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ABSTRACT

A significant body of recent work has examined variational autoencoders as a
powerful approach for tasks which involve modeling the distribution of complex
data such as images and text. In this work, we present a framework for modeling
multiple data sets which come from differing distributions but which share some
common latent structure. By incorporating architectural constraints and using a
mutual information regularized form of the variational objective, our method suc-
cessfully models differing data populations while explicitly encouraging the iso-
lation of the shared and private latent factors. This enables our model to learn
useful shared structure across similar tasks and to disentangle cross-population
representations in a weakly supervised way. We demonstrate the utility of our
method on several applications including image denoising, sub-group discovery,
and continual learning.

1 INTRODUCTION

Unsupervised learning of latent representations is widely used for dimensionality reduction, density
estimation, and structure or sub-group discovery among other applications. Methods for recovering
such representations typically rely on the assumption that the observed data is a manifestation of only
a limited number of factors of variation (Locatello et al., 2019; Bengio et al., 2013). The variational
autoencoder (VAE) (Kingma & Welling, 2013), a combination of a non-linear latent variable model
and an amortized inference scheme (Dayan et al., 1995), is a popular method for recovering such
latent structure. VAEs and their extensions have received considerable attention in recent years and
have been shown useful for modeling text (Miao et al., 2016), images (Gulrajani et al., 2016), and
other data exhibiting complex correlations (Gómez-Bombarelli et al., 2018). However, barring a few
exceptions (Bouchacourt et al., 2018; Severson et al., 2019), this line of work has assumed the data
to be independent and identically distributed.

In this work, we consider the task of modeling independent but not identically distributed data.
We are particularly interested in analyzing data comprising two or more distinct but related sub-
populations. Such data arise frequently in practice. For instance, patients suffering from an ailment
may exhibit symptomatic heterogeneity based on gender or environmental factors, documents in
a corpus may exhibit semantic or syntactic similarities based on genre or authorship, images may
cluster depending on the image subject. Our goal is to provide rich descriptions of such data by re-
covering latent representations that disentangle factors of variation common to all populations from
those that are unique to a particular population. Motivated by this challenge, we propose non-linear
latent variable models that explicitly account for the heterogeneity in the data. Coupled with an
inference procedure that encourages high (low) mutual information between the latent representa-
tion and the data within (across) a population, we show that our models are indeed able to recover
population-specific representations that are salient and disentangled across differing populations as
well as shared representations that isolate commonalities between populations.

Through careful experiments, we vet the effectiveness of our approach and demonstrate that the
learned representations are useful for a diverse set of applications including image denoising, unsu-
pervised sub-group discovery, and continual learning.
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Figure 1: Graphical model of CPVAE (left) vs. standard VAE (right)

2 METHOD

2.1 CROSS-POPULATION VARIATIONAL AUTOENCODER

We propose a generative model of a data instance xki belonging to population k using two latent
variables zki and tki. The latent variables are mapped to the observed space using non-linear map-
pings, fθs(zki) and fθk(tki), each parameterized by a neural network. While we share the param-
eters θs among all populations, θk are only shared among instances belonging to the population k.
This construction encourages the model to capture common latent structure in θs, while allowing θk
to focus on factors of variation unique to the particular population k. We combine the contributions
from the two mappings using a function g. The generative procedure can be summarized as,

zki ∼ N (0, I), tki ∼ N (0, I),

xki | zki, tki ∼ p(g(fθs(zi), fθk(tki))), ∀i ∈ {1 . . . nk},∀k ∈ {1, . . . ,K},
(1)

where p is an appropriately chosen distribution for modeling the observed data. In our experiments,
we use an additive function g(a, b) = a+ b, and select p to be the Gaussian distribution with mean
parameterized by g and an isotropic diagonal covariance matrix, Ψ. We emphasize that other choices
of function can easily be incorporated into the model. Exploring the space of aggregation functions
is planned future work.

2.2 AMORTIZED VARIATIONAL INFERENCE

Amoritized variational inference (Dayan et al., 1995; Gershman & Goodman, 2014) with the aid
of reparameterized gradients (Rezende et al., 2014; Kingma & Welling, 2013) is straightforward to
implement for the model described in equation 1. We assume that the variational approximation
factorizes conditioned on the observation,

qφ(zki, tki | xki) = qφs(zki | xki)qφk(tki | xki). (2)

We parameterize the variational distribution with a single, shared inference network with two distinct
outputs, one for each latent variable. Finally, the model and variational parameters are jointly learned
by optimizing the evidence lower bound (ELBO),

L(θ, φ) =

K∑
k=1

nk∑
i=1

Eqφ(zki,tki|xki)[log p(xki | zki, tki; θs, θk)]

−DKL (qφ(zki, tki | xki)||p(zki, tki)) .

