
Then,

al
l

=
q

1 + α
+O(l−min(1,β))

Proof. It is easy to see that |al| ≤ l + |a0| for all l ≥ 0, therefore (al/l) is bounded. Now let
ζ = min(1, β) and rl = al

l . We have

rl = rl−1(1− 1

l
)(1− α

l
+O(l−1−β)) +

q

l
+O(l−2)

= rl−1(1− 1 + α

l
) +

q

l
+O(l−1−ζ).

Letting xl =
∣∣rl − q

1+α

∣∣, there is exist a constant M > 0 such that

xl ≤ xl−1(1− 1 + α

l
) +

M

l1+ζ
.

Hence, we have

xl ≤ x0

l∏
k=1

(1− 1 + α

k
) +M

l∑
k=1

l∏
j=k+1

(1− 1 + α

j
)

1

k1+ζ
.

By taking the logarithm of the first term in the right hand side and using the fact that
∑l
k=1

1
k ∼ log(l),

we have
l∏

k=1

(1− 1 + α

k
) ∼ l−1−α

For the second part, observe that
l∏

j=k+1

(1− 1 + α

j
) =

(l − α− 1)!

l!

k!

(k − α− 1)!

and
k!

(k − α− 1)!

1

k1+ζ
∼k→∞ kα−ζ

so that,
l∑

k=1

k!

(k − α− 1)!

1

k1+ζ
∼

l∑
k=1

kα−ζ

∼
∫ l

1

tα−ζdt

∼ 1

α− ζ + 1
lα−ζ+1

therefore,
l∑

k=1

l∏
j=k+1

(1− 1 + α

j
)

1

k1+ζ
=

(l − α− 1)!

l!

l∑
k=1

k!

(k − α− 1)!

1

k1+ζ

∼ 1

α− ζ + 1
l−ζ

We can now conclude using the fact that α > β − 1.
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We now introduce a different form of the previous Lemma that will be useful for other applications.
Lemma 4. Let (al), (bl), (λl) be three sequences of real numbers such that

al = al−1λl + bl

λl = 1− α

l
+ κ

log(l)

l2
+O(l−1−β)

bl = q +O(l−1)

where α ∈ N∗, β, q ∈ R+ and α > β − 1, β ≥ 1.
Then, there exists A,B > 0 such that

A
log(l)

l
≤ |al

l
− q

1 + α
| ≤ B log(l)

l

Proof. It is easy to see that |al| ≤ l + |a0| for all l ≥ 0, therefore (al/l) is bounded. Let rl = al
l .

We have

rl = rl−1(1− 1

l
)(1− α

l
+ κ

log(l)

l2
+O(l−1−β)) +

q

l
+O(l−2)

= rl−1(1− 1 + α

l
) + rl−1κ

log(l)

l2
+
q

l
+O(l−2)

Let xl = rl − q
1+α . It is clear that λl = 1 − α/l + O(l−3/2). Therefore, using Lemma 3 with

β = 1/2, we have rl → q
1+α . Thus, there exists κ1, κ2,M, l0 > 0 such that for all l ≥ l0

xl−1(1− 1 + α

l
) + κ1

log(l)

l2
− M

l2
≤ xl ≤ xl−1(1− 1 + α

l
) + κ2

log(l)

l2
+
M

l2

Similarly to the proof of Lemma 3, it follows that

xl ≤ xl0
l∏

k=l0

(1− 1 + α

k
) +

l∑
k=l0

l∏
j=k+1

(1− 1 + α

j
)
κ2 log(k) +M

k2

and

xl ≥ x0

l∏
k=0

(1− 1 + α

k
) +

l∑
k=l0

l∏
j=k+1

(1− 1 + α

j
)
κ1 log(k)−M

k2

Recall that we have
l∏

k=1

(1− 1 + α

k
) ∼ l−1−α

and
l∏

j=k+1

(1− 1 + α

j
) =

(l − α− 1)!

l!

k!

(k − α− 1)!

so that
k!

(k − α− 1)!

κ1 log(k)−M
k2

∼k→∞ log(k)kα−1

Therefore, we obtain
l∑

k=1

k!

(k − α− 1)!

κ1 log(k)−M
k2

∼
l∑

k=1

log(k)kα−1

∼
∫ l

1

log(t)tα−1dt

∼ C1l
α log(α)
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where C1 > 0 is a constant. Similarly, there exists a constant C2 > 0 such that
l∑

k=1

k!

