Under review as a conference paper at ICLR 2020

CONCISE MULTI-HEAD ATTENTION MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Attention based Transformer architecture has enabled significant advances in the
field of natural language processing. In addition to new pre-training techniques,
recent improvements crucially rely on working with a relatively larger embedding
dimension for tokens. Unfortunately, this leads to models that are prohibitively
large to be employed in the downstream tasks. In this paper we identify one of
the important factors contributing to the large embedding size requirement. In
particular, our analysis highlights that the scaling between the number of heads
and the size of each head in the existing architectures gives rise to this limitation,
which we further validate with our experiments. As a solution, we propose a new
way to set the projection size in attention heads that allows us to train models with
a relatively smaller embedding dimension, without sacrificing the performance.

1 INTRODUCTION

Attention based architectures, such as Transformers, have been effective for sequence modelling tasks
such as machine translation (Gehring et al., 2017;|Vaswani et al.| |2017), question answering, sentence
classification (Radford et al.,|2018; Devlin et al.| 2018) and document generation (Liu et al., [2018]).
These models have emerged as better alternatives to the recurrent models - RNNs (Sutskever et al.}
2014), LSTMs (Hochreiter & Schmidhuber} |1997) and GRUs (Cho et al.,[2014). This is mainly due
to their feed forward structure, which removes the sequential processing bottleneck for sequence data,
making them easier to train compared to the recurrent models. Self attention models also have found
applications in vision (Wang et al., 2018]), adversarial networks (Zhang et al.,|2018)), reinforcement
learning (Zambaldi et al., 2018 L1, |2017)) and speech recognition (Chiu et al., 2018).

Recent advances in using the self attention models in natural language tasks have been made by
first using a language modeling task to pre-train the models and then fine tuning the learned models
on specific downstream tasks. Radford et al.[(2018) and |Devlin et al.| (2018)) used Transformers
to pre-train a language model and showed that the fine tuned model outperforms LSTMs on many
natural language understanding and question answering tasks. For example, BERT (Devlin et al.|
2018)), a 24 layer transformer model, is shown to achieve the state of the art performance on several
NLP tasks, including on the SQuAD dataset. These advances, in addition to novel pre-training tasks,
relied on bigger models with a larger embedding size. BERT model uses an embedding size of 1024
(Devlin et al., [2018)); GPT-2 uses models with embedding size up to 1600 (Radford et al., 2019).

A single Transformer block consists of two key components: a multi-head self attention layer followed
by a feed forward layer (Vaswani et al.,[2017). A single head in a multi-head attention layer, computes
self attention between the tokens in the input sequence, which it then uses to compute a weighted
average of embeddings for each token. To keep the number of parameters fixed in the attention
layer, each head projects the data into a lower dimensional subspace, dimension of which scales as
1/(number of heads), and computes the self attention in this subspace. This projection size for each
head is commonly known as the head size.

Despite the advances in using Transformer models for various tasks, their functioning and design
choices still remain mysterious and are not well understood. Can the attention layer learn arbitrary
contextual representations? What is the role of the feed forward layer in the Transformer block?
Do we need such a large embedding size to capture the context of all the tokens? Answering these
questions requires an understanding of the representation power of the units in the Transformer.

In this paper we take some of the first steps towards developing such an understanding of the
Transformer. In particular, we focus on the representation power of the multi-head self attention layer.

Under review as a conference paper at ICLR 2020

heads 8 16 32
params 336M 336M 336M
SQuAD -F1 | 90.89+0.15 90.61£0.14 90.4540.08
SQuAD - EM | 84.1+0.34 83.75+£0.27 83.48+0.13
MNLI 85+0.2 84.5+0.4 84.44+0.2

Table 1: Performance of BERT argg (Devlin et al.,2018)), a 24 layer Transformer with an embedding
size of 1024, does not improve with the increasing number of heads after § heads.

First, we analyze the representation power of a single self attention unit and show that it crucially
depends on the projection sizes used to compute the dot product attention.

We next study the advantage of having multiple heads in the attention layer. It is generally believed
that increasing the number of heads helps by allowing the heads to compute context from different
representation subspaces at different positions. However, increasing the number of heads decreases
the head size, decreasing the expressive power of individual heads. We show that reducing the head
size to a value below the input sequence length hurts the representation power of each head. This is
because a smaller head size introduces a rank constraint on the projection matrices in each head, and
limits their representation power. We indeed notice this effect in practice: while the performance
improves with increasing the number of heads in the beginning (Devlin et al., 2018]), we notice a drop
in the performance once the number of heads increases beyond a certain threshold, as seen in Table
and Fig.[T] (see also Table 4(A) in[Vaswani et al[(2017)).

This heuristic of scaling the head size inversely with the number of heads was proposed initially
in|Vaswani et al.|(2017) and has become the standard way of using multi-head attention (Radford
et al.,[2018; |Devlin et al.,|2018)). In order to avoid hurting the performance, the existing Transformer
models allow for multiple heads by increasing the embedding size, which in turn increases the head
size. However, larger embedding size, in addition to increasing the number of parameters, makes
it expensive to use the model and the learned embeddings in downstream tasks, as the downstream
model sizes scale with the embedding size of the tokens. For example, the inference time and memory
required in retrieval tasks increases linearly with the embedding size.

