Under review as a conference paper at ICLR 2020

UNDER WHAT CIRCUMSTANCES DO LOCAL CODES
EMERGE IN FEED-FORWARD NEURAL NETWORKS.

Anonymous authors
Paper under double-blind review

ABSTRACT

Localist coding schemes are more easily interpretable than the distributed schemes
but generally believed to be biologically implausible. Recent results have found
highly selective units and object detectors in NN that are indicative of local codes
(LCs). Here we undertake a constructionist study on feed-forward NNs and find
LCs emerging in response to invariant features, and this finding is robust until the
invariant feature is perturbed by 40%. Decreasing the number of input data, in-
creasing the relative weight of the invariant features and large values of dropout
all increase the number of LCs. Longer training times increase the number of
LCs and the turning point of the LC-epoch curve correlates well with the point at
which NNs reach 90-100% on both test and training accuracy. Pseudo-deep net-
works (2 hidden layers) which have many LCs lose them when common aspects of
deep-NN research are applied (large training data, ReLLU activations, early stop-
ping on training accuracy and softmax), suggesting that LCs may not be found
in deep-NNs. Switching to more biologically feasible constraints (sigmoidal ac-
tivation functions, longer training times, dropout, activation noise) increases the
number of LCs. If LCs are not found in the feed-forward classification layers of
modern deep-CNNs these data suggest this could either be caused by a lack of
(moderately) invariant features being passed to the fully connected layers or due
to the choice of training conditions and architecture. Should the interpretability
and resilience to noise of LCs be required, this work suggests how to tune a NN
so they emerge.

1 INTRODUCTION

With neural networks (NNs) being widely deployed in various tasks it is essential to understand
how they work and what data is used to make their decisions. NNs used to be viewed as ‘black
boxes’, but recent results (Nguyen et all 2016) have started to open that box. NNs came from
the field of psychology as simple bio-inspired models, it has been debated whether information
is represented in the brain in a distributed manner (from parallel distributed processing, PDP) or
via a localist coding scheme. Although the distributed approach was the most popular, there are
some results in neuroscience (Quiroga et al., 2005) and psychology (McClelland & Rumelhart,
1981) that are commensurate with a localist coding scheme, including a report of LCs in RNNs
(Bowers et al., [2014). Recently, there has been an explosion of interest in NNs, especially deep-
NNs, as these algorithms are now commercially relevant, and this increase in their accuracy has
been credited to sources of vastly more labelled data and novel training techniques like dropout
(Srivastava et al.,|2014). Many newer researchers in NNs were perhaps unaware of the distributed-
localist coding debate within psychology, and thus looked for localist-like codes in their NNs, and
found indicative (of LC coding scheme) evidence of detectors for objects (Zhou et al.,|2018};|2015)),
concepts (Karpathy et al., 2016} [Lakretz et al.l 2019)), features (Nguyen et al.l |2019; [Erhan et al.,
2009), textures (Olah et al., [2017)), single directions (Morcos et al., |2018)) etc., see (Bowers, [2017)
for a review.

With faster and larger computers, it is possible, even with the increase in input data size, for deep-
NNs to ‘memorise’ the data-set (an extreme form of overfitting): a process where the NN has simply
learned a mapping between input and output vectors, as opposed to learning a rule which will allow
it to generalise to unseen data that follows the underlying rule. Generalisation performance is often
improved if NN training is stopped early, often when a validation set loss (val_loss) stops improving,

Under review as a conference paper at ICLR 2020

as the NN is prevented from further minimising its loss function by memorising the input (training)
data. Single directions (Morcos et al.,[2018)) have been implicated in memorization of the data-set.

Localist codes (coding for a class A) are defined as units which are activated at a high (low) level
for all members(that the NN gets correct) and low (high) level for all members of the other classes
(class —A), i.e. the set of activations for class A is disjoint from the activations for class = A (see
figure [§]in the appendix), and these codes are very strict measure of selectivity. As such, LCs are
very easy to interpret, and the presence of them in NNs would make it easy to understand how the
NN is working.

This paper takes no position on whether or not localist codes exist in the brain or in deep-NNs.
instead we take the constructionist science approach of asking when would we expect LCs to appear,
and what aspects of the system, data-set and training conditions favour or disfavour their emergence.
As NN are considered (simplified) models for the brain, we can also take into account biological
plausibility. We hypothesized that LCs should emerge when there was an invariant in the data-set.
As deep-NNs take a long time to train, it is hard to get representative statistics, so we look at very
simple networks (shallow: 3-layer and pseudo-deep: 4-layer) where it is possible to do hundreds of
repeats and thus get resilient trends.

The main insight of this work is that LCs do emerge when there is an invariant in the data. To
set up a system with such a ‘short-cut’ we use a simple binary vectors as inputs, which are built
from prototypes, such that there are 1/10 input bits that are always 1 for each class and these are
the invariant bits, the Os of each prototype are then filled in with a random mix of 1 and O of a
known weight, see figure [I] thus, a given bit is always on for a given class, and maybe on or of
for other classes. Note also, that in this set up, if the proportional weight of the prototype exceeds
that of the random vector, then vectors belonging to the same class are ‘closer’ to each other than
those of separate classes, i.e. there is a larger between-class variance than within-class variance. The
prototypes are also perturbed to increase the variance of the ‘invariant’ bits. If one views a deep conv-
NN as a feature extraction machine (lower and convolutional layers) with a feature classification
NN on top (the higher fully connected layers), then it is reasonable to suppose that a given class is
likely to share features at the top convolutional layer, which would result in the activation vectors
at that layer having a higher between group variance than within group, or possibly even invariant
features for a class (perhaps object detectors), and so these experiments could give insight into the
representation of data in the ‘fc’ layers of deep-NNss.