(k − α− 1)!

κ2 log(k) +M

k2
∼ C2l

α log(α)

We conclude using the fact that (l−α−1)!
l! ∼ l−1−α.

Proposition 2 (Neural Tangent Kernel on the Edge of Chaos). Let φ be a non-linear activation
function and (σb, σw) ∈ EOC.

1. If φ is ReLU-like, then for all x ∈ Rd, K
L(x,x)
L =

σ2
w||x||

2

d + K0(x,x)
L . Moreover, there exist

A, λ ∈ (0, 1) such that

sup
x 6=x′∈Rd

∣∣KL(x, x′)

L
− λσ

2
w

d
||x||||x′||

∣∣ ≤ A

L

2. If φ is in S, then, there exist q > 0 such that K
L(x,x)
L = q + K0(x,x)

L → q. Moreover, there
exist B,C, λ ∈ (0, 1) such that

B log(L)

L
≤ sup
x6=x′∈Rd

∣∣KL(x, x′)

L
− qλ

∣∣ ≤ C log(L)

L

Proof. We use some results from Hayou et al. (2019) in this proof.

Let x, x′ ∈ Rd and clx,x′ = Σ(x,x′)√
Σ(x,x)Σ(x′,x′)

. Let γl := 1 − clx,x′ and f be the correlation

function defined by the recursive equation cl+1 = f(xl). From the preliminary results,
we know that Σl(x, x) =

σ2
w

d ||x||
2 and that Kl(x, x′) = Kl−1(x, x′)Σ̇l(x, x′) + Σl(x, x′).

This concludes the proof for KL(x, x). We denote s = 2
√

2
3π . From Hayou et al. (2019), we

have on the EOC γl+1 = γl − sγ3/2
l +O(γ

5/2
l ) so that

γ
−1/2
l+1 = γ

−1/2
l (1− sγ1/2

l +O(γ
3/2
l ))−1/2 = γ

−1/2
l (1 +

s

2
γ

1/2
l +O(γ

3/2
l ))

= γ
−1/2
l +

s

2
+O(γl).

Thus, as l goes to infinity
γ
−1/2
l+1 − γ

−1/2
l ∼ s

2
and by summing and equivalence of positive divergent series

γ
−1/2
l ∼ s

2
l.

Moreover, since γ−1/2
l+1 − γ

−1/2
l = s

2 +O(γl) = s
2 +O(l−2), we have γ−1/2

l = s
2 l+O(1).

Therefore, clx,x′ = 1− 9π2

2l2 +O(l−3).
we also have

f ′(x) =
1

π
arcsin(x) +

1

2

= 1−
√

2

π
(1− x)1/2 +O((1− x)5/2).

Thus, it follows that

f ′(clx,x′) = 1− 3

l
+O(l−2)

Moreover, qlx,x′ = q +O(l−2) where q is the limiting variance of yl.

Using Lemma 3, we conclude that Kl(x,x′)
l = 1

4
σ2
w

d ||x||||x
′|| + O(l−1). Since cx,x

′
is

bounded, this result is uniform in x, x′. Therefore, we can take the supremum over x, x′ ∈
Rd.
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1.2. We prove the result when φ(2)(x) = 1x<0g1(x) + 1x≥0g2(x). The generalization to the
whole class is straightforward. Let f be the correlation function. We first show that for all
k ≥ 3 f (k)(x) = 1

(1−x2)(k−2)/2 gk(x) where gk ∈ C∞.
We have

f ′′(x) = σ2
wqE[φ′′(

√
qZ1)φ′′(

√
qU2(x))]

= σ2
wqE[φ′′(

√
qZ1)1U2(x)<0g1(

√
qU2(x))] + σ2

wqE[φ′′(
√
qZ1)1U2(x)>0g2(

√
qU2(x))].

Let G(x) = E[φ′′(
√
qZ1)1U2(x)<0g1(

√
qU2(x))] then

G′(x) = E[φ′′(
√
qZ1)(Z1 −

x√
1− x2

Z2)δU2(x)=0
1√

1− x2
g1(
√
qU2(x))]

+ E[φ′′(
√
qZ1)1U2(x)<0

√
q(Z1 −

x√
1− x2

Z2)g′1(
√
qU2(x))].

It is easy to see that G′(x) = 1√
1−x2

G1(x) where G1 ∈ C1. A similar analysis can
be applied to the second term of f ′′. We conclude that there exists g3 ∈ C∞ such that
f (3)(x) = 1√

1−x2
g(x). We obtain the result by induction.

