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ABSTRACT

We propose the Variational InfoMax AutoEncoder (VIMAE), an autoencoder
based on a new learning principle for unsupervised models: the Capacity-
Constrained InfoMax, which allows the learning of a disentangled representation
while maintaining optimal generative performance. The variational capacity of
an autoencoder is defined and we investigate its role. We associate the two main
properties of a Variational AutoEncoder (VAE), generation quality and disentan-
gled representation, to two different information concepts, respectively Mutual
Information and network capacity. We deduce that a small capacity autoencoder
tends to learn a more robust and disentangled representation than a high capacity
one. This observation is confirmed by the computational experiments.

1 INTRODUCTION

A common assumption in machine learning is that any visible data x ∈ X is completely described
by some generative factor o, living in a smaller hidden space O, i.e. x = g(o) with g a (possibly
stochastic) generative function. The aim of unsupervised representation learning research is to find
a representation z of the generative factor o living in a known space Z describing, as well as o, the
visible data x. This is particularly relevant because the learnt small representation z is task agnostic
and, in principle, can be used as input for networks performing different tasks, leading to faster and
more robust learning (generalisation property), (Rifai et al., 2011).

Many models fφ : X → Z trying to learn such representations have been proposed (Dinh et al.,
2016; Hinton et al., 2006; Maddison et al., 2017; Radford et al., 2015), but recently in order to solve
this problem it was proposed to consider a dual problem: define a priori z and find a generator
map gθ, such that for any z, gθ(z) is an element of X . In particular, two families of probabilistic
generative models have become dominant: Variational AutoEncoder (VAE) (Kingma & Welling,
2013; Rezende et al., 2014) and Generative Adversarial Network (GAN) (Goodfellow et al., 2014).
The common idea of the two approaches is that a good generator pθ(x|z) is the one able to generate
the data that is as close as possible to the visible one, i.e. that with respect a certain metric D, the
distance between the marginal pθ(x) = Ep(z)[pθ(x|z)] and the visible distribution pD(x) is minimal.

In this manuscript we restrict our attention to the VAE model, since by its architecture, it is the only
one where the learnt representation can be used as input for networks performing different tasks. Al-
though VAE, by its training robustness and general good generative performance is the most popular
model for representation learning, in particular cases it suffers from the uninformative representa-
tion issue: the representation is entangled and the generative model tends to be independent of z,
i.e. pθ(x|z) ≈ pθ(x). As highlighted in the next section such behaviour is intrinsic in the variational
loss, the Evidence Lower BOund (ELBO), encouraging a less informative representation.

We propose a method that learns the most informative generative model between the visible and
hidden representations, while maintaining a bounded capacity of the encoding network. This is in
accordance with the many attempts to solve such issues, by reducing the encoding information to
have a more disentangled representation (Higgins et al., 2017; Burgess et al., 2018) or, oppositely,
removing the encoding information penalty (Zhao et al., 2017) to improve the generative quality
performance.

We present a new information theoretic derivation of a Variational InfoMax (VIM) objective, which
turns out to be the Variational Wasserstein Distance suggested to optimise the Wasserstein Au-
toEncoder (WAE) (Tolstikhin et al., 2017). Our derivation allows us to define the capacity of the
variational network and individuate the parameters to optimise in order to have both good generative
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performance and a disentangled representation. Indeed, we argue that in order to learn good rep-
resentations it is sufficient to bound the capacity of the network and not the encoding information.
That means, from a pure information perspective, that an unsupervised network should optimise a
Capacity-Constrained InfoMax objective, a principle slightly different from the Information Bottle-
neck (Tishby et al., 2000), where the capacity of the encoding network is bounded instead of its
information.

The theoretical arguments are confirmed by the performed experiments where we observe that, dif-
ferently from what was argued in previous works (Higgins et al., 2017; Burgess et al., 2018), it is
possible to train a model that is able to learn good (able to generalise) representations while main-
taining optimal generative performance. The main contributions of the paper are summarised in the
following points:

• derivation of a variational lower bound for the maximal mutual information of a generaive
model belonging in a certain family, see equation 6;

• definition and bounds estimation for the network capacity for a variational autoencoder, see
equation 9;

• association of the two main properties of VAE, generation quality and disentanglement
representation, to two different information concepts, respectively Mutual Information and
network capacity;

• proposal of a new learning principle for unsupervised models: the Capacity-Constrained
InfoMax, see equation 10, that allows both to learn a disentangled representation while
maintaining optimal generative performance.