1.1 FINDINGS
1. LCs related to lower within-class variance than between-class variance in input
2. LCs related to a NN internalising a rule

3. No. of LCs related to difficulty of the problem and the computing power of the NN, with
different behaviour for under- and over-resourced NNs.

. Large values of dropout increases LCs
. LCs correlate with generalisation performance

. Large data-sets, softmax and aggressive early stopping reduce the number of LCs

S NV RN

. Monitoring the number of LCs can be useful for figuring out when to stop training

2 METHODOLOGY

Data design Data input to a neural network can be understood as a code, {C,}, with each trained
input data vector designated as a codeword, C,. The size of the code is related to the number of
codewords (i.e. the size of the training set), n,. L, is the length of the codeword, generally 500bits
in this paper. We used a binary alphabet, and the number of 1s in a codeword is the Weigh w,, of
that codeword.

!There are two metrics that are relevant to measuring the distance between these vectors, the Hamming
distance which is the number of bits that have to be switched to turn one vector into another and the cosine
similarity, which is the angle between the vectors, we use Hamming distance here.

2This weight definition is not the same as connection weights in the neural network.

Under review as a conference paper at ICLR 2020

P, Py P ; R
Lon 2 Desk‘m % s;iacted By BrCai By c
"
[X] -
RiR,RyRy Ry ..='
o—eo eee
L e — o o e o o
*—0 La Ly
*e—e@ ° Y
[———] [} ®
° @ o
° ® ° o
o [] o
. @
P, selected | ‘(_. N
[i

Figure 1: Schematic for building a random code with known properties. Black circles represent
ones, white circles represent zeros. Class prototypes (P;, P, and P3) were made with length L p; the
number of prototypes are n,, which is three in this example, their weight is four, with a sparseness
number, S}, of % Random vectors, R,, were made, as shown, these have length L and there are
ng of them; they have weight, wg of two and sparseness number, Sg, of %. To assemble a new
codeword, a prototype is chosen, in this example, P, and ‘perturbation’ errors are applied, in this
example, the perturbation rate is i, so a single one is turned to a zero in the modified prototype (PZI).
A random vector, in this example R, is then generated, split into blocks and added to the parts of
the prototype () that were zero (the random vectors cannot overwrite a random decay in P). The
process is repeated to create an input ‘code’ with n, codewords of length L,, where n, = nr and
L, = Lp. If the decay values is sufficiently low, members of each class, as they are based on the
same prototype are more similar to each other than codewords in other classes.

To create a set of np classes with a known structural similarity, the procedure in figure (1| was
followed. We start with a set of np prototypes, {P,,1 < x < np}, with blocks of 1s of length
Lp/np, called prototype blocks, which code for a class. For example, if L, were 12 and np were
3: P, = [111100000000] and P, = [000011110000], P; = [000000001111], and this would gives
prototypes that are a Hamming distance of 8 apart, and thus we know that our prototypes span input-
data space. To create members of each class, the prototype is used as a mask, with the 0 blocks
replaced by blocks from a random vector, I?,.. The weight of the random vectors, wg can be tuned
to ensure that a set of vectors randomly clustered around the prototype vector are generated, such
that members of the same category are closer to each other than those of the other categories (N.B.
the prototypes are not members of the category). A more realistic data-set is created by allowing
the prototypes to be perturbed so that a percentage of the prototype block is randomly switched
to Os each time a new codeword is created, in accordance with the perturbation rate (see Pj in
figure [I). This method creates a code with a known number of invariant bits for codewords in the
same category. For example, in figure[I] codewords C and C were both derived from P, and have
a Hamming distance of 6, where as C; and C} are in different classes and have a Hamming distance
of 8. Note, the difference between these numbers is larger in our experiments as L, = 500 and there
are 10 categories. We define ‘sparseness’ of a vector, S, as the fraction of bits that are ‘1’s. LCs
were highly unlikely to appear in the input code, and none were observed in random checks.

Neural network design We have three-layer feed-forward network with L, input neurons, ngn
hidden layer neurons (HLN) and L, output neurons, using a sigmoidal activation function and no
softmax on the output. For experiment 1 L., is 500bits, mapped to 10 output classes, so the weight
of prototype vectors w,, is 50, and the wg is 150 (so S,=1/3), the output vector is a 50bit-long
distributed vector (w,=25). NNs were trained for 45,000 epochs, and each plotted point is a number
of repeats between 10 and 15. Experiment 2-7 varied thus: 2: n, = {250,500}; 3: Sg = {!/o,
2/9,1/3}; 4: L, = {300,700,1000}; 5: activation function={ReLU, sigmoid}; 6: output vector is
distributed or 1-hot; 7: takes ngrny = 500, 1000 and decays the wp from 50 to 25 (P from 1 to 0.5).
Experiment 8 is ~250 repeats of experiment 1, with values of dropout in {0,0.2,0.5,0.7,0.9}. Ex-
periment 9 is a repeat of 1, with activation noise added for networks with ng 1, x = {100, 500, 1000}.
Experiment 10 measures the number of LCs over training time for ngzx = {250, 500, 1000, 2000}.
To do generalisation tests, a new test set is built with the same parameters as the training set, with
Nirain = 10000 and applied to pre-run results (from experiments 8 and 10). Experiment 11: for the
4-layer neural networks, ng 1 v of the first hidden layer is varied, the second is set to 250, the output
vectors are 1-HOT and different training parameters and values are given in table Experiment

Under review as a conference paper at ICLR 2020

12: For the MLP experiments, we use MNIST data-set, with added 20 pixel invariants that code for
the class which are either non-varying (‘invariant’) or drawn from a Gaussian distribution (‘Gaus-
sian’), see table [8]in the appendix. The invariant was either not applied (‘standard’) or applied to
50% of 100% of all images, or applied to the whole of 2, 5 or 8 categories, and data is from 10
repeats. Experiment 13: To see if LCs were associated with memorising the dataset, we trained NNs
where the codewords were shuffled before being assigned to targets. NNs were run in Keras with a
TensorFlow backend.