Since f (k) are potentially not defined at 1, we use the change of variable x = 1 − t2 to
obtain a Taylor expansion near 1. Simple algebra shows that the function t→ f(1− t2) has
a Taylor expansion near 0:

f(1− t2) = 1− t2f ′(1) +
t4

2
f ′′(1) +

t6

6
f (3)(1) +O(t8).

Therefore,

f(x) = 1 + (x− 1)f ′(1) +
(x− 1)2

2
f ′′(1) +

(1− x)3

6
f (3)(1) +O((x− 1)4).

Letting λl := 1− cl, there exist α, β > 0 such that

λl+1 = λl − αλ2
l − βλ3

l +O(λ4
l )

therefore,

λ−1
l+1 = λ−1

l (1− αλl − βλ2 +O(λ3
l ))
−1

= λ−1
l (1 + αλl + βλ2

l +O(λ3
l ))

= λ−1
l + α+ βλl +O(λ2

l ).

By summing (divergent series), we have that λ−1
l ∼

l
βq

. Therefore,

λ−1
l+1 − λ

−1
l − α = βα−1l−1 +O(l−2)

By summing a second time, we obtain

λ−1
l = αl + βα−1 log(l) +O(1)

so that λl = α−1l−1 − α−1β log(l)
l2 +O(l−2).

Using the fact that f ′(x) = 1 + (x − 1)f ′′(1) + O((x − 1)2), we have f ′(clx,x′) =

1− 2
l +κ log(l)

l2 +O(l−2). We can now conclude using Lemma 4. Using again the agrument
of the boundedness of c1x,x′ , we can take the supremum.
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Proposition 3. Consider the following network architecture (FFNN with residual connections)

yli(x) = yl−1
i (x) +

nl−1∑
j=1

wlijφ(yl−1
j (x)) + bli, for l ≥ 2. (13)

with initialization parameters σb = 0 and σw > 0. Let KL
res be the corresponding NTK. For all

x ∈ Rd, K
L
res(x,x)
L×2L = σ2

w
||x||2
d +O(L−1) and there exists λ ∈ (0, 1) such that

sup
x 6=x′∈Rd

∣∣KL
res(x, x

′)

L× 2L
− σ2

w

||x|| × ||x′||
d

λ
∣∣ = O(L−1)

.

Proof. We only give a sketch of the proof. A more rigorous proof can be easily done but it unecessary.
As in the feedforward without residual connections case, it is easy to see that KL

res satisfies the
following recursive equation

Kl
res(x, x

′) = Kl−1
res (x, x′)(Σ̇l(x, x′) + 1) + Σl(x, x′)

we already now that Σ̇l(x, x) = 1. Moreover, we have Σl(x, x) = Σl−1(x, x) + σ2
w/2Σl−1(x, x) =

(1 + σ2
w/2)l−1 σ

2
w

d ||d||. Depending on the value of σw, the behaviour of Kl(x, x′) changes. However,
from Hayou et al. (2019), we have that Σ̇l(x, x′) = 1− βl−1 +O(l−2). So by scaling with αL2L

and using Lemma 3, we conclude on the convergence rate of O(l−1). We can take the supremum as
the result of the boundedness of c1(x, x′).

C IMPACT OF THE INITIALIZATION THE OUTPUT FUNCTION

In this section, we show how an initialization on the EOC impacts on the output function of the
neural network. More precisely, we show that it leads to a larger range compared to an initialization
in the Ordered/chaotic phase.

Let us start by a simple Lemma that compares the expectations of some smooth mapping with respect
to two different Gaussian vectors.
Lemma 3. Let X = (Xi)1≤i≤n, Y = (Yi)1≤i≤N be two centered Gaussian vectors in Rn. Let
g ∈ D2(Rn,R). Then we have

E[g(X)]−E[g(Y )] =
1

2

∫ 1

0

∑
1≤i,j,≤n

(E[XiXj ]−E[YiYj ])E[
∂g

∂xi∂xj
(
√

1− uX+
√
uY )]du (14)

The result of Lemma 3 is valid when the second derivatives of g exist only in the distribution sense
(e.g. Dirac mass).