The work is divided as follows: in the second section we describe briefly the VAE and its variants;
in the third and fourth sections we describe the variational infomax method and related work. We
conclude the paper with the experimental results and the conclusions.

2 BACKGROUND

The aim of this section is to describe VAE, understand principal issues of the ELBO objective and
describe the two most relevant approaches to overcome such issues.

2.1 NOTATION AND PRELIMINARY DEFINITIONS

We use calligraphic letters (i.e. X ) for sets, capital letters (i.e. X) for random variables, and lower
case letters (i.e. x) for their samples. With abuse of notation we denote both the probability and the
corresponding density with the lower case letters (i.e. p(x)).

f -Divergence Given two random distributions p(x) and q(x), the f -divergence

Df (p(x)||q(x)) =

∫
f
(p(y)

q(y)

)
q(y)dy (1)

is an (intuitive) measure of the distance between the distributions p and q. In the case f(x) = x log x,
D is called Kullback-Leibler (KL) divergence.

Mutual Information and Capacity Given a channel Z → X with X and Z random variables,
jointly distributed according to p(x, z) and with marginals p(x) and p(z). The mutual information

I(X,Z) = DKL(p(x, z)||p(x)p(z)),

is a measure of the reduction of uncertainty in X due to the knowledge of Z, and the capacity

C(X,Z) = sup
p(z)∈P

I(X,Z)

is the maximal information that can be shared for a fixed generator p(x|z).
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2.2 VARIATIONAL AUTOENCODER

From now on let us assume that the unknown distribution of the data p(x) coincides with the em-
pirical one pD(x), and that the distribution of the latent representation p(z) is known. In this con-
text the VAE is a model solving the following optimisation problem: find the generative model
pθ(x, z) ∈ Pθ, specified by the parameters θ of the associated neural network, maximising the
ELBO objective

ELBOθ,φ = Ep(x)[−DKL(qφ(z|x)||p(z)) + Eq(z|x)[log p(x|z)]], (2)

a lower bound of the unfeasible-to-compute marginal likelihood Ep(x)[log pθ(x)]. The ELBO ob-
jective is optimized by a regularized autoencoder, with encoder and decoder parameterizing, re-
spectively, the inference and generative distributions, qφ(z|x) and pθ(x|z), with φ ∈ Φ, θ ∈ Θ
and regularizer defined by the rate term DKL(qφ(z|x)||p(z)), measuring the excess number of bits
required to encode samples from the encoder using the optimal code designed for p(z).

2.3 UNINFORMATIVE REPRESENTATION ISSUE

As underlined in the introduction, the main issue of VAE is that the representations are not really
informative of the input data and in the worst case, it is learned a Z-independent generative model
pθ(x|z) = pθ(x). Such issues are intrinsic in the ELBO objective, equation 2, that can reach
the optimum when DKL(qφ(z|x)||p(z)) = 0 (Zhao et al., 2017). The latter case means that the
representation is completely uninformative, indeed the rate term, which can be rewritten as

DKL(qφ(z|x)||p(z)) = Iq(X,Z) +DKL(qφ(z)||p(z)),

is a penalty on the encoding information, and is zero when Iq(X,Z) = 0, with qφ(z|x) = qφ(z) =
p(z), i.e. when qφ does not encode any information about the input x.

We now describe the two most relevant models that try to overcome the uninformative representation
issue.

InfoVAE In (Zhao et al., 2017) the InfoVAE family of models was proposed, a generalisation of
the VAE model optimising the objective

−αIq(X,Z)− λDKL(qφ(z)||p(z)) + Ep(x)[Eq(z|x)[log p(x|z)]],

with α and λ two real positive hyper-parameters.

The main advantage of this definition is that it is possible to consider separately the two components
of the rate term. In particular, in (Zhao et al., 2017) it was observed that by eliminating the infor-
mation penalty (α = 0), the generative performance of the model improves and the representation
results are more informative.