(3)

Importantly, in the above setup, the per-population model and variational parameters θk and φk are
learned only from the data in that population, allowing them to learn population specific representa-
tions. We refer to this combination of the model described in equation 1 and the inference network
defined above as the cross-population variational auto-encoder (CPVAE), owing to its similarity with
the VAE (Kingma & Welling, 2013). See Figure 1 for a graphical representation of the CPVAE and
comparison to the VAE.
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2.3 MUTUAL INFORMATION REGULARIZED INFERENCE

By employing population-specific mappings, CPVAE prevents latent factors of variation unique to
one population from ‘leaking’ into the private representation of another population. However, the
model structure does not prevent leakage between the shared and population specific representa-
tions, since every data instance is generated by a combination of the shared and population specific
representation. In fact, when CPVAE is trained by maximizing the ELBO in equation 3 we find that
the private representations of a population often exhibit latent features from the shared space and
vice versa.

Inspired in part by the InfoVAE (Zhao et al., 2017), we discourage such inferences by minimizing the
mutual information between population-specific latent variables and data from non-corresponding
populations while maximizing the mutual information within a population.

Let xk = {xk1, . . . ,xknk} denote the set of all data instances belonging to population k, let tk, zk
be the set of corresponding latent variables, and x−k = {xj ;∀j 6= k ∈ K} denote the set of all
non-corresponding populations. We learn the CPVAE by maximizing,

J(θ, φ) = L(θ, φ) +

K∑
k

nk
(
Iq(xk; tk)− Iq(x−k; t̃k)

)
, (4)

where t̃k = {{t̃ji}
nj
i=1}j 6=k and t̃ji ∼ qφk(t̃ji | xji) where xji ∈ x−k, i.e., the result of encoding

members of the non-corresponding populations, x−k with the parameters φk of the current popula-
tion’s inference network. This function can be simplified to a tractable objective by re-writing the
mutual information term:

Iq(xk; tk) =− Eqφk (xk,tk) log
qφk(tk)

qφk(tk|xk)

=− Eqφk (xk,tk) log
qφk(tk)p(tk)

qφk(tk|xk)p(tk)

=− EpD(xk)Eqφk (tk|xk) log
p(tk)

qφk(tk|xk)
− Eqφk (tk) log

qφk(tk)

p(tk)

=
1

nk

nk∑
i=1

[DKL (qφk(tki|xki)||p(tki))]−DKL (qφk(tk)||p(tk)) ,

(5)

where we assume qφk(xk, tk) = pD(xk)qφk(tk | xk) and pD(xk) is the empirical distribution.
Note that when we take Iq(xk; tk) − Iq(x−k; tk) as in our objective, the intractable marginal KL
term conveniently cancels out. The complete objective function is

J(θ, φ) =

K∑
k=1

[ nk∑
i=1

[
Eqφ(zki,tki|xki)[log p(xki | zki, tki; θs, θk)]−DKL (qφs(zki|xki)||p(zki))

]
− nk
K − 1

K∑
j 6=k

1

nj

nj∑
i=1

DKL
(
qφk
(
t̃ji|xji

)
||p(tji)

) ]
,

(6)

This objective differs from the standard variational objective only in that the divergence of the
private latent prior for any population tk is minimized for its contrasting populations x−k and
not its corresponding population xk. That is, we minimize DKL

(
qφk(t̃k|x−k)||p(tk)

)
rather than

DKL (qφk(tk|xk)||p(tk)). As we will show, this modification reduces entanglement between pri-
vate latent vectors and enables the model to learn more salient representations of each population.
Moreover, since Kullback Leibler divergence is always non-negative, J(θ, φ) in equation 6 remains
a lower bound to the marginal likelihood.

In some scenarios, it may desirable to increase the importance of the cross mutual information term
Iq(x−k; tk) to our objective, further discouraging shared features from leaking into population-
specific representations. To this end, we can simply add a scaling constant α ≥ 1 to the final
term in equation 6. In our experiments, we often find substantially improved results by beginning
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with α = 1 and gradually annealing its value over training. A summary of the complete training
procedure can be found in Algorithm 1.