Experiment | Activation Softmax Dropout Size of Stopping
function 20% training set condition
A sigmoid no yes ny, = 100 60,000 steps
B sigmoid no no ny = 100 validataion set loss
C sigmoid yes no ng, = 100 60,000 steps
D sigmoid yes yes n, = 100 validation set loss
E sigmoid no no ny, = 100 training accuracy
F sigmoid yes no n, = 100 training accuracy
G ReLU yes no n, = 100 validation set loss
H ReLU yes no n, = 100 60,000 steps
I ReLU yes no n, = 100 training accuracy
J ReLU no yes ny = 100 60,000 steps
K RelLLU no no ng, = 100 validation set loss
L ReLU no no n, = 100 training accuracy
M RelLU no no n, = 1000 60,000 steps
N ReLLU no no ng = 100 60,000 steps
0O-S ReLU * * ng = 1000 *

Table 1: Training conditions for experiment 11. *O-S included tests for softmax, dropout and the
three training conditions.

Accuracy and generalisation. The accuracy reported by Keras counts an output vector as correct
if each bit is within 50% of the correct value, e.g.. the output vector [0.4, 0.6] would map to the
target vector [0, 1] (the outputs are binary), and in standard classification neural networks with a 1-
hot target vectors these outputs would be very close to the target after the softmax operation. Thus,
we label this accuracy ‘classification accuracy’. If one wants to use a NN as a pattern matching
machine, then one could put an arbitrary limit on how big an error between the output values and
the targets, we chose 10%, and the target [0, 1] would need an output vector of [< 0.1, > 0.9] to
be considered correct. We call this more stringent condition the ‘pattern matching accuracy.’” As the
codes are built to a rule, it is possible to generate an arbitrarily large code, thus our test sets are at
least 10 times larger than the training sets.

3 RESULTS

As the chance that all the members of A would emerge disjoint from the members of —A is
(28) / (5500 is tiny (4.32 x 10~7!), finding a single interpretable local code, such as those shown
in figure [8]in the appendix, refutes the idea that neural networks do not have interpretable or locally

encoded units.

Local codes are seen in response to an invariant As shown in fig.|[2a} the number of local codes
is tuned by the size the hidden layer, with a peak in the number of local codes seen at n g, y=1000
for the standard data set, and a peak in the percentage of HLNs which are local codes seen at
ngry = 500 (data not shown): dashed and dot-dashed grey lines are drawn at these points in all
relevant figures. The shape of the graph (in fig[2) appears to be an interaction between the difficulty
of the problem and the amount of computing power (i.e. the ng) available, with those networks
to the left of the peak (‘under-powered’ with respect to LC emergence NNs) not having enough
spare units to give over to a localist code, and those to the right (‘over-powered’). Note that, in the
results that follow, the data for ngyx is often qualitatively different for over- and under-powered
NNs; for example, the number of LCs decreases over time for longer times or the underpowered
NNs in experiment 10 and figure [3ajand increases for over-power NN,

Under review as a conference paper at ICLR 2020

Increasing the difficulty of the problem (by increasing n, see fig[2a] increasing L, see fig. [0 in
appendix, or decreasing the relative information in the prototype by decreasing sparsity of Sg, see
fig. [2b] decreases the number of local codes. The proportionately larger the invariant is in the input
code, the more likely LCs are to emerge in the NN, presumably as a ‘rule’ that attends only to
the invariant is correspondingly more efficient. In the MLP experiments, the presence of invariant
features in pixel space did cause a small number of LCs to emerg (see table E] in the appendix),
and these systems trained much faster (these were trained to a given accuracy), see tables[I0]in the
appendix).

No. L.C.s
70

60F it No.L.C.s
500 i

40
30
20t ¥,
10047 ,

0 y R S By

0 1000 2000 3000 4000 5000 6000 7008™" T
2000 4000 6000 8000 100

—e— Ny=250 150
--n- N,=500
e N=1000 100

50

0. HLNs
(a) Experiment 1 and 2: The number of local d

codes (LCs) against the number of HLNS, (b) Experiment 3: The number of local
nuLN, for different numbers of training ex- codes against nyr, N for varying the sparse-
amples (nz). ness of the random blocks of the vector, Sg.

Figure 2: Input data that is few in number and sparse exhibits more local codes. As the prototype
vector in all these cases has a sparseness of 1 /1o, the weight of the random wp and prototype, wp,
parts of the codeword and the codewords are 500bits long, note that purple: S, = 0.2, wr=50,
wp = 50; green: S, = 0.3, wr=100, wp = 50; black dashed: S, = 0.4, wr=150, wp = 50 Gray
dashed and dot-dashed lines are drawn at n g1, ;=500 and 1000 respectfully.

LCs increase with Training time and may relate to generalisation Figure [3al shows that the
number of LCs in a NN increases with training time all across the range of ngyn. The corner of
the LC-epoch curve (Fig. [3b) was roughly correlated with the system achieved 100% classification
accuracy (‘easy’ criteria) on the training data and the asymptote on the test data (around 95%), see
figure Interestingly, this point is also when the pattern-matching accuracy (‘hard’ criteria) on
both the train and test data-sets rises above 0 (fig[3d} suggesting that the additional LCs emerging
are caused by the separation of 1s and Os in the NN output. Thus, monitoring the rate of LC increase
can give a measure of when to stop training.