β-VAE In (Higgins et al., 2017), starting from the observation that the optimal case is rare, but
most of the learned features by VAE are not disentangled, it is proposed an opposite approach: put a
high penalty to the rate term, in order to constrain the model to learn the most informative property
of the data, and then have a disentangled represention of the data. The β-VAE family is a particular
case of InfoVAE where α = λ� 1. This idea, that at first sight looks counter-intuitive, is based on
the observation that by the additive property of the KL-divergence

DKL(qφ(z|x)||p(z)) =

dim(Z)∑
i=1

DKL(qφ(zi|x)||p(zi)) (3)

pushing the penalty associated with the rate is equivalent to penalising the informativeness of most
features, leaving few features containing the relevant information. Starting from a bits-back coding
argument, a similar conclusion was derived in (Chen et al., 2016).

We conclude this section observing that although InfoVAE and β−VAE approaches are antithetic,
in both the cases the hyper-parameter λ associated to the KL divergence term DKL(qφ(z)||p(z)), is
bigger than 1; as we will see in the next section, this factor is controlling the capacity of the network.
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3 THE MODEL

3.1 THE VARIATIONAL INFOMAX

Assuming known the distribution associated to the two random variables p(x) and p(z), the
InfoMax objective is defined as: find the joint distribution pθ(x, z) ∈ Pθ := {pθ(x, z) :
Ep(z)[pθ(x|z)] = p(x), Ep(x)[pθ(z|x)] = p(z)} maximising the mutual information Iθ(X,Z) =
DKL(pθ(x, z)||p(x)p(z)), i.e. find θ∗ ∈ Θ s.t. Iθ∗ ≥ Iθ for any θ ∈ Θ.

Since the definition via KL divergence is computationally intractable, it is necessary to re-write the
mutual information as

Iθ(X,Z) = hθ(X)− hθ(X|Z), (4)
where hθ(X) = −Epθ(x)[log pθ(x)] is the entropy of X , and hθ(X|Z) = −Epθ(x,z)[log pθ(x|z)] is
the conditional entropy hθ(X|Z). Since pθ(x, z) ∈ Pθ the entropy hθ(X) = h(X) is constant, and
in order to maximise the mutual information it is sufficient to minimise the conditional entropy.

Excluding some special cases (Bell & Sejnowski, 1997), minimising the conditional entropy is un-
feasible, so it is necessary to consider an associated variational problem: for any qφ(z|x) such that
qφ(z) = p(z) and φ ∈ Φ = Θ, learn the generative model pθ(x|z) minimising the reconstruction
accuracy term Ep(x)[Eqφ(z|x)[log(pθ(x|z))]]. Indeed, the following variational objective:

Iθ,φ(X,Z) = h(X) + Ep(x)Eq(z|x)[log pθ(x|z)] s.t. qφ(z) = p(z) (5)

is a lower bound of Iθ∗(X,Z) and is maximal when q(z|x) = pθ(z|x) = pθ∗(z|x), (see the Ap-
pendix).

Unfortunately, the formulation in equation 5 is still unfeasible to compute, because it requires that
qφ(z) = p(z), but by the butterfly architecture of the autoencoder, qφ(z) tends to be uniformly
distributed on the space Z . For this reason, the model is trained maximising the following relaxed
form:

V IMθ,φ = Ep(x)Eq(z|x)[log pθ(x|z)]− λD(qφ(z)||p(z)), (6)
where it is introduced a term D(qφ(z)||p(z)) encouraging the empirical distribution qφ(z) to be
close, according to the metric D, to p(z). In the following, in order to avoid any confusion the
variational autoencoder trained maximising equation 6 will be dubbed VIMAE.

From now on let us assume, D = DKL. Under this condition the VIM objective coincides with
the objective optimised in InfoVAE, and the regularizer is approximated via the Maximum Mean
Discrepancy (MMD) (Zhao et al., 2017) defined as:

MMD(q(z), p(z)) = sup
f :‖f‖Hk≤1

Ep(z)[f(Z)]− Eq(z)[f(Z)] (7)

where Hk is the Reproducing Kernel Hilbert Space associated to a positive definite kernel k(·, ·) :
Z × Z → R+.

Encoding channel In VAE we observed that an uninformative representation was caused by the
non-informativeness of the encoding map qφ(z|x). Since from equation 6 it is not clear how qφ(z|x)
behaves, we consider an equivalent representation, (see the Appendix):

V IMθ,φ = −DKL(p(x)||pθ(x))− (λ− 1)DKL(qφ(z)||p(z)) + Iθ,φ(X,Z). (8)

From equation 8 we see that the infomax objective, equation 6, can be read as a composition of three
sub-objectives: find a generative model pθ(x|z), with marginal resembling the visible distribution
p(x) (first term); maximise the (unbounded) variational mutual information (third term); and learn an
inferred distribution qφ(z, x) close to the generative model pθ(x, z). Then the optimum is obtained
by qφ(x, z) = pθ(x, z) such that Iθ(X,Z) is maximal, confirming the validity of the approximation
made above.