Based on these observations, we propose a new way to set the projection size in the attention heads,
in which each head has a fixed head size that is independent of both the number of heads and the
embedding size of the model. This allows us to train models with a relatively smaller embedding
size without affecting the head size. It also allows us to increase the number of heads per layer
to improve the performance. Another advantage of the fixed head size Transformer is, unlike the
standard Transformer, which requires the number of heads to be a factor of the embedding size, we
are free to set arbitrary number of heads as required for the task.

We evaluate this fixed head size Transformer on language modeling (LM 1B dataset), natural lan-
guage inference (MNLI dataset) and question answering tasks (SQuAD dataset). We show that the
modified Transformer trained with an embedding size of 512 can match the performance of the
BERT arge(Devlin et al., [2018)), a Transformer with an embedding size of 1024 (see Fig. @]) We
further present experimental results evaluating the effect of different choices of the head size and the
embedding size in the Section 4]

The contributions of this paper are summarized below.

¢ We analyze the representation power of the multi-head self attention layer and show the limitation
the embedding size places on the number of heads.

* We propose a new way to set the head size, and show the proposed fixed head size layers are
strictly better than the standard multi-head attention layers in terms of their expressive power. This
modification allows us to both increase the number of heads per layer and decrease the embedding
size, without hurting the performance.

* We experimentally show that the fixed head size Transformer can be trained with a smaller
embedding size and more heads on three standard NLP tasks.

Under review as a conference paper at ICLR 2020

1.1 RELATED WORKS

Given the significance of self attention models, there has been work trying to both improve the
performance and speedup the computation in Transformers. |Ott et al.|(2018)) and |You et al.|(2019)
reduce precision and use large batch training to reduce the training time of the attention models.
Child et al.| (2019) propose sparse self attention models to speed up the computation in the attention
layer for long sequence data generation tasks. They show that these sparse attention models can be
trained on tasks with sequence length greater than 10k without sacrificing the accuracy. [Dehghani
et al.| (2018) propose a depth recurrent Transformer network that reuses the parameters across layers.
They show that this modification makes the Transformer networks Turing complete even with finite
precision weights. |Yang et al.|(2019) propose a new way to increase the effective sequence length that
the Transformer attends to, by reusing the intermediate embeddings across sequences. They show
that the modified architecture performs better on tasks that require computing context over longer
sequence lengths. We note that most of these modifications rely on the multi-head self attention, the
same building block of the Transformers. Our work is studying this basic multi-head attention layer,
and suggesting a new way to set the head size, which can be easily used along with any of the above
architectural modifications.

Wau et al.| (2019) propose to replace the self-attention layer with lightweight dynamic convolutions
and show improved performance on machine translation and language modeling. Even though the
resulting model has faster inference time, it still needs to use a large embedding size (1024), as big as
the original attention models. We believe the techniques in this paper can be combined with these
results to realize both smaller embedding size and faster inference time.

Sun et al.| (2019) perform neural architecture search using evolutionary methods on sequence to
sequence models and find an evolved transformer architecture, which in addition to multi-head
attention units, has convolution filter and gated linear units. Our proposed modifications stay closer
to Transformers in spirit and can be used as seed units for this architecture search.

2 TRANSFORMER ARCHITECTURE AND ANALYSIS

In this section we present the Transformer architecture and analyze the representation power of the
multi-head self attention, a key component of the Transformer block.

The input to a Transformer network is a sequence of n tokens. Typically, each token is converted
into a token embedding of dimension d by an embedding layer. We let X € R?*" be the embedding
matrix corresponding to the n tokens in the input sequence.

2.1 SINGLE-HEAD ATTENTION

The transformer block is a combination of a self attention layer followed by a feed forward layer
(Vaswani et al., 2017). Both layers have a skip connection and use Layer Normalization (LN) (Ba
et al.,[2016)). In particular, for token embeddings X, the dot product attention is computed as follows.

(Wi X)" (W, X)
Vi

Here W, € R4*4 W), € R%**4 and W,, € R4 >4 represent the projection matrices associated

with the query, key and value respectively in an attention unit (Vaswani et al.,|2017). For a single-head

attention unit, we have d, = d = d, = d. In the dot-product attention (cf. ([II)), P aims to capture

the context of the input for a given token based on the remaining tokens in the input sequence.
Subsequently, the output of the attention layer takes the following form.

LN (X + W, - Attention(X)) , (2)

where LN(-) represents the layer-normalization operation. Given the attention module, as defined in
(), it is natural to question its ability to represent arbitrary contexts P for a given input sequence X.

Attention(X) = W, X - Softmax =W,X P. (1)

Towards this, we show that for a large enough projection dimension d, the unit has enough capacity
to represent arbitrary contexts over a given input sequence. In the following result we establish that
for a large enough projection size an attention unit can represent any data pair (X, P). We also show
that the model cannot represent arbitrary context when d is smaller than 7.

Under review as a conference paper at ICLR 2020

Theorem 1 (Representation Theorem). If dy = di, = d > n, then given any full column rank matrix
X € R™™ and an arbitrary n x n positive column stochastic matrix P, there always exists d x d
projection matrices W , and W, such that

(W, X)"(W,X)
e
Ifdy = di, = d < n, there exist X and P such that (B) does not hold for all W ; and W

Softmax =P. 3)

The proof of Theorem |I]is provided in the supplementary material. This result shows that the
projection dimension d, = dj, = d needs to be larger than the sequence length n for the attention
unit to be able to represent any desired context P. Even though this result describes a single example
sequence case, it highlights a fundamental property of the model architecture that increasing the
projection size increases the capacity of the attention heads.