Proof. We define the function G on R by

G(t) = E[g(tX +
√

1− t2Y )]

we have that

G′(t) =

n∑
i=1

E[(Xi −
t√

1− t2
Yi)

∂g

∂xi
(tX +

√
1− t2Y )]

Moreover, it is easy to see that for any random vector Z in Rn we have E[Zig(Z)] =∑n
j=1 cov(Xi, Xj)E[ ∂g∂xj

(Z)], this yields

G′(t) = t

n∑
i,j=1

(E[XiXj ]− E[YiYj ])E[
∂g

∂xi∂xj
(tX +

√
1− t2Y )]

We conclude by integrating G′(t) between 0 and 1.
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Now let D = {(xi, zi) : 1 ≤ i ≤ N} be the datapoints. Using the same notations as in the previous
chapter, let yL(xi) denotes on the neurons of lth layer (the neurons are iid). Assume c1xi,xj

≥ 0 for
all i, j ∈ [1, N ] (this is almost always the case, but in general, we can re-scale the input data to satisfy
this assumption). We have the following result

Lemma 5. Let φ be a non ReLU-like activation function and (σb, σw) /∈ EOC. Then there
exists (σb,EOC , σw,EOC) ∈ EOC such that for any function g ∈ D2 such that for all i, j ∈
[|1, N |], ∂g

∂xi∂xj
≥ 0, there exist β > 0, ζN > 0 such that

E[g(yLeoc(X))] ≤ E[g(yLord(X))]− ζN
Lβ

Proof. Let (σb, σw) /∈ EOC and q be the corresponding limiting variance. From the previous chapter,

it is easy to see that there exists σ0 > 0 such that σ2
0 +

E[φ(
√
qZ)2]

E[φ′(
√
qZ)2] = q. Let (σb,EOC , σw,EOC) =

(σ0, 1/
√

E[φ′(
√
qZ)2]) ∈ EOC. There exists a constant κ > 0 (independent of N ) such that for

all i, j ∈ [|1, N |],E[yLeoc(Xi)y
L
eoc(Xj)] ≤ E[yLord(Xi)y

L
ord(Xj)]− κL−β where β = 1 for a smooth

activation functions in S and β = 2 for ReLU-like activation functions (see Hayou et al. (2019)). Let
λN = infi,j infu∈[0,1] E[ ∂g

∂xi∂xj
(
√

1− uX +
√
uY )]. Using Lemma 3, we have

E[yLeoc(Xi)y
L
eoc(Xj)] ≤ E[yLeoc(Xi)y

L
ord(Xj)]−

1

2
κN2λNL

−β

As a simple application, using the function g(X) =
∏N
i=1 1xi≤ti , we have the following

Lemma 4. Let t1, t2, ..., tN ∈ R. Then there exist β > 0, ζN > 0 such that

P(yLeoc(x1) ≤ t1, ..., yLeoc(xN ) ≤ tN ) ≤ P(yLord(x1) ≤ t1, ..., yLord(xN ) ≤ tN )− ζN
Lβ

as a Corollary, we have a generalized form of Slepian’s Lemma for yLeoc(X) and yLord(X).

Corollary 1 (Max Range and Min Range).

P(max
i
yLeoc(xi) ≥ t) ≥ P(max

i
yLord(xi) ≥ t) +

ζN
Lβ

and

P(min
i
yLeoc(xi) ≤ t) ≥ P(max

i
yLord(xi) ≤ t) +

ζN
Lβ

where β = 1 for activation functions of type S and β = 2 for ReLU-like activation functions.

D TRAINING WITH SGD INSTEAD OF GD

In this section, we extend the results of the NTK to the case of SGD. We use an approximation of the
SGD dynamics by a diffusion process. We assume implicitly the existence of the triplet (Ω,P,F)
where Ω is the probability space, P is a probability measure on Ω, and F is the natural filtration of
the Brownian motion. Under boundedness conditions, when using SGD, the gradient update can be
seen as a GD with a Gaussian noise (Hu et al., 2018; Li et al., 2017). More precisely, let S = o(N)
be the batchsize. The SGD update is given by

θ̂t+1 = θ̂t − η∇θL(S)(θ̂t), (15)

where L(S) = 1
S

∑S
i=1 `(f(x̃i, θ), ỹi) where (x̃i, ỹi)1≤i≤S is a randomly selected batch of size S.