3.2 CHANNEL CAPACITY

In a channel with variational mutual information Iθ,φ as defined in equation 5 the (variational)
capacity Cθ,φ(X,Z), is defined as

Cθ,φ(X,Z) = sup
θ,φ,p(z)∈P

Iθ,φ(X,Z). (9)

4



Under review as a conference paper at ICLR 2020

If P is the space of all distributions on Z , the capacity of the network coincides with the variational
mutual information of the model trained minimising only the reconstruction loss. In the latter case,
as observed above, it is not guaranteed to learn the generator with pθ(z) = p(z). This is because,
given two equally informative generative models pθ(x|z) and pθ′(x|z), with encoder respectively
qφ(z|x) and qφ′(z|x), with h(qφ(z)) < h(qφ′(z)), then Iθ,φ < Iθ′,φ′ . From such observation we
deduce that bounding the entropy of the representation Z is the way to bound the capacity without
penalising the encoding information, and that the penalty introduced in equation 6 is actually a
bound to the capacity itself. So, the VIM objective can be defined as a variational approximation of
the Capacity-Constrained InfoMax:

max
Z∈Z

I(X,Z)− λC(X,Z), (10)

given a set of equally informative generators, learn the one having the minimal capacity. The idea of
the Capacity-Constrained InfoMax is similar to the idea of the Information Bottleneck, from which
was derived the β-VAE: constrain the capacity of the network in order to learn only the relevant
features of the input data. The difference with the Information Bottleneck,

max
Z∈Z

I(X,Z)− λIq(X,Z). (11)

lies in the second term: the network capacity instead of the encoding information. This choice
allows the network to learn a good representation (small capacity) while maintaining good generative
performance (high mutual information). Indeed, as shown in equation 8, the generative performance
is associated to the informativeness of qφ(z|x) and pθ(x|z).

In order to test the assumption that it is sufficient to bound the entropy of Z, instead of the encoding
mutual information, to learn a good representation, in the experiments (see below) we consider
the cases Z is Normal (VIMAE-n) or Logistic (VIMAE-l) distributed. We choose to compare the
popular Normal distribution with the Logistic one for two reasons: the Logistic has less entropy than
a Gaussian distribution and because it is a common assumption in natural science to suppose that
the hidden factors of the visible data are logistically distributed (Hyvärinen et al., 2009).

4 RELATED WORK

Autoencoder literature Autoencoder models are one of the most used family of neural net-
works to extract features in an unsupervised way (Bengio et al., 2013), and their relationship
with Information Theory is well-established from the first unregularised autoencoders (Baldi &
Hornik, 1989). The classical unregularised autoencoders, minimising the reconstruction loss
Ep(x)[Eqφ(z|x)[− log pθ(x|z)]], are maximizing an unbounded information, i.e. they are looking
for a solution in the space P̃θ = {pθ : pθ(x) = p(x)}. A solution in this wide space is good only
for reconstruction performance because Z contains all the possible information that can be stored in
the space Z , but from this representation it is impossible to sample, because the prior is unknown;
and moreover such representation, in general, is not robust to input noise (Vincent et al., 2008).

Many regularised models have been proposed, but the most well known is VAE, that minimises
the expected code length of communicating x. As we observed in the previous sections, it is not
guaranteed that the method finds a useful representation, and in the second section we illustrated
two principal ways to improve VAE.

The objective in equation 6 was derived independently in (Tolstikhin et al., 2017) and (Zhao et al.,
2017). Particularly relevant is the derivation in (Tolstikhin et al., 2017) because it allows us to
describe an informative model pθ(x, z) as the one minimising the transport cost between the original
and generated data.

Finally, we underline that in case we wish to consider a Jensen-Shannon divergence in equation 6
it is necessary to consider an adversarial network model, discriminating the true samples z ∼ p(z)
from the fake sampled by qφ(z) (Goodfellow et al., 2014). In the latter case the obtained model is
equivalent to the Adversarial AutoEncoder (Makhzani et al., 2015). We conclude by remarking that
in all the cases cited above the Infomax objective was never maximised using a prior p(z) different
from a Gaussian.
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p(z) = N (0, 1) VAE, 0.70 β-VAE, 0.53 VIMAE, 0.08

Figure 1: 2-d learned representations. Under each plot the model name is followed by the respective
MMD value.