2.2 MULTI-HEAD ATTENTION

As discussed in Section[2.1] an attention unit updates the embedding of an input token based on a
weighted average of the embeddings of all the tokens in the sequence, using the context P (cf. (I)).
Vaswani et al.| (2017) proposed Multi-Head attention mechanism that increases the representation
power of an attention layer, where multiple attention units operate on different low dimensional
projections of the input, with each attention unit being referred to as a head. This is followed by
concatenation of the outputs from different heads. In particular, the computation inside a Multi-Head
attention with h heads takes the following form:

head(X); = WX - Softmax [(WiX)" (WiX)/\ /7] ¢ R¥ X"
MultiHead(X) = Concat[head(X)1, - - - ,head(X),] € R¥*™.
The output of the Multi-head attention layer then becomes

Z = LN (X + W, - MultiHead (X)) , (4)

where W,, € R?¥9, For a model with h heads, the query, key and value projection matrices {Wé},

{Wi}and {W'} are & x d matrices. Therefore, each head projects the input onto a £-dimensional
subspace to compute the context, and keeps the number of parameters fixed per layer. This has been
observed empirically to increase the expressive power of the attention layer (Vaswani et al.,[2017).

2.3 DEPENDENCE OF THE NUMBER OF HEADS ON THE EMBEDDING SIZE

While increasing the number of heads seemingly gives the model more expressive power, at the same
time we are reducing the head size, which can decrease the expressive power. When the number of
heads h is larger than %, the attention unit inside each head projects onto a dimension smaller than n,
and looses its ability to represent arbitrary context vectors (cf. Theorem|[I). Since the sequence length
is fixed from the data/task at hand, the only remaining way to increase the number of heads, without
loosing the expressiveness, is by increasing the embedding size d. This corresponds to a fundamental
limitation of the model architecture that one needs to increase the embedding size in order to support
more heads.

Unfortunately, increasing the embedding size leads to higher computation and memory requirements
to train and store the model. Further, since it is common to use learned embeddings from Transformer
based models for downstream tasks (Devlin et al.l 2018)), larger embedding size increases the model
size and computation required for all the downstream tasks as well. Given the widespread success of
attention mechanism, this highlights the need for a modified model architecture that can leverage the
advantages of MultiHead without suffering from the requirement of large embedding sizes.

3 CONCISE MULTI-HEAD TRANSFORMER

In this section we propose a different way of setting the head size of the Transformer, which allows us
to enjoy the advantage of higher expressive power of multiple heads without requiring the embedding

Under review as a conference paper at ICLR 2020

size to be large. The key is to decouple the dependency between the projection size in a head and
the embedding size of the model. The projection matrices now project onto subspaces of a fixed
dimension d,, irrespective of the number of heads h. This approach where d,, is independent of d and
h leads to the following attention mechanism.

fixedhead(X); = V. X - Softmax [(ViX)"(V;X)/,/q,] € R%*"
FixedMultiHead(X) = Concat|fixedhead(X)1, - - - , fixedhead(X),] € R%h*n,

Note that the projection matrices used here {V’}, {V}} and {V}} are d, x d matrices. With
V, € R¥"dv_the output of this new multi-head attention layer takes the following form.

Z = LN (X + V,, - FixedMultiHead(X)) .

This modification makes each attention head more similar to a hidden unit in a feed forward network
or a filter in a convolutional network, and allows us to vary the number of heads without the worry of
reducing the representation power per head. The downside is, unlike the standard MultiHead, the
number of parameters per layer increase with the number of heads. However, this modification allows
us to train a model with a smaller embedding size, ultimately allowing us to reduce the total number
of parameters in the model.

Choice of the head size. Our proposed modification introduces head size d,, as a new model hyper-
parameter. We choose head size to be 128 for our BERT experiments, as most of the pre-training is
done with 128 sequence length data. While we have ablation studies (cf. Table 2[B)) showing bigger
head size improves the performance, there is a tradeoff between increasing the head size vs number
of heads vs layers. We found that having sufficient head size matching the pre-training sequence
length, is better than having a larger embedding size (cf. Section).

3.1 MULTIHEAD VS. FIXEDMULTIHEAD ATTENTION

Given a MultiHead layer, we can always represent it using a FixedMultiHead layer, whenever we have
the head size d,, > 4/n. While this shows that increasing the number of heads i beyond 4/4, makes
individual heads of the FixedMultiHead as expressive as the ones in the MultiHead, it is not clear
if FixedMultiHead is strictly more expressive. Can the FixedMultiHead layer represent functions
that the standard MultiHead layer can not represent? In this subsection we show that indeed, in the
multi-head regime, the FixedMultiHead layer is strictly better than the standard MultiHead layer in
terms of expressive power.

Consider the standard multi-head attention units in ().
fw(X) = W,, - MultiHead(X).

We denote the collection of all parameter matrices as W. Similarly, consider the function represented
by the fixed head size attention units:

gv(X) =V, - FixedMultiHead(X).

Let V be the collection of all these parameter matrices. We define F and G to be the class of functions
fw () and gv (), respectively. As noted above, if d,, > 4/, we have F C G.

The following theorem shows that even for simple examples in G, functions in F fail to approximate
them beyond certain accuracy; this shows that F is a strict subset of G.

Theorem 2. Givenn > 2 and d > d,, let h > d/d,. Consider a fixed head size attention layer gv (-)
with parameters that satisfy the following conditions:

v,

Vo, x | | isfull rank, and (Vé)TVfI =Uforalli=1,...,h, where U is a rank-d, matrix.
v

Then, for any fw € F, there exists X € R¥™ such that fw(X) # gv(X).