To see if LCs were related to memorisation, we investigated the experiment with the greatest range in
LCs-the 90% dropout shown in figure[7b}-and the training and test accuracy is plotted in fig.[da] There
were many solutions that had an accuracy > 99%, but where the solutions were lower accuracy, the
accuracy on both train and test data was related to the number of LCs. Note that, as the test set was
many times larger than the training set (n,= 10,000 for test, n,, = 500 for training) this shows that the
NNs have clearly internalised the rule, the rough positive correlation between the number of LCs and
the accuracy (in the accuracy range of 20-100%) demonstrates that LCs are part of the internalisation
of this rule. Similarly, plotting the test accuracy against the number of LCs for experiment 10 (fig[4b)
shows a positive correlation between the no. of LCs and classification accuracy (similar results are
seen with the pattern-matching accuracy, see figure [12]in the appendix). Shuffling the input code
to force the NN to memorise the data resulted in a reduction in the number of LCs, but only by a
maximum 47% (see fig.[I3]in the appendix).

Why might LCs not be seen in modern deep NNs? Figure |5 shows the effect of changing the
system setup and output vectors. There is little difference between ReLLU and sigmoid, except that
the peak of the curve is shifted a little to the left in the ReLU data, likely as ReLU is a more
‘powerfulﬂ activation function than sigmoid. An alternative explanation is that as ReLUs train
faster and the number of local codes increases with training time (see fig[3a)), the ReLU networks are

*No LCs were seen in the standard MNIST runs.
*i.e. its range is not limited at the positive end so can use a larger number space than sigmoid

Under review as a conference paper at ICLR 2020

No. L.C.s
300

5 Ol\(l)c;.o LCs ;
250 : : —e— 250
200 0.015 ;
150 0.010 |
!
100 % 0.005} ¢ |
50 4 LIRS S S S 00004 i
! AR St s s |
10000 20000 30000 40000 ' ePochs 10000 20000 30000 40000 ' ePochs
(a) Local codes increase with training time (b) Taking differences to identify the turning
(Mepochs points of the curves.
Accuracy Accuracy
100 100
80 o 250 80 o 250
60 = 500 60; . 500
20 -« 1000 40| < 1000
i + 2000 + 2000
200 [20
10000 20000 30000 40000 Mepochs 100004 20000 30000 40000 Nlepochs
(c) Classification accuracy on train (solid) (d) Pattern matching accuracy on train
and test (dashed). (solid) and test (dashed).

Figure 3: Experiment 10. The number of local codes increases with training time. The point at
which the rate of LC code addition decreases correlated with both when the NN achieves ~99%
classification accuracy and when it achieves classification accuracy of more than 0. Key: red: ngr n
= 250; blue: ngry =500; black: ngrx = 1000; purple: ngry =2000.

Acc. No. of LCs
100 AR
350!
80 300!
60 250
200 P
40 150}
100}
20
50)

020 40 60 80 100 120 -CS 20 40 60 80 100
(a) Relation between classification accuracy (b) Relationship between the number of LCs
on test and train for the 90% dropout exper- and classification accuracy on test from ex-
iment (8). periment 10.

Figure 4: The number of local codes increases with improvement on generalisation accuracy. Fig@
is over 250 repeats trained for the same amount of time, Fig[4b] are repeated measurements on the
same NN as they are trained.

Under review as a conference paper at ICLR 2020

effectively trained for longer compared to sigmoidal networks. We chose to use a distributed output
code in the 3-layer networks as we thought the local codes at the output layer might encourage
the emergence of LCs in the hidden layer: the opposite happened, likely because a simple 3-layer
network set up with prototypes like this, the problem of mapping input to output is linearly separable
and much easier, hence LCs are not needed. Note that, in deeper 4-layer HLNs with 1-hot output
vectors there are many local codes (see ‘B’ in figure [6b).

No. L.C.s No.L.C.s
40/ 1 200
30 —e— RelLU 250 i \ 1-Hot
= Sigmoid 20 | —= Distributed
20 15} 4
10 }
10 B T
51 N
: R i e
| R === S i1 H e S S S i
0 1000 2000 3000 4000 5000 6000 70d&"‘N 0 1000 2000 3000 4000 5000 6000 700(™V
(a) Experiment 5. Effect of changing the ac- (b) Experiment 6. Effect of changing the
tivation function. output form.

Switching from HLNs with a sigmoidal activation function to a rectified linear (ReLU) units;
Switching from a distributed to a 1-hot output encoding.

Figure 5: Network architecture parameters can drastically effect the emergence of local codes.
obj

To test deep-NNs, we compared 4-layer NNs with our standard set-ups (A, B) that exhibited LCs
with similar architecture and standard CNN training techniques added (e.g. L, O-S). NNs with all
the settings commonly found in deep-NN literature do not produce LCs. Figure [6a shows that there
is little difference between stopping on val_loss or after 60K epochs (as does the overlap between
bars A and B in fig.[6b] L, M, O-S had ReLU and large data-sets, which completely inhibited local
codes. H to S used ReL.U rather than sigmoid, so in these systems it seems that ReL.U-based NNs
do not learn local codes, although they did in our earlier experiments (fig. [5). That C and D are so
similar shows no real effect of dropout in these NNs. That C<A, D<B, F<E (and fig. @ shows that
softmax reduces the number of local codes slightly. We propose this is because softmax does some
extra ‘processing’ on the final layer, shifting 50% accurate output vectors up to 90%, and this extra
processing makes the problem easier for the hidden layers (so the ‘rule’ is less useful). Alternatively,
due to this extra ‘processing’, using softmax reduces the time required to train the network, which is
expected to reduce the number of LCs, see figure [3a] (N.B. with early stopping conditions training
time now varied). Thus, the reason that LCs are not found in deep-NNs could be the use of large
training data sets, early stopping, ReLU and softmax in those systems, or alternatively it could be
because there are no feature invariants associated with output classes at the top convolutional layer
(i.e. the layer before the fully connected classification layers).