Information theoretic literature Information theory is strongly related with neural networks, and
not only with autoencoders. Originally the InfoMax objective was applied to a self-organised system
with a single hidden layer, (Bell & Sejnowski, 1997; Linsker, 1989) where the bound in the capacity
was given by the numbers of hidden neurons. More recently, the (naive) InfoMax has given way to a
new information-theoretic principle: the Information-Bottleneck (IB) (Tishby et al., 2000). The idea
of this principle is that a feed-forward neural network trained for task T tends to learn a minimal
sufficient representation of the data, maximising the following objective:

max
Z

I(Z, T )− βI(X,Z). (12)

Although it was shown that in the general case this principle does not hold true (Saxe et al., 2018),
the principle was used as a regularisation technique with success both in unsupervised (Higgins
et al., 2017) and supervised (Alemi et al., 2016) settings. We observe that the VIM, equation 6, and
IB, equation 12, coincide in the case of deterministic encoder, where the encoding information is the
entropy of Z.

5 EXPERIMENTS

Here we empirically evaluate the VIMAE. The section is divided into three parts: in the first part we
compare the ability of VAE, β-VAE and VIMAE to infer the representation, z ∼ N (0, I). Such an
experiment is to evaluate the entropy of Z ∼ q(Z) and then, as observed in section 3.2, an indirect
way to estimate capacity of the network (C(X,Z) ∝ h(Z)). In the second part we evaluate the
reconstruction and generative performance of the models. Indeed, the combination of the two tasks
is estimation of the mutual information of the generative model Iθ(X,Z), see equation 8. In the
third part we evaluate the robustness to noise and generalisation property of the learnt representation,
observing that an informative model with small capacity is the best one for these tasks.

5.1 THE ENTROPY OF Z

Experiments in this part are performed with an autoencoder trained with the MNIST data-set, a col-
lection of 70k monocromatic handwritten digits, where both the inference and generative distribution
are modelled by 3-layer deep neural nets with 256 hidden units in each layer and Z = R2.

In figure 1 are plotted the 2d representations learnt by the different methods and we observe that
VAE and β-VAE are not able to learn a hidden representation fitting the prior p(z), with h(q(z)) >
h(p(z)). These results show that the representation learnt by ELBO is not a small capacity one and
that the divergence penalty introduced in equation 6 is a bound for the entropy.

5.2 THE MODEL INFORMATION

The experiments in these final sections were performed with the same settings and autoencoder
models used in (Tolstikhin et al., 2017), an architecture similar to the DCGAN (Radford et al.,
2015) with batch normalization (Ioffe & Szegedy, 2015) (more details given in the Appendix). We
consider four data-sets: MNIST and CIFAR10, two standard data-sets with ground-truth labels;
Omniglot, a data-set of 1623 characters from 50 alphabets, 30 training and 20 evaluation, where
each character appears 80 times, to evaluate the informativeness of the model and the quality of
the learned representation; in the Appendix, we also consider CelebA (Liu et al., 2015), consisting
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VAE β-VAE VIMAE-n VIMAE-l VAE β-VAE VIMAE-n VIMAE-l

Figure 2: Test reconstruction (top) and random generative samples (bottom) of the different methods
with MNIST (left) and Omniglot (right). In test reconstructions, the odd rows are the original data.

VAE β-VAE VIMAE-n VIMAE-l

Figure 3: Test reconstruction, CIFAR 10. Odd rows are the original data.

of roughly of 203k faces of 64 × 64 resolution, in order to compare the generative quality of the
pictures. After considering many parameters for β and λ, we choose, in accordance with what was
suggested in (Tolstikhin et al., 2017), β = λ = 10 for MNIST and Omniglot and β = λ = 100 for
CelebA and CIFAR10 experiments.

The goal of this section is to evaluate the informativeness of the learnt generative model pθ(x|z).
From what was described above, the reconstruction loss or the generation quality alone are not reli-
able metrics, because the reconstruction loss is an estimation of the variational mutual information
Iθ,φ(X,Z), and the generation quality is an estimation of DKL(pθ(x)||p(x)) that, as observed in
section 2.3, it is possible to minimise with an uninformative generator. But, according to equation 8
the combination of the two task performances is a good empirical estimation of Iθ(X,Z); indeed,
by generative experiments, we require that q(z) = p(z), so the KL divergence term in equation 8
comes for free.