Because || fw (X) — gv(X)|| is a continuous function of X, existence of such an X implies that the
integral of the norm of difference (i.e., approximation error) is strictly positive.

Under review as a conference paper at ICLR 2020

This theorem shows that the expressive power of the FixedMultiHead attention function class is
strictly superior to the standard MultiHead attention function class. Hence the heuristic of reducing
the head size with the number of heads is limiting the expressive power of MultiHead, whereas using
the fixed head size Transformers will increase the expressive power of the attention layers.

4 EXPERIMENTS

41 1 1 1 L 1 1 41 1 L 1 L 1 1
-¢- dy=d/h,h=8 | - d,—d/h,h=8

—=— -h-=16
-e- -h=32
—— d=256,d, =32

—=— -h-16
-e- -h=32
—— d=256,d, =32

Perplexity
4
)
Perplexity
w
N
)

T T T T T T T
16 18 20 22 24 26 28 30 250 300 350 400 450 500

Parameters in millions Embedding size (d)
(a) LMIB (b) Lm1B

Figure 1: Performance of the standard Transformer (d,, = 4/n) compared with the fixed head size
(dp = 32) models on a language modeling task (LM1B) on the test set. We vary the embedding
size of the standard Transformer from 256 to 512. We train the fixed head size models with a fixed
embedding size of 256 and a head size of 32, and vary the number of heads from 4 to 70, while
matching the number of parameters. The plots clearly indicate that fixing the head size allows us to
train Transformers with a smaller embedding size (plot (b)), and with a better scaling of performance
(plot (a)). Note that for perplexity lower values are better.

91.5 L 84.5 85.0
h=20 'h=32
91.0 4 .
84.0 3 845
o 03 / = 8354 ©
9.0 \ d=1024 W 5 a0
a d=768 a o
< < 83.0 4 %
3 895 qa=512, r 3 — 835
[=4 e Qg5 L =
W 590 E (7] H
== BERTsgce, dp=d/h,h=16 820 —e— BERT|Arce, dy=d/h,h=16 = s304 —e— BERTspge, dp=d/h,h=16 |
88.5 = 1 -
=& FixedHead,d=512,d, =128 =& FixedHead,d=512,d, =128 —a&— FixedHead,d=512,d, =128
88.0 T T T T 815 T T T T 825 T T T T
100 150 200 250 300 350 150 200 250 300 350 150 200 250 300 350
Parameters in millions # Parameters in millions # Parameters in millions
(a) sQuAD F1 (b) sQuaD EM (c) MNLI

Figure 2: Comparison of a 24 layer standard Transformer model BERT| srgg With the fixed head size
model on the SQuAD and MNLI dev sets. We vary the embedding size of the BERT models from 512
to 1024. We train the fixed head size models with a fixed embedding size of 512 and a head size of
128, with a varying number of heads from 8 to 32, while matching the number of parameters. Fixing
the head size allows us to train models with an embedding size of 512 with a better performance.

In this section we present our experiments on three standard NLP tasks, language modeling (LM1B),
question answering (SQuAD), and sentence entailment (MNLI), to demonstrate: 1) Increasing the
number of heads beyond certain point hurts the performance of the standard Transformer, but always
helps with our proposed modification; 2) Decoupling the head size from embedding size allows us
to train models with a smaller embedding size; and 3) Setting the head size appropriately in the
Transformers allows us to train models with a better performance scaling. We first describe our
experimental setup followed by our results and ablation studies on the proposed modifications.

4.1 SETUP AND DATASETS

For the language modeling task we use the one billion word benchmark dataset (LM1B) (Chelba
et al.,|2013). This dataset has around 30M training examples and around 300k examples in the test

Under review as a conference paper at ICLR 2020

Perplexity
8
!

34

4,=3Zh-S |
h=16
h=32

¢ 4,—d/hh=8 &
h=16 =o-

~@® - | h=32 —e—

—a—

T
512

T T
1024 2048
Width of the Feedforward layer

(a)

+ FixedHead,h =8

,h=16

25

T
26
Head size (d,)

(b)

Figure 3: Ablation studies on LM1B: (a) We fix the embedding size of all the models to 256 and
vary the capacity of the standard Transformers by increasing the size of the feedforward layers. For
the modified models we fix the head size to 32, so 8 head modified model is the same as the 8
head standard Transformer. We notice that again in Transformers increasing the number of heads
beyond 16 hurts the performance, whereas with a fixed head size increasing the number of heads
monotonically improves the performance. (b) We show the effect of head size on the performance
with different number of heads. Both plots clearly show the advantage in having an additional way to
tune the capacity of Transformers with a fixed embedding size.

set. We use a sub-word tokenizer with 32k vocab and cap the input to 256 sequence length. We train
a 6 layer Transformer model with the ADAM optimizer using the tensor2tensor library (Vaswani
et al}[2018)). The detailed experimental setting is presented in Section [C]

Multi-Genre Natural Language Inference (MNLI) is a sentence level entailment task, designed to test
natural language understanding (Williams et al.,|2018). Given a premise sentence and a hypothesis
sentence, the goal is to predict whether hypothesis entails, contradicts or is neutral to the premise.
We report the classification accuracy for this task. Stanford Question Answering Dataset (SQuAD)
is a question answering dataset, where given a paragraph and a question, the goal is to predict the
sequence of words in the paragraph that constitute the answer to the question (Rajpurkar et al.l 2016)).
This is a harder word level task, compared to the sentence classification task. We report both Exact
Match (EM) and F1 scores for this task. All results in this section are reported on the Dev set, which
has not been used in any experimental choices in this paper.