Then for all θ

∇θL(S)(θ)−∇θL(θ) =
∑
i

Zi(S)

S
(∇θ`(fθ(xi), yi)− E0(θ))−

N∑
i=1

(∇θ`(fθ(xi), yi)− E0(θ))

N
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where Zi(S) = 1 if observation i belongs to the batch (x̃j , ỹj), j ≤ S and equals 0 otherwise and
E0(θ) = E0∇θ`(f(X1, θ), Y1). We have

tr

[
Cov

(
N∑
i=1

(∇θ`(fθ(xi), yi)− E0(θ))

N

)]
=

p∑
l=1

Var (∂`(fθ(X1), Y1)/∂θl)

N
.

So that if S = o(N) and if
tr (Cov (∇θ`(f(X1, θ), Y1))) = o(S)

where Cov(·) denotes the covariance matrix under P0. Then

∇θL(S)(θ)−∇θL(θ) =
ZS(θ)√

S
+ oP0(S−1/2)

where ZS(θ) converges in distribution (as S goes to infinity) to a Gaussian random vector with
covariance matrix Σ(θ) = Cov (∇θ`(f(X1, θ), Y1)) and we have, neglecting the term oP0

(S−1/2),

θ̂t+1 = θ̂t − η∇θL(θ̂t) +
η√
S
Z(θt). (16)

We can in particular bound the difference between equation 16 and the continuous time SDE
approximation (see also Hu et al. (2018) and Li et al. (2017))

dθt = −∇θL(θt)dt+

√
η

S
Σ(θt)

1
2 dWt. (17)

SGD updates can therefore be seen as a discretization of the previous SDE with time step ∆ = η,
and where Σ(θt)

1
2 is the square-root matrix of Σ(θt) = Cov (∇θ`(f(X1, θt), Y1)) and (Wt)t≥0 a

standard Brownian motion.

Since the dynamics of θt are described by an SDE, the dynamics of ft can also be described by an
SDE which can be obtained from Itô’s lemma.
Proposition 4. Under the dynamics of the SDE equation 17, the vector ft(X ) is the solution of the
following SDE

dft(X ) = [− 1

N
KL
θt(X ,X )∇z`(ft(X ), Y ) +

1

2

η

S
Γt(X )]dt+

√
η

S
∇θf(X , θt)Σ(θt)

1
2 dWt (18)

where Γt(X ) is the concatenated vector of (Γt(x) = (Tr(Σ(θt)
1
2∇2fi(x, θt)Σ(θt)

1
2 ))1≤i≤o)x∈X

and ∇2fi(x, θ) is the Hessian of fi (ith component of f ) with respect to θ.

Proof. Since θt is a diffusion process, we can use Itô’s lemma to deduce how the randomness propa-
gates to ft. We denote by ft,i the ith coordinate of ft, i.e., for an input x, ft(x) = (ft,i(x))1≤i≤k.
Let i ∈ 1, ..., k, we have

dft,i(x) = ∇θfi(x, θt)dθt +
1

2

η

S
Tr(Σ(θt)

1
2∇2fi(x, θt)Σ(θt)

1
2 )dt

= [−∇θft,i(x)∇θft(X )∇z`(ft(X ), Y ) +
1

2

η

S
Tr(Σ(θt)

1
2∇2fi(x, θt)Σ(θt)

1
2 )]dt

+

√
η

S
∇θfi(x, θt)Σ(θt)

1
2 dWt

where ∇2fi(x, θt) is the hessian of fi with respect to θ. Aggregating these equations with respect to
i yields

dft(x) = [− 1

N
∇θft(x)∇θft(X )∇z`(ft(X ), Y ) +

1

2

η

S
Γt(x)]dt+

√
η

S
∇θf(x, θt)Σ(θt)

1
2 dWt

where Γt(x) = (Tr(Σ(θt)
1
2∇2fi(x, θt)Σ(θt)

1
2 ))1≤i≤k.

Therefore, the dynamics of the vector ft(X ) is given by

dft(X ) = [− 1

N
Kθt(X ,X )∇z`(ft(X ), Y ) +

1

2

η

S
Γt(X )]dt+

√
η

S
∇θf(X , θt)Σ(θt)

1
2 dWt

where Γt(X ) is the concatenated vector of (Γt(x))x∈X .
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(a) t=0 (b) t=100 (c) t=1000

Figure 3: Ratio KL
θt
/KL for three randomly selected pairs from MNIST dataset as a function of

width for three training times t = 0, t = 100 and t = 1000 (training time is measured by SGD
updates)

With the quadratic loss `(z, y) = 1
2 ||z − y||

2, the SDE equation 18 is equivalent to

dft(X ) = [− 1

N
KL
θt(X ,X )(ft(X )− Y) +

1

2

η

S
Γt(X )]dt+

√
η

S
∇θf(X , θt)Σ(θt)

1
2 dWt. (19)

This is an Ornstein-Uhlenbeck process (mean-reverting process) with time dependent parameters.
The additional term Γt is due to the randomness of the mini-batch, it can be seen as a regularization
term and could partly explain why SGD gives better generalization errors compared to GD (Kubo
et al. (2019), Lei et al. (2018)).