Reconstruction and generative performances From figure 2 we observe that in the MNIST and
Omniglot experiments, all the models are able to reconstruct, without big differences, the input data.
Slightly different is the behaviour in the CIFAR10 experiments shown in figure 3, where the ELBO-
based models suffer, in particular β-VAE; that result is not surprising and is in agreement with the
theoretical observation that β-VAE is penalising the encoding mutual information Iq(X,Z).

The models that we are considering are defined as generative models, so giving a sample z ∼ p(z)
they should be able to generate a new data x similar to the original one. In figure 2 (bottom) are
plotted the generated samples of MNIST and Omniglot, obtained from the different models. We
observe that VAE and β−VAE do not generate good samples. Such qualitative results are confirmed
by the experiments with the CelebA data-set (Liu et al., 2015), see the Appendix, where it is ob-
served that if the generative difference between the two VIMAEs is small, the difference with the
VAE counterparts is high. Such behaviour is in agreement with what was observed until now: the
ELBO based model does not learn a good generative network, and the good reconstruction is simply
associated to a large entropy of Z, instead of an informative generative model pθ(x|z).

5.3 GENERALISATION PROPERTY

We defined a good representation as the one containing the relevant properties of the visible data and
able to generalise from the task for which was trained. In order to evaluate such quality, following the
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Table 1: Semi-supervised classification CIFAR10.

accuracy (%)

Method ν = 0 N (0, 0.32) B(0.2)

VAE 30 25 16
β-VAE 29 26 19
VIMAE-n 29 28 23
VIMAE-l 32 34 23

,

Table 2: Semi-supervised classification, MNIST.

accuracy (%)

Method ν = 0 ν = N (0, σ2) ν = B(p)

0.2 0.4 0.2 0.5

VAE 80 77 70 72 52
β-VAE 92 86 82 91 84
VIMAE-n 93 92 86 92 86
VIMAE-l 93 92 88 92 87

Table 3: Semi-supervised classification,
Omniglot (random sampling: 20%).

accuracy (%)

ν = 0 ν = N (0, σ2) ν = B(p)

0.2 0.4 0.2 0.5

22 22 17 22 16
21 21 22 19 17
22 23 24 22 22
24 23 20 23 22

approach proposed in (Rifai et al., 2011), we evaluate the accuracy of an SVM directly trained on the
learned features of the data. Proceeding as in (Zhao et al., 2017), we train the M1+TSVM (Kingma
et al., 2014) and use the semi-supervised performance over 1000 (100 for Omniglot) samples as
an approximate metric to verify the relevance and the quality of the learned representation. In
order to evaluate the robustness of the learned features, we performed the same algorithm on the
representation associated to corrupted data, i.e. z ∼ q(z|x + ν), considering two types of noise:
Gaussian and mask. In the Gaussian case, we add to each pixel a ν value sampled from N (0, σ2)
with σ ∈ {0.2, 0.3, 0.4}, and in the masking case a fraction ν of the elements is forced to be 0: each
pixel is masked according to a Bernoulli distribution B(p), p ∈ {0.2, 0.5}. Higher classification
performance suggests that the learned representation contains the relevant information and, in case
of corrupted input data, that it is robust. In the Omniglot case by the challenge of the task (the test
alphabet was never seen in the training) we consider a 5-character data-set, split into 300 (60 × 5)
for training and 100 for evaluation.
From the classification scores listed in tables 1- 3, we see that the ELBO-based model learnt good
representations for clean data, but not when corrupted data is given as input. This is particularly
clear in the Bernoulli case, that is a noise different from the one seen in the training. Particularly
relevant is the behaviour of the two VIMAEs: they are comparable in the cases of clean data and
small noise, but the one with big capacity, VIMAE-n, suffers in large noise, while the one with small
capacity, VIMAE-l, is the most robust and in some challenging cases, see table 1, the noise helps to
improve the model accuracy. Such a result is consistent with the idea that a small capacity network
is learning the relevant factors of the input data, that are the only ones robust to the input noise.