For these latter two tasks, we follow the two stage approach of first pre-training on a language
modeling task and then fine-tuning the models on the task data. We follow the same experimental
setup for both pre-training and fine-tuning as BERT (Devlin et al., |2018), and use their codebase{ﬂ
We first pre-train our models using the masked language model and the next sentence prediction
objectives, and then fine tune the pre-trained model for individual tasks (Devlin et al.,[2018). For
pre-training we use English Wikipedia and BooksCorpus dataset (Zhu et al.,|2015). The input to the
models is tokenized using the WordPiece representation with 30000 tokens in the vocabulary. We
present the key experiment choices in Section [C] and refer the reader to [Devlin et al.| (2018) for a
complete description of the setup.

4.2 RESULTS

For our first set of experiments we want to see if the fixed head size Transformer with a smaller
embedding size can match the performance of standard Transformers with a larger embedding size. As
a baseline for the language modeling task, we train Transformers with the embedding size increasing
from 256 to 512 with different number of heads. We train the fixed head size Transformers with a
fixed embedding size of 256 and a head size of 32, with an increasing number of heads from 4 to 70.
We notice that the fixed head size models with an embedding size of 256 can match the performance
of standard Transformers with an embedding size of 512 (see Fig. [I). Further this provides a better
performance scaling than the standard Transformers. We repeat the similar experiment on the other

"https://github.com/google-research/bert

Under review as a conference paper at ICLR 2020

heads 8 12 16 32
params 168M 193M 218M 319M
SQuAD - F1 89.6+0.17 90.25+£0.21 90.43+0.14 90.95+0.14
SQuAD - EM | 82.73+0.21 83.18+0.24 83.59£0.06 84.4+0.29
MNLI 83.5+£0.2 84.2+0.2 83.9+0.2 84.9+0.2

(A) Increasing number of heads

head size 32 64 128 256
params 130M 142M 168M 218M
SQuAD - F1 | 88.53£0.06 89.51+0.15 89.6+0.17 90.334+0.23
SQuAD - EM | 81.19+0.21 82.41+0.32 82.73+£0.21 83.3640.48
MNLI 82.5+0.1 83.4+0.3 83.5+0.2 83.9+0.2

(B) Increasing head size

Table 2: (A): 24 layer modified Transformer with a fixed head size of 128 and 512 embedding size
shows an improvement in the accuracy with the increasing number of heads. (B) The fixed head size
model with 512 embedding size and 8 heads shows an improvement in accuracy with the increasing
head size. This shows that indeed head size is an important capacity controlling parameter in the self
attention architecture.

two tasks, where for baseline we train BERT argE, a 24 layer, 16 head Transformer architecture,
with embedding sizes from 512 to 1024. We compare it with the modified model, with an embedding
size of 512 and a head size of 128, with an increasing number of heads from 8 to 32. We again notice
that the fixed head size model with 512 embedding size can match the performance of BERT argg

(see Fig.[2).

Note that simply trying to increase the head size of the standard Transformers by decreasing the
number of heads, does not improve the performance, as decreasing the number of heads reduces the
expressive power of the model (see Fig.). Hence, both the head size and the number of heads needs
to be set high enough for better performance.

4.3 ABLATION

Increasing heads. From Table[I]and Fig. [Ta|we can see that increasing the number of heads hurts
the performance of the Transformer after a certain number. We repeat the same experiments with the
fixed head size Transformer, and present the results in Table[2{A) and Fig. The results show that
the performance of the modified model improves monotonically as the number of heads increase. This
is because the model capacity (a function of the head size) is no longer reduced with the increasing
number of heads.

Increasing head size. In Table 2 B) and Fig. we present comparisons between models with
different head sizes. This shows that the gains in the performance of the fixed head size models
indeed come from adjusting the head size of the query, key and value layers in the attention unit. The
table shows a clear trend of better performance with a larger head size, suggesting that it indeed is an
important factor in the performance of the attention models.

5 CONCLUSION

In this paper we studied the representation power of the multi-head self attention models and showed
that the larger embedding size used in the current models is a consequence of the limitations of the
current multi-head attention formulation. We propose a modified way to set the head size that allows
us to increase the number of heads without increasing the embedding size. As a consequence we
are able to train Transformers with a smaller embedding size and fewer parameters, without hurting
the performance. In the future, it will be interesting to experiment with varying head sizes within
an attention block and across layers. This requires further understanding of the role of each layer in
computing the context, which is an interesting direction for the future work.

Under review as a conference paper at ICLR 2020

REFERENCES

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants, and Phillipp Koehn.
One billion word benchmark for measuring progress in statistical language modeling. CoRR,
abs/1312.3005, 2013. URL http://arxiv.org/abs/1312.3005.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.

Chung-Cheng Chiu, Tara N Sainath, Yonghui Wu, Rohit Prabhavalkar, Patrick Nguyen, Zhifeng
Chen, Anjuli Kannan, Ron J Weiss, Kanishka Rao, Ekaterina Gonina, et al. State-of-the-art
speech recognition with sequence-to-sequence models. In 2018 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 4774-4778. IEEE, 2018.

Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio. On the properties
of neural machine translation: Encoder—decoder approaches. In Proceedings of SSST-8, Eighth
Workshop on Syntax, Semantics and Structure in Statistical Translation, pp. 103-111, 2014.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Lukasz Kaiser. Universal
transformers. arXiv preprint arXiv:1807.03819, 2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin. Convolutional
sequence to sequence learning. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pp. 1243-1252. JMLR. org, 2017.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735-1780, 1997.