100¢
—@— 60K Softmax ® 80
~~®-- 60K No Softmax .
—@— Acc Softmax O
D 6o}
—¥— valloss Softmax o
‘ --©-~ valloss No Softmax Z 40t
P 20¢
2 3 3 \:!ZQ:;\ Ot - - £ F t+ T T I
i ABCDEFGHI JKLMNOPQRST
: |u‘00 200;“ 3000 4000 5000 6000 7006 Dataset
(a) Changing stopping conditions. (b) Results for experiment 11

Figure 6: ‘Pseudo-deep’ NN that exhibit LCs lose them if modern deep-learning training techniques
are applied.

Under review as a conference paper at ICLR 2020

3.1 BIOLOGICAL CONSTRAINTS ENCOURAGE THE EMERGENCE OF LCS

As the positive activation range of the ReLU is unlimited, it is less biologically plausible than the
sigmoid activation function (although these NNs are still very far from being a model of biology).
In this section we investigate noise on sigmoidal, non-softmax NNs. As real biological systems are
(possibly) noisyﬂ we looked a several different ways of introducing noise into the system: decaying
the invariant, dropping out units and adding in activation noise.

Perturbing the prototype block is shown in figure and LCs are still seen if the invariant is not
always present, but simply more likely to be present for a given class. However, the number of LCs
disappears when the decay is 0.4, i.e. weight of the (50-bit long) prototype section is 20bits, and
this is roughly equal to the weight of a 50bit long section of the random vector (16.67bits), as at this
point the signal is indistinguishable from the noise. The curves are not well fit by an exponential,
the fits shown here are: (for ngy,ny = 500) 20.62 - 30.65 VP, with R? =0.984; (for ng,ny = 1000)
19.72 — 32.29,/z with R? = 0.977, and these data were fit up to P=0.4. Comparing to the MLP
case, there were no LCs if the invariant feature was perturbed, see table E}

Contrary to our expectations, adding dropout and increasing it to very large values increases both
the average and maximum number of LCs in solutions found by the neural network, although lower
values of dropout seemed to overlap, with two competing possible underlying distributions seen
perhaps between 0 and 40% (see fig.[I0]in appendix). Summary statistics and Kolmogorov-Smirnov
hypothesis tests are reported in tables ?? in the appendix, and above 50% dropout there is a signifi-
cant difference in the underlying distributions with an increase in number of LCs. Repeated copies
of local codes may be more resilient to noise than a distributed code: a fully distributed code will
always be incomplete but a local code only has a chance of being not present under dropout.

Adding in activation noise changes the number of LCs that are found (see fig. [I]in the appendix),
increasing them in overpowered NNs and decreasing them in underpowered networks.

No.L.Cs PDF
20

0.10F

15} ™

° nHLN=500 0061

10 = npn=1000 ooaf

0.02

ST e ...

100 1

0 20 40

8001 02 03 04 05

P

(b) Probability Density Function (PDF) and bar
(a) Local codes decrease with ‘perturbation’ of the charts for NNs run with different values of
prototype. dropout (in legend).

Figure 7: How noise affects local codes. Fig perturbing the prototype part of the codeword
decreases the drive to learn local codes. Perturbation, P, is measured as the number of bits in
prototype block code that are randomly flipped. Fig[7b} increasing dropout increases the number
of local codes. As the dropout percentage increases, generally, the mean and range of local codes
found increases, suggesting that localized encoding by the network offers some advantage against
noise.

4 DISCUSSION

The number of local codes is not large, usually between 0-10% of the hidden layer, but this is not
insignificant and the fact that they emerge in response to invariance in the data-set and some train-
ing conditions suggest that they have a function (presumably detecting the presence of an invariant
which can be used as a ‘short-cut’). These results are resilient to a small perturbation of the in-
variant (in the NNs), the invariant feature does not need to be always present, merely more likely

31t is commonly suggested that living neural networks are noisy and thus that neurons and synapses must be
resilient to noise, however there is some debate as to whether this is true and some neurons are highly un-noisy.

Under review as a conference paper at ICLR 2020

to be present for a specific class. LCs emerge in correlation with generalisation performance, so
monitoring the rate of change of LC numbers can give feedback on when to stop training to avoid
overfitting. As LCs were found in response to an added invariants in 2D graphical data in MLPs,
we expect that the use of LCs to identify and code for found ‘rules’ based on invariant features will
be a general phenomenon. Morcos et al.[(2018) found that ‘single direction’ codes were associated
with the harder problem of memorising the dataset (as compared to learning the simpler underlying
rule), here we found that LCs emerged in response to learning a simpler rule, and were inhibited by
switching to a memorisation task. Further work is needed to tease out which aspects of the difference
in architecture and problem choice between Morcos et al.|(2018)’s study and ours is the cause.

It’s an open question whether there are localist codes in deep-CNNs, PDP dogma suggests not, but
there have been some highly selective units found in other types of NNs. Our results suggest that
there might not be LCs in the fully connected layers if typical current deep-CNN training methods
are used. Furthermore, there is the question of whether there are invariant features coming from the
conv/pooling layers into the fully connected feed-forward layers (of a typical current deep-CNN)
which is not currently known and an area of active research for us.

As LCs were seen when the NN has slightly more biologically plausible training conditions like a
noisy system, it might be possible that LCs might emerge in the human brain, although even the
more biologically plausible NNs are perhaps too far removed from actual biology.

REFERENCES

Istvan SN Berkeley, Michael RW Dawson, David A Medler, Don P Schopflocher, and Lorraine
Hornsby. Density plots of hidden value unit activations reveal interpretable bands. Connection
Science, 7(2):167-187, 1995.