6 CONCLUSION

We propose a VAE-based generative model, VIMAE, optimising Variational InfoMax, the varia-
tional form of the Capacity-Constrained InfoMax, a principle suggesting to learn the maximally
informative generative model and maintain a bounded capacity. We show both theoretically and
with computational experiments, the difference with the Information Bottlenck, and we observe
that it is possible to learn a good generative model while maintaining an informative hidden repre-
sentation. In accord to the theoretical analysis, we observed in the numerical experiments that the
reconstruction and generative qualities are not orthogonal to the general and robust representation
issue, because the former are associated to the mutual information of the model and the latter to the
capacity of the model itself.
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RELATIONSHIP BETWEEN ENCODING, DECODING AND VARIATIONAL
INFORMATION

Defined q(z, x) := qφ(z|x)p(x) the encoding distribution and pθ(x, z) := pθ(x|z)p(z) the decoding
one. The encoding Iq(X,Z), decoding Iθ(X,Z) and the variational Iθ,φ(X,Z) information are
defined respectively:

Iq(X,Z) = DKL(q(z, x)||q(z)p(x)) = h(X)− hq(X|Z)

Iθ(X,Z) = DKL(pθ(z, x)||p(z)p(x)) = h(X)− hθ(X|Z)

Iθ,φ(X,Z) = h(X)− Eq(z,x)[− log pθ(x|z)]

Assuming θ∗ ∈ Θ is the parameter associated to the maximal decoding information, Iθ(X,Z) ≤
Iθ∗(X,Z) for any θ ∈ Θ, it follows that for any qφ(x, z) ∈ Pθ, i.e. for any qφ(z) =
Ep(x)[qφ(x|z)] = p(z) and φ ∈ Φ ⊂ Θ,

Iθ∗(X,Z) ≥ Iq(X,Z).

Then a lower bound of Iq is a lower bound of Iθ∗ . By property of KL-divergence we have that for
any pθ(x|z) the following relationship holds:

Eq(z,x)[− log pθ(x|z)] = hq(X|Z) + Eq(z)[DKL(qφ(x|z)||pθ(x|z))] (13)

From equation 13 and the definition of the variational information Iθ,φ we deduce that:

Iθ∗(X,Z) ≥ Iq(X,Z) ≥ Iθ,φ(X,Z)

We conclude observing that if Θ = Φ, at optimum the three information terms above are equal, and
then qφ(x, z) = pθ(x, z).

Observation: If Φ ⊂ Θ, the variational mutual information can be at most equal to Iq∗ , the maximal
Iq , but it is not guaranteed that Iq∗ = Iθ∗ .

DERIVATION OF EQUATION 8

In (Zhao et al., 2017), it is observed that equation 6 can be written as follows:

V IMθ,φ =−DKL(p(x)||pθ(x))− Ep(x)[DKL(qφ(z|x)||pθ(z|x))]−
− (λ− 1)DKL(qφ(z)||p(z)) + Iq(X,Z).

From equation above, to verify that equation 8 is correct, it is sufficient to show that

Iθ,φ(X,Z) = Iq(X,Z)− Ep(x)[DKL(qφ(z|x)||pθ(z|x))]. (14)

The equation 14 follows by the property of the autoencoder and equation 14.

More precisely, by equation 13 we have that

Iθ,φ(X,Z) = Iq(X,Z)− Eq(z)DKL(qφ(x|z)||pθ(x|z))

and, by AutoEncoder architecture, as observed in section 3, pθ(z) = Ep(x)[pθ(z|x)] = q(z). Then
the following equation holds

Eq(z)DKL(qφ(x|z)||pθ(x|z)) = Ep(x)DKL(qφ(z|x)||pθ(z|x)).

Indeed,

Eq(z)DKL(qφ(x|z)||pθ(x|z)) =

∫
q(z)

∫
q(x|z) log

q(x|z)
pθ(x|z)

dxdz

=

∫ ∫
q(x)q(z|x) log

q(x|z)q(z)
pθ(x|z)(z)

dxdz =

∫
p(x)

∫
q(z|x) log

q(z|x)

pθ(z|x)
dxdz =

= Ep(x)DKL(qφ(z|x)||pθ(z|x)).
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FURTHER DETAILS ON EXPERIMENTS