Yuxi Li. Deep reinforcement learning: An overview. arXiv preprint arXiv:1701.07274,2017.

Peter J Liu, Mohammad Saleh, Etienne Pot, Ben Goodrich, Ryan Sepassi, Lukasz Kaiser, and Noam
Shazeer. Generating wikipedia by summarizing long sequences. arXiv preprint arXiv:1801.10198,
2018.

Myle Ott, Sergey Edunov, David Grangier, and Michael Auli. Scaling neural machine translation. In
Proceedings of the Third Conference on Machine Translation: Research Papers, pp. 1-9, 2018.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language under-
standing by generative pre-training. Technical report, OpenAl, 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. Technical report, OpenAl, 2019.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions for
machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

Hao Sun, Xu Tan, Jun-Wei Gan, Hongzhi Liu, Sheng Zhao, Tao Qin, and Tie-Yan Liu. Token-level
ensemble distillation for grapheme-to-phoneme conversion. arXiv preprint arXiv:1904.03446,
2019.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.
In Advances in neural information processing systems, pp. 3104-3112, 2014.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems, pp. 5998-6008, 2017.

http://arxiv.org/abs/1312.3005

Under review as a conference paper at ICLR 2020

Ashish Vaswani, Samy Bengio, Eugene Brevdo, Francois Chollet, Aidan N. Gomez, Stephan Gouws,
Llion Jones, Lukasz Kaiser, Nal Kalchbrenner, Niki Parmar, Ryan Sepassi, Noam Shazeer, and
Jakob Uszkoreit. Tensor2tensor for neural machine translation. CoRR, abs/1803.07416, 2018.
URLhttp://arxiv.org/abs/1803.07416.

Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. Non-local neural networks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7794-7803,
2018.

Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus for
sentence understanding through inference. In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long Papers), pp. 1112—-1122. Association for Computational Linguistics, 2018.
URLhttp://aclweb.org/anthology/N18-1101.

Felix Wu, Angela Fan, Alexei Baevski, Yann N Dauphin, and Michael Auli. Pay less attention with
lightweight and dynamic convolutions. arXiv preprint arXiv:1901.10430, 2019.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, and Quoc V
Le. Xlnet: Generalized autoregressive pretraining for language understanding. arXiv preprint
arXiv:1906.08237, 2019.

Yang You, Jing Li, Jonathan Hseu, Xiaodan Song, James Demmel, and Cho-Jui Hsieh. Reducing bert
pre-training time from 3 days to 76 minutes. arXiv preprint arXiv:1904.00962, 2019.

Vinicius Zambaldi, David Raposo, Adam Santoro, Victor Bapst, Yujia Li, Igor Babuschkin, Karl
Tuyls, David Reichert, Timothy Lillicrap, Edward Lockhart, et al. Relational deep reinforcement
learning. arXiv preprint arXiv:1806.01830, 2018.

Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augustus Odena. Self-attention generative
adversarial networks. arXiv preprint arXiv:1805.08318, 2018.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba, and
Sanja Fidler. Aligning books and movies: Towards story-like visual explanations by watching
movies and reading books. In Proceedings of the IEEE international conference on computer
vision, pp. 19-27, 2015.

10

http://arxiv.org/abs/1803.07416
http://aclweb.org/anthology/N18-1101

Under review as a conference paper at ICLR 2020

A NOTATION

Embedding size | d
Number of layers | [
Number of heads | h
Sequence length | n

Vocab size v
Head size dp

B PROOFS

Proof of Theorem[l] d > n case. To prove the first part of the result, we present an explicit construc-
tion of W, and W, which allows us to generate P from X using the dot product attention. Since X

has full column rank, there exists a left inverse X' = (X7X)~!X” ¢ R"*? such that XX =1,,.
Let Wi, = W, X and W, = WqXT. Then

X"WIwW, X = XT(XNHYI"WIw, XX =1, WiW, - I, =WIW,=W;, (5
Now that the above choice of W, and W, has handled the dependence on X, we will choose a qu
depending on P and finish the construction. Below we express the Softmax operation on the query

and key inner products. Note that the Softmax here is a columnwise operator computing the attention
scores for each query. By using (3)), we obtain that

. . -
Softmax [(ka) (WQX)] = Softmax lwkq] = exp (qu> D!

Vi, Vi Vi) W

where D, is an n x n diagonal matrix such that

RS < U (Wig)ji | _ T o (W)
()3,

Hence, we can establish the desired result by showing that there always exists a qu that satisfies
the following fixed point equation.

Wi
ex =P Dy . 6
Given P, to construct such a qu, we pick an arbitrary positive diagonal matrix Dy, and set
Wiy = Vdi - log (P - Dy). (7)

Since P is a positive matrix, such a qu always exists. Next, we verify that this construction indeed
satisfies the fixed point equation (cf. (6)). Note that

Dy, = Diag <1T exp <(VV\/diq)>> = Diag (1"P - Dg) = Dy. (8)
q n

The last equation follows from the fact that P is a column stochastic matrix. Now, using (7)) and (8),

W
exp(\/;;:> =P-Dy=P Dy, .