Jeffrey S Bowers. Parallel distributed processing theory in the age of deep networks. Trends in
cognitive sciences, 21(12):950-961, 2017.

Jeffrey S Bowers, Ivan I Vankov, Markus F Damian, and Colin J Davis. Neural networks learn
highly selective representations in order to overcome the superposition catastrophe. Psychological
review, 121(2):248-261, 2014.

Dumitru Erhan, Yoshua Bengio, Aaron Courville, and Pascal Vincent. Visualizing higher-layer
features of a deep network. University of Montreal, 1341(3):1, 2009.

Andrej Karpathy, Justin Johnson, and Li Fei-Fei. Visualizing and understanding recurrent networks.
Workshop Track at International Conference on Learning Representations, 2016.

Yair Lakretz, German Kruszewski, Theo Desbordes, Dieuwke Hupkes, Stanislas Dehaene, and
Marco Baroni. The emergence of number and syntax units in Istm language models. arXiv
preprint arXiv:1903.07435, 2019.

James L McClelland and David E Rumelhart. An interactive activation model of context effects in
letter perception: 1. an account of basic findings. Psychological review, 88(5):375, 1981.

Ari S. Morcos, David G.T. Barrett, Neil C. Rabinowitz, and Matthew Botvinick. On the importance
of single directions for generalization. In International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=r1iuQjxC2z.

Anh Nguyen, Alexey Dosovitskiy, Jason Yosinski, Thomas Brox, and Jeff Clune. Synthesizing the
preferred inputs for neurons in neural networks via deep generator networks. In Advances in
Neural Information Processing Systems, pp. 3387-3395, 2016.

Anh Nguyen, Jason Yosinski, and Jeff Clune. Understanding neural networks via feature visualiza-
tion: A survey. arXiv preprint arXiv:1904.08939, 2019.

Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. Feature visualization. Distill, 2017. doi:
10.23915/distill.00007. https://distill.pub/2017/feature-visualization.

R Quian Quiroga, Leila Reddy, Gabriel Kreiman, Christof Koch, and Itzhak Fried. Invariant visual
representation by single neurons in the human brain. Nature, 435(7045):1102-1107, 2005.

https://openreview.net/forum?id=r1iuQjxCZ

Under review as a conference paper at ICLR 2020

Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.

Dropout: a simple way to prevent neural networks from overfitting. Journal of Machine Learning
Research, 15(1):1929-1958, 2014.

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Object detectors
emerge in deep scene CNNs. In International Conference on Learning Representations, 2015.

Bolei Zhou, David Bau, Aude Oliva, and Antonio Torralba. Interpreting deep visual representations
via network dissection. IEEE transactions on pattern analysis and machine intelligence, 2018.

10

Under review as a conference paper at ICLR 2020

A APPENDIX

A.1 LOCAL CODE EXAMPLES

Jitterplots are common analysis techniques in neuroscience, but can also be applied to neural net-
worksBerkeley et al.[(1995) by plotting the activation of a unit on the x axis and randomly jittering
the y-axis value. Examples of local codes found in our networks are given in figure 8] these were
sigmoidal activation units. As it takes more energy to spike than not spike, in biological neurons
the localist codes are generally ‘on’ codes where the unit is on more strongly in the presence of the
class it codes for than not, see figure eft. In our system there is no energy penalty for using high
activations (in fact, energetic considerations are not modelled at all, and this is one of the reasons
NNs are not biologically plausible) so we also see ‘off” codes: see figure [ight.

°
09 0.9 L]

0.8 0.8

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 10

Figure 8: Examples of interpretable local codes found in a distributed network. Left: a selectively
on unit with a selectivity of ~ +0.12; Right: selectively off unit with a selectivity of ~ —0.2. Red
circles belong to a single category, blue stars are all the members of all other categories, the x-axis
is the activation of a hidden layer neuron (HLN) and points are jittered randomly around 1 on the
y-axis for ease of viewing. There is a clear separation between activations for the class depicted in
red (A) and all other activations (not-A), thus examination of the activations of these units would
reveal the presence or absence of the red class.

A.2 EXPERIMENT 4: CHANGING INPUT VECTOR LENGTH (L,,)

As shown in figure[9)] there is little difference between different lengths of vectors for smaller lengths,
although the number of LCs is decreased at L, = 1000.

No.L.C.s
20,77
S e L,=300
' —a- L,=500
20
e Ly=700
—+ L,=1000

10}

———

05" 1000 2000 3000 4000 5000 6000 70d&™M

Figure 9: Experiment 4. The effect of changing the input vector length.

11

Under review as a conference paper at ICLR 2020

A.3 FURTHER RESULTS FROM EXPERIMENT 8: DROPOUT

Dropout (see |Srivastava et al.[| (2014)) is a common training technique where a percentage of a
layer’s neurons are ‘dropped out’ of the network (their connections are set to zero) during training
to prevent over-fitting, however, dropout can also be viewed as a type of training noise. Results are
shown in figure [??] and table 2} There are always solutions with close to zero local codes, but the
expected (mean) and maximum number roughly increases with an increasing percentage of dropped
out neurons.

Generally, dropout percentages in the range of 20-50% are used in training, and these probability
distribution functions (PDFs), like 0% peak, are also joint peaks, with the 20% data having more
of the lower solution and the 50% having more of the higher one. Dropping out more than 50% of
the network is not generally used as it slows down training. However, with these higher values, the
range of solutions is much higher (as evidence by a higher variance and range of the number of local
codes), which is expected as dropout forces the network to adopt a range of solution sub-networks,
the increase in local codes suggest that localised encoding offers some protection against noise.