In all the experiments in section 5.2 we considered the latent space Z = Rd, for all the models we
choose the prior p(z) to be a Gaussian with zero mean and identity covariance, only in VIMAE-l we
choose the prior p(z) to be a logistic with mean zero and identity variance. We choose pθ(x|z) to be
similar to DCGAN with batch normalization and qφ(z|x) to be a convolutional deep neural network.
The entire models are trained end to end by Adam (Kingma & Ba, 2014) with α = 10−3, β1 =
0.5, β2 = 0.999. We considered a deterministic decoder and we approximate the reconstruction loss
with the L2 loss, i.e. Ep(x)[Eq(z|x)[− log pθ(x|z)]] = ‖x − xg‖22, with xg indicating the generated
datum. In VIMAE case, while training we were adding a pixel-wise Gaussian noise truncated at
0.01 to all the images before feeding them to encoder, in order to make the encoder random. In VAE
and β−VAE case, instead we used the standard reparameterization trick (Kingma & Welling, 2013).

In the following we describe the data-sets considered and the associated neural networks, we follow
the same description given in (Tolstikhin et al., 2017) since we used the same neural nets.

MNIST AND OMNIGLOT

MNIST is a data-set containing 70k grey-scale handwritten digits and associated labels of resolution
28× 28, subdivided in three subsets: train (50k), validation (10k) and test (10k).
Omniglot is a data-set containing 1623 different handwritten characters of resolution 28 × 28 from
50 different alphabets. Each of the 1623 characters was drawn online via Amazon’s Mechanical
Turk by 20 different people. In the same fashion as done in (Vinyals et al., 2016) we considered
an augmented version where each character is rotated respectively by 90, 180, 270 degrees, in this
way each character appears 80 times. The Omniglot data-set although has the same resolution of
the MNIST, for this reason we use the same network, it is more challenging because, it is more
entropic then MNIST, in fact the classes move from 10 to 1623 and the test classes are never seen
in the training.

We chooseZ = R8, and β = λ = 10, we used mini-batches of size 100 and trained the model for 80
epochs. Both encoder and decoder used fully convolutional architectures with 4 × 4 convolutional
filters.
Encoder:

x ∈ R28×28 → Conv128 → BN→ ReLu
→ Conv256 → BN→ ReLu
→ Conv512 → BN→ ReLu
→ Conv1024 → BN→ ReLu

Decoder:

z ∈ R8 → FC7×7×1024

→ FSConv512 → BN→ ReLu
→ FSConv256 → BN→ ReLu→ FSConv1

Where Convk stands for a convolution with k filters, FSConvk for the fractional strided convolution
with k filters, BN for batch normalization, ReLU for the rectified linear units, and FCk for the fully
connected layer mapping to Rk. All the convolutions in the encoder used vertical and horizontal
strides 2 and SAME padding.

CELEBA AND CIFAR10

CelebA is a data-set with 202 599 faces images. We preprocessed the images by first taking a
140 × 140 center crops and then resizing to the 64 × 64 resolution and we consider the last 20k
images as test subset.
CIFAR10 is a dataset consisting of of 60k 32× 32 colour images in 10 classes, with 6k images per
class. There are 50k training images and 10k test images.
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For these data-sets we choose the same network with the same hyper-parameters, λ = 100 and
Z = R64. We used mini-batches of size 100 and trained the model for 60 epochs. Both encoder and
decoder used a fully convolutional architectures with 5× 5 convolutioanal filters.
Encoder:

x ∈ R64×64×3 → Conv128 → BN→ ReLu
→ Conv256 → BN→ ReLu
→ Conv512 → BN→ ReLu
→ Conv1024 → BN→ ReLu

Decoder:

z ∈ R64 → FC8×8×1024

→ FSConv512 → BN→ ReLu
→ FSConv256 → BN→ ReLu
→ FSConv128 → BN→ ReLu→ FSConv1

CELEBA EXPERIMENT

In section 5.2 we evaluate the generative performance qualitatively, on relatively simple grey-scale
data-sets. In order to consider a more challenging data-set and quantitatively compare the genera-
tive performances of the trained models we evaluate the Frechet Inception Distance (FID) on CelebA
based on 104 samples. From table 4, we observe, in agreement on what observed in section 5.2 and
figure 4 that the difference between the two VIMAE models is minimal, instead it is big the differ-
ence with the ELBO based models (β-VAE is not listed in table 4, because it does not converge).

Table 4: FID scores for generated samples on CelebA (smaller is better)

Method FID

VAE 82
VIMAE-l 56
VIMAE-n 55
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VIMAE-n VIMAE-l

Figure 4: Test reconstruction (top) and random samples (bottom) of the two VIMAE models, λ =
10.
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