This completes the first part of the proof.

d < n case. Consider the case of d = 1 and n = 2. Then X € R'*? and W, and
W € R Let X = [1,0]. Then

Wi X)"T (WX 1,0]"WIW,[1,0
Softmax (Wi X) (W,)} = Softmax [[O Wi W[l]} = Softmax HWqu O”
Vi, NG 0o 0
This matrix clearly cannot be used to generate P that have distinct elements in the second column ,

05 0.75
g P = {0.5 0.25} -

11

Under review as a conference paper at ICLR 2020

Proof of Theorem[2] First let us rewrite the MultiHead and FixedMultiHead layers as follows. The
MultiHead layer can be rewritten as

h
fw(X) = W, - MultiHead(X) = > W WX - Softmax [(WiX)" (W;X)/\/T] |
i=1
where W, are d x d/h matrices and W}, W}, and W/, are d/h x d matrices. We denote the
collection of all parameter matrices as W.

Similarly, rewrite the fixed head size attention layer as
gv(X) = V, - FixedMultiHead (X Z ViViX - Softmax [(ViX)"(ViX)/ /a,] ,

where VZ R*dp and V? VZ Vz R *d 1 etV be the collection of all these matrices.

v

The outline of the proof is basically a case analysis: we divide possible values of W into three
categories, and show in each case that there exists a X such that fw(X) # gv(X). Here are the
three cases:

» Case I: Yo, WiWi # 30, ViV

« Case2: ' WiWi =" ViVi and there exists i € {1,...,h} such that U//d, —
(W)T(Wi)/+/d/h is not skew-symmetric.

e Case3: Y WIW! = S ViVi andall U/\/d, T(Wi)/\/d/h are skew-

symmetric.

Case 1. In the first case, we can choose any v such that (Y21, WiWi — S Viyi)y £ 0.
Choose X =v17 =[v v ... v]. Then, note that for any column stochastic matrix P, we have
XP = X. Therefore,

h h
> WiWIX - Softmax [(WiX)"(W,X)/\/a7n] — " VIViX - Softmax [(ViX)" (ViX)/\ /]

i=1 i=1

h h h h
=Y WIW,X-> VIViX=() WiW,-> Vivivi" £0.
= 1=1 =1

i=1

Case 2. Incases where Y1 WIWi = 3" ViVi since Y. | ViV is full rank by assump-
tion and each W?W? is at most rank d/h, it follows that all columns in W € R4*%/" must
be linearly independent. Therefore, for any v # 0, {WiWiv i = 1,... h} is a set of linearly
independent vectors, because each W2 W' v is a linear combination of d/h column vectors of W?
that are linearly independent of other column vectors in W, j # i.

Now consider any v € R?, and X = ve?, where e; = (1,0,...,0) € R™. Define ¢(t) =
exp(t)/(exp(t) + n — 1). Then, we have

viUv 0 0
h h Vi

gv(X) = 3" VIViX - Softmax [X"UX//3,] = 3" VIViX - Softmax | 0 ©

i=1 =1 .
0 0 0

h

VA TUV)V o V}: Wiw! [(VTUV>V x .. V].
(Z >[(ﬁ no (Z}) o\ Ve) w

12

Under review as a conference paper at ICLR 2020

Similarly, we can calculate

h
fw(X) =D WIWiX - Softmax [(WiX)" (W;X)/\/a/n]
i=1

h
_ T vi(Wi)TWiv v
_;WOWU [(;S(\/m a)v n}

Notice that all the columns of fw (X) and gv (X), from the second columns to the last ones, are the
same. We now compare the first columns:

h vI(WOTWiv vIUv o
(X1 — gv(X)1 = Y <¢ (W) 9 (T)) Wi Wi

Recall that for any v # 0, W! W v are linearly independent, so fw (X).1 — gv(X).1 = 0 if and
. viwih)Twiv vIUv . . .
only ifall ¢ | ——=—2 | — ¢ are zero. However, since there exists ¢ € {1,...,h}

\/d/h NZS
such that U/ /d,, — (W})"(W)/\/d/h is not skew-symmetric, we can choose v to be one that
VT(W}Q)Tin viUv : VT(WL)Tin vIUv
4 , hence makin —7) — 0, therefore
a7 4, e\ vanm v)7
fw(X).1 —gv(X).1 #0.

3<
|

satisfies

Case 3. Now considerany X = [v; vz 0 ... 0], where vy and v, will be chosen later.

Define ¢ (t1,t2) = exp(t1)/(exp(t1)+exp(ta)+n—2), pa(t1,t2) = exp(ta)/(exp(t;)+exp(ta)+
n — 2). Then, we have

T T
v; Uvy v; Uvy

0 0
dP dp
h vy, Uvy v, Uvsy 0 0
gv(X) = ZV@V%X - Softmax \/0@ \/OE 0 ... 0
i=1 .
0 0 0 ... 0

Therefore, the first column of gy (X) can be written as

h T T T T
P vi Uvy v3 Uvy vi Uvy va Uwvy
gv(X).1 = < WOW7;> [¢1 (! ;) Vi + ¢2 (; va .
; Vdp \/@ Vdp Vdp

Similarly, the first column of fw (X) is

h
fw(X) = Y Wiw

Pt d/h d/h

vIi(Wi) Wivy vI(Wi) Wivy
o2 \P)

T Wz Twi T Wz Twi
[¢1 <V1 (k) gVl V2 (k) qv1> vit

Vd/h ’ Vd/h

Since U/\/d, — (W.)T(W])/\/d/h is skew-symmetric by assumption, we have
(WHT (W) : ‘

vI (Iip — i/m> vy = 0 for all vi. Recall that U is rank-d, by assumption, so

U/\/dy — (W})T(WL)/\/d/his at least rank d,, — d/h > 1, so we can choose any vy such that