At first glance, this might seem unlikely, as distributed patterns are claimed to be more resilient
against failure. However, say we had a 20% dropout rate, a fully distributed encoding, would be
affected by dropout 100% of the time, losing 20% of its information, whereas a localised encoding
would be unaffected 80% of the time (although 20% of the time it would lose all data), and further
resilience can be provided if duplicate local codes were used for the same class. Note that, as only 10
classes were used, the large number of local codes, especially for the high dropout values, suggests
there are multiple LCs for each category. These results suggest that, for a noisy network, solutions
involving some duplicate localised codes are useful methods for dealing with uncertainty.

Table 2: Various quantities associated with the distribution of local codes (LCs) in with dropout
(given as a percentage) applied during training

No. of LCs 0% 20% 50% 70% 90%
Minimum 8 4 7 15 0
Maximum 34 29 41 57 125
Mean 18.44 16.13 20.65 34.54 73.80

Standard deviation 4.55 4.19 4.96 8.05 24.53

To test if the different datasets could have come from the same distribution we did Kolmogorov-
Smirnov hypothesis tests with the hypothesis being that the data were from the same distribution.
As can be in seen tables ?? and figure ?? low values of dropout are likely the same distribution, but
the distributions are different for the high values of dropout. The expanded set of experiments is
shown in figure[I0] and there seems to be two underlying distributions between 0 and 50%, with the
10%, 20% 30% dropout NNS having more of the distribution with less LCs, and 0%, 40% and 50%
having more of the distrubtion with more LCs.

Dropout Dropout Result p-value
0% 0% Do not reject I.
0% 10% Reject 0.0000489944
0% 20% Reject 4.749456190224837x 106
0% 30% Reject 0.0000247196
0% 40% | Do not reject 0.137226
0% 50% Reject 0.000251174
0% 60% Reject 2.4240973576630998 x 103!
0% 70% Reject 1.3379086295029856 x 10~8°
0% 90% Reject 5.31281662567248x 10122

Table 3: Kolmogorov-Smirnov hypothesis tests for the dropout experiments compared to a run with
no dropout.

12

Under review as a conference paper at ICLR 2020

008}
006
004}
002}

No. of LCs

0.08}

0.06 |

0.04|

0.02}

Figure 10: Extra data for the dropout tests.

Dropout Dropout Result p-value
10% 0% Reject 0.0000489944
10% 10% Do not reject 1.
10% 20% | Do not reject 0.690898
10% 30% | Do not reject 0.142326
10% 40% Reject 0.0134828
10% 50% Reject 3.9380742948255406 x 10717
10% 60% Reject 1.2271320907480274 x 1046
10% 70% Reject 1.9831398445539827 x 10~ 100
10% 90% Reject 1.6549287930539336 x 107133

Table 4: Kolmogorov-Smirnov hypothesis tests for the dropout experiments compared to a run with
10% dropout.

13

Under review as a conference paper at ICLR 2020

Dropout Dropout Result p-value
20% 0% Reject 4.749456190224837x10~°
20% 10% Do not reject 0.690898
20% 20% Do not reject 1.
20% 30% | Do not reject 0.786929
20% 40% Reject 0.000721937
20% 50% Reject 4.513284368522981x10~ 19
20% 60% Reject 2.0560842299464827x10~°8
20% 70% Reject 2.2951948334897817x10~ 110
20% 90% Reject 1.2430043593276543 x 10~ 146

Table 5: Kolmogorov-Smirnov hypothesis tests for the dropout experiments compared to a run with
20% dropout.

Dropout Dropout Result p-value
30% 0% Reject 0.0000247196
30% 10% Do not reject 0.142326
30% 20% Do not reject 0.786929
30% 30% Do not reject 1.
30% 40% Reject 0.0012839
30% 50% Reject 7.368476097588623x 1017
30% 60% Reject 3.04037573854777 x 10~ 49
30% 70% Reject 5.39288092428949x 10~ 1
30% 90% Reject 3.1672113682285154x 107123

Table 6: Kolmogorov-Smirnov hypothesis tests for the dropout experiments compared to a run with
30% dropout.

Dropout Dropout Result p-value
40% 0% Do not reject 0.137226
40% 10% Reject 0.0134828
40% 20% Reject 0.000721937
40% 30% Reject 0.0012839
40% 40% Do not reject 1.
40% 50% Reject 2.476782445216003x10~°
40% 60% Reject 9.405620742296745x1034
40% 70% Reject 1.2328533479970469x 10~77
40% 90% Reject 1.7803277971274416x 10127

Table 7: Kolmogorov-Smirnov hypothesis tests for the dropout experiments compared to a run with
40% dropout.

14

Under review as a conference paper at ICLR 2020

A.4 RESULTS FROM EXPERIMENT 9: ACTIVATION NOISE

We added in Gaussian distributed activation noise around a mean of 0.5 to all HLNs (which were
sigmoidal, so the activation varied between O and 1), the results for three networks are shown in
figure[TT] The addition of noise changes the distribution LCs seen. For the overpowered NN, those
above the nypn peak in experiment 1, the number of local codes increases significantly in most
cases. For the underpowered NNs (ngn = {100, 500}) the number of local codes decreases, and
this is not significant for tightly distributed noise.

No. L.C.s
25 1000 HLNs
o0, ™ 500 HLNs
100 HLNs
15

e sniniaisiuislana = WSS S eSS g

0.2 0.4 0.6 0.8 1.0
Figure 11: Including activation noise affects the number of local codes, o is the standard deviation
of the Gaussian;y distributed noise. For NN with 1000 HLNs adding noise generally increases the
number of local codes, for NN with 500 HLNs there is generally no effect or a decrease with high

sigma. Lines are drawn to mark the standard error around the mean of LCs at o = 0, i.e. no added
noise.