Dynamics of ft for wide FeedForward neural networks :
In the case of a fully connected feedforward neural network (FFNN hereafter) of depth L and widths
n1, n2, ..., nL, Jacot et al. (2018) proved that, with GD, the kernel KL

θt
converges to a kernel KL that

depends only on L (number of layers) for all t < T when n1, n2, ..., nl →∞, where T is an upper
bound on the training time, under the technical assumption

∫ T
0
||∇z`(ft(X ,Y))||2dt < ∞ almost

surely with respect to the initialization. For SGD, we assume that the convergence result of the NTK
holds true as well, this is illustrated empirically in figure 3 but we leave the theoretical proof for
future work. With this approximation, the dynamics of ft(X ) for wide networks is given by

dft(X ) = − 1

N
K̂L(ft(X )−Mt)dt+

√
η

S
∇θf(X , θt)Σ(θt)

1
2 dWt,

where K̂L = KL(X ,X ) and Mt = Y − ηN
2S (K̂L)−1Γt(X ). This is an Ornstein–Uhlenbeck process

whose closed-form expression is given by

ft(X ) = e−
t
N K̂

L

f0(X ) + (I − e− t
N K̂

L

)Y +At(X ) (20)

where At(X ) = − η
2S

∫ t
0
e−

t−s
N K̂L

Γs(X )ds +
√

η
S

∫ t
0
e−

t−s
N K̂L∇θf(X , θs)Σ(θs)

1
2 dWs; see sup-

plementary material for the proof. So for any (test) input x ∈ Rd, we have

ft(x) = f0(x) +KL(x,X )(K̂L)−1(I − e−
t−s
N K̂L

)(Y − f0(X )) + Zt(x) +Rt(x), (21)

where Rt(x) =
√

η
S

∫ t
0
[KL(x,X )(K̂L)−1(e−

t
N K̂

L − I)∇θf(X , θs) + ∇θf(x, θs)]Σ(θs)
1
2 dWs

and Zt(x) = η
2S

[∫ t
0

Γs(x)ds+
∫ t

0
K(x,X )(K̂L)−1(I − e−

(t−s)
N K̂L

)Γs(X )ds
]
.
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Proof. Using the approximation of the NTK by KL as n1, n2, ..., nL →∞, the dynamics of ft(X )
for wide networks are given by

dft(X ) = − 1

N
K̂L(ft(X )−Mt)dt+

√
η

S
∇θf(X , θt)Σ(θt)

1
2 dWt,

To solve it, we use the change of variable At = e
t
N K̂

L

ft(X ). Using Ito’s lemma, we have

dAt =
1

N
K̂LAtdt+ e

t
N K̂

L

dft(X )

=
1

N
K̂Le

t
N K̂

L

Mtdt+

√
η

S
e

t
N K̂

L

∇θf(X , θt)Σ(θt)
1
2 dWt

By integrating, we conclude that

ft(X ) = e−
t
N K̂

L

f0(X ) +
1

N

∫ t

0

K̂Le
−(t−s)

N K̂L

Msds+

√
η

S

∫ t

0

e−
t−s
N K̂L

∇θf(X , θs)Σ(θs)
1
2 dWs

we conclude for ft(X ) using the fact that 1
N

∫ t
0
K̂Le

−(t−s)
N K̂L

Msds = (I − e−
t
N K̂

L

)Y −
η

2S

∫ t
0
e
−(t−s)

N K̂L

Γsds.

Recall that for any input x ∈ Rd,

dft(x) = [− 1

N
KL(x,X )(ft(X )− Y ) +

1

2

η

S
Γt(x)]dt+

√
η

S
∇θf(x, θt)Σ(θt)

1
2 dWt

To prove the expression of ft(x) for general x ∈ Rd, we substitute ft(X ) by its value in the SDE of
ft(x) and integrate.
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