U (W) (W)

Under review as a conference paper at ICLR 2020

WipTw) - -7 U
If both ﬁvl and Jain v are nonzero, We can always choose v such that v; —\/@ vy >

0 and \72T <) < 0. This means that if we choose vo = avy and scale o« — 00,

b1 (vlTle VQTUV1> 50, b (VlTle’ VQTUV1> S,
Vdp Vdp

p vi (W) "Wivi vi(WH)TWivy N exp(vi (W) " Wivi/y/d/h)
! exp(vI (W) TWiv,/\/d/h) +n—2'

Then, consider the difference fw (X).1 — gv(X). 1. Recall that for any v, W})W})v is independent
of {WiW v i # 1}. This means that, to show fw(X).1 — gv(X).1 # 0, it suffices to show that

41 vlT(W}C)TW;vl V%(W}C)TW;Vl 4 viUv, vIUv, WIWly 4
Vd/h ’ d/h Vi, T \/d, oY
s VlT(Wii)TW;Vl VQT(WIDTW;W 4 vIiUv, vIUv;
Vd/h ’ d/h Vd, T \/d,
If we scale vy = avy with large enough «, the second term will dominate the first term and the first

term will never be able to cancel the second one. Thus, by choosing large enough o > 0, we can
make sure that the sum is nonzero.

)]W},Wivz #0.

. W T (Wa) . (W) (W)
Even in case where one of —Z v and Uiqvl is zero (say —~——2v; = 0), we can
\/dp \d/h \d/h ’

choose vy = \}Jd»vl and use a similar scaling argument. By choosing large enough o > 0 and
P

Vg = aVg, one can show that the difference fw (X).1 — gv(X). 1 is nonzero. O

C EXPERIMENTAL SETTINGS

For our experiments with the language modeling (LM 1B dataset), we train 6 layer transformer models.
We use a batch size of 4096 and train for 250k steps. We use a learning rate of 0.1 with a linear warm
up for the first 10k steps. We decay the learning rate with the square root of the number of steps. We
train the standard transformers with the embedding dimension varying from 256 to 512. We fix the
width of the feed forward layer in the Transformer to be 1024. In addition, we use weight decay of
0.01 and dropout with probability of 0.1 on all the layers.

For our experiments with BERT, we follow the same experimental settings as in (Devlin et al.; 2018)).
We present the key details here and refer the reader to (Devlin et al.|[2018)). We train with a batch size
of 1024 for 450k steps with inputs of sequence length n = 128 followed by 50k steps with inputs of
sequence length 512. In contrast the BERT paper uses a batch size of 512, and does the pre-training
for 900K steps with 128 sequence length inputs and 100k steps with 512 sequence length inputs. We
train using ADAM with a learning rate of le-4, and a linear warmup and decay schedule as in BERT.
We use Sk warmup steps for the first stage, and a re-warmup of 3k steps for the second stage (You
et al.L|2019). Again, we use weight decay of 0.01 and dropout with probability of 0.1 on all the layers.

For the language modeling task, training is performed on 4 TPUv2 chips for a couple of hours.
For BERT models training is performed on 16 TPUv3 chips in the first stage and 64 TPUv3 chips
for the second stage. Pre-training with this configuration takes between 2 to 3 days. We did not
attempt to find the optimal hyper-parameters for the fixed head size architecture, and use the same
hyper-parameters as used for training the standard Transformer.

D ADDITIONAL EXPERIMENTAL RESULTS

14

Under review as a conference paper at ICLR 2020

41 1 1 1 1 1 1
d=256, h=8 -e- d,—d/h-32

—— d=256,d, =32

36 4d=256, h=16

Perplexity
4

35] d=256, h=32 =512, h=16[
-

34 d=256, h=48 s
L
d=256, h=60" ¢=256, h=70
33 T T T T T T LI
16 18 20 22 24 26 28 30

Parameters in millions

Figure 4: Performance of the standard Transformer training compared with the fixed head size
(dp) models for a language modeling task (LM1B) on the test set. Unlike Fig we vary both the
embedding size and the number of heads of the standard Transformer to keep its head size fixed to 32.
We train the fixed head size models with a fixed embedding size of 256 and a head size of 32, and vary
the number of heads from 4 to 70, while matching the number of parameters. The plot again clearly
indicates the advantage of the fixed head size models. The main issue with standard Transformers is
that fixing the head size to 32, forces the number of heads to be small when the dimension is small.
Reducing the number of heads below certain extent hurts the performance of the Transformer.

heads 8 12 16 20
params 214M 252M 290M 327TM
SQuAD - F1 | 90.35+£0.14 90.48+0.09 90.92+0.14 90.89£0.08
SQuAD - EM | 83.37+0.12 83.67+0.03 84.16£0.35 84.29+0.16
MNLI 84.4£0.2 84.4£0.2 84.7£0.1 85.1+0.4

(A) Increasing number of heads

Table 3: (A): 24 layer modified Transformer with a fixed head size of 128 and embedding size of 768
shows an improvement in the accuracy with the increasing number of heads.

15

	Introduction
	Related Works

	Transformer Architecture and Analysis
	Single-Head Attention
	Multi-Head Attention
	Dependence of the number of heads on the embedding size

	Concise Multi-head Transformer
	MultiHead vs. FixedMultiHead attention

	Experiments
	Setup and Datasets
	Results
	Ablation

	Conclusion
	Notation
	Proofs
	Experimental settings
	Additional experimental results