A.5 FURTHER DATA FOR EXPERIMENT 12: MULTI-LAYER PERCEPTIONS.

Examples of the modified MNIST input data are given in [§] In the invariant case a block of 20
(2.5%) hot pixels (fully on) are positioned around the edge of the image, thus a NN could learn to
attend to the hot pixels in order to correctly assign the category instead of learning to identify the
letter shapes. In the Gaussian case the prototype code perturbed by having the pixel value drawn
from a different Gaussian distribution for each image (this is the equivalent of the perturbation of
prototypes in experiment 7. The networks were trained with no regularisation and no validation set.

The results for the MLP experiment (11) is given in table[9] There is a small, but significant emer-
gence of LCs in response to categories with added invariants, but it has to be for all images in a
category for the NN to develop a local code to look for the invariant. In the Gaussian examples,
no local codes emerge. Given that the invariants were less <2.5% of the input data, and the result
that perturbation removes local codes above a certain level, we suspect that were the prototypes
perturbed less or bigger, LCs might have been seen with the perturbed invariants.

Table [I0] shows the impact on training times of the presence of a reliable code, which the NN can
learn instead of learning to identify the number shapes. The NN trains much faster as the problem
it is solving is a simpler one. Thus, the presence of an invariant adds a ‘short-cut’ to the task which
the NN can find.

A.6 FURTHER GENERALISATION RESULTS FOR EXPERIMENT 10: TRAINING TIME

Figure |12[shows the correlation between the number of local codes and classification accuracy and
pattern matching accuracy on the test data. For NNs with HLNS to the left of the peak (i.e. ngry <
1000) show a slight negative correlation, those at the peak or above show a slight positive correlation,
although there is lots of spread in this data.

15

Under review as a conference paper at ICLR 2020

Invariant

Gaussian

Invariant

Gaussian

Table 8: Example hot-pixel invariant MNIST input data images (after normalisation from the mean
image). ‘Invariant’ images have a hot-pixel short-cut code (of white pixels) that is the same for all
examples of that class, ‘Gaussian’ invariant images have a greyscale hot-pixel code that is drawn
from a Gaussian distribution and different for each image.

data-set Invariant Gaussian
48units 100units 500units 48units | 100units 500units

Standard 0+0 0+0 0+0 0+0 0+0 0+0
50% all images 040 0+0 0+0 0£0 040 0+0
All images 1.1£0.26 1.5+0.32 0.6%0.25 040 010 040
2 categories 0.1+£0.09 0.1£0.09 0.14+0.09 0+0 040 040
5 categories 0.2+0.19 0.84£0.31 0.6%+0.25 0£0 0=£0 0=£0
8 categories 1.4+0.03 0.94+0.26 0.940.22 040 010 040

Table 9: Average numbers of LCs in 4-layer MLPs trained on MNIST (standard) and modified
MNIST with added hot pixel invarients.

Under review as a conference paper at ICLR 2020

data-set Average no. epochs | Average no. epochs
Invariants Gaussian distribution
Standard 1090.8 1090.8
50% all images 983.4 979.9
all images 221.7 460.9
2 categories 1040.9 1025.0
5 categories 494.3 537.0
8 categories 327.5 462.3

Table 10: Training times for MLP networks with different MNIST training sets. Note that the
presence of a invariant reduces training time because the NN finds the shortcut (all NN are trained
to >99% acc), and introducing a GAussian distribution over that invariant (i.e. making it more
variable) generally increases the training time.

Accuracy ngrny | gradient intercept R?
pattern matching 250 25.7 -0.18 0.23
pattern matching 500 68.8 -0.01 0.0002
pattern matching 1000 130.7 0.82 0.26
pattern matching 2000 174.6 2.43 0.41

classification 250 26.5 -0.08 0.23
classification 500 68.7 -0.001 6.6x107°
classification 1000 123.0 0.42 0.34
classification 2000 144.0 1.33 0.50

Table 11: Fits for the trend lines drawn in figures [4|and

A.7 RESULTS FOR EXPERIMENT 13: SHUFFLING THE INPUT DATA
We tried shuffling the input data which should force the NN to memorise the dataset, rather than

relying on the short-cut. We expected the number of local codes to drop to zero, but as shown in
figure [T3]this did not happen, instead the number of local codes was only reduced.

ACKNOWLEDGMENTS

An. Author would like acknowledge funding from Leverhulme on grant no.

17

Under review as a conference paper at ICLR 2020

No. of LCs No. of LCs
350 n 350
300 e W - 300

250
200 YRS
150

4 100F"
50 ’ T) 50

i07"20 80 40 80 A 7 20 40 60 80 100"
(a) The number of local codes increases with general- (b) The number of local codes increases with training
isation accuracy. accuracy.

Figure 12: Local codes are generally positively correlated with accuracy. Key: red: ngrny = 2000;
NHLN = 1000; NHLN = 500; NHLN = 250.

1507

No.L.C.s

50¢

0: ; ;]
100 100 500 500 1000 1000 100 100 500 500 1000 1000
Ny Ny

(a) ngLN=250 (b) narLn = 500

Figure 13: Shuffling input data to create ‘memorising networks’ reduces the number of LCs but does
not completely inhibit them. red: unshuffled data (control); blue shuffled input data.

18

	Introduction
	Findings

	Methodology
	Results
	Biological constraints encourage the emergence of LCs

	Discussion
	Appendix
	Local code examples
	Experiment 4: changing input vector length (Lx)
	Further results from experiment 8: dropout
	Results from experiment 9: activation noise
	Further data for experiment 12: multi-layer perceptions.
	Further generalisation results for experiment 10: training time
	Results for experiment 13: Shuffling the input data