Algorithm 1 Training procedure of CPVAE
Initialize conditional parameters θ = {θs} ∪ {θk;∀k ∈ K};
Initialize variational parameters φ = {φs} ∪ {φk;∀k ∈ K};
repeat

Sample mini-batch from each population {{xki}mki=1}Kk=1
for k ∈ 1 . . .K do

Sample shared codes zk ∼ qφs(zk|xk);
Sample private codes tk ∼ qφk(tk|xk);
for j 6= k ∈ 1 . . .K do

Sample fictitious codes t̃j ∼ qφk(t̃j |xj);
end

end
Calculate J(θ, φ) as in (6);
Update θt+1, φt+1 ← θt, φt according to ascending gradient estimate of J(θ, φ);

until convergence;

3 RELATED WORK

Substantial recent work has explored methods for the unsupervised learning of disentangled repre-
sentations. Though lacking a formal definition, the key idea behind a disentangled representation is
that it should separate distinct informative factors of variation of the data (Bengio et al., 2013; Lo-
catello et al., 2019). Several techniques have been proposed to encourage VAEs to learn disentangled
latent representations. Some examples are β-VAE (Higgins et al., 2017), AnnealedVAE (Burgess
et al., 2018), FactorVAE (Kim & Mnih, 2018), β-TCVAE (Chen et al., 2018), and DIP-VAE (Kumar
et al., 2017), each of which proposes some variant of the VAE objective to encourage the variational
distribution to be factorizble. Recently, it has been proposed that it is not possible to recover dis-
entangled features without inductive bias or supervision (Locatello et al., 2019). CPVAE makes no
assumptions about the composition of variational factors but imposes a form of weak supervision
where population assignment is known and uses that information in choosing the model architecture
and learning algorithm.

A few other techniques have been proposed to use weak supervision for learning improved represen-
tations. Multi-study factor analysis (De Vito et al., 2018a;b) has similar aims and structure as com-
pared to CPVAE but uses a linear model and focuses on applications related to high-throughput bio-
logical assay data. Contrastive latent variable models (Severson et al., 2019; Abid & Zou, 2019) have
non-linear variants but focus on the case where one dataset is the target to be compared/contrastive
to another dataset. Multi-level variational autoencoders (ML-VAEs) have been proposed as a way
to incorporate group-level data in unsupervised learning (Bouchacourt et al., 2018). After dividing
data into disjoint groups according to some factor of interest, the ML-VAE framework models latent
structure both at the level of individual observations and of entire groups. This method effectively
separates latent representations into semantically relevant parts, but differs from the CPVAE frame-
work which models both private and shared structure at the observation level. Output-interpretable
VAEs (oi-VAEs) have been proposed to leverage data that can be partitioned into within sample
groups in an interpretable model (Ainsworth et al., 2018). The model structure is such that the
components within each group are modeled with separate generative networks. Mappings from the
latent representations to each of the groups are encouraged to be sparse via hierarchical Bayesian
priors to improve interpretability. The primary difference between oi-VAE and CPVAE is that oi-
VAE uses groupings over components, xi ∈ Rd, xi = [xi1, . . . , xiK ], and D = {xi}ni=1 and CPVAE
uses groupings over instances, xki ∈ Rd and D = {{xki}nki=1}Kk=1. There has also been recent work
in learning disentangled representations from sequential data (Hsu et al., 2017; Li & Mandt, 2018).
These models share a representation across all elements of the sequence to learn global sequence
dynamics while local aspects are modeled via time step specific representations. This problem is
somewhere between the standard disentangled representation learning, where the goal is to learn
disentangled features with no prior knowledge, and weak supervision as the sequential nature of the
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Figure 2: Grassy-MNIST reconstructions with two populations: digits 0-4 and digits 5-9. First
row: original images. Second row: full reconstructions. Third row: private space (digit-only)
reconstructions. Fourth row: shared space (background only) reconstructions. Note that this model
has never seen the original digits or the original backgrounds.

Method SHARED ARI PRIVATE ARI

VAE .1881 —
CPVAE, NO MI .0306 .1926
CPVAE, α = 1 .0031 .2281

Table 1: Adjusted rand index (ARI) for discovered
clusters in the shared vs. private latent spaces.

data inherently provides some structure. Our work presented here focuses on non-sequential data.
Moreover, unlike us these works do not employ mutual information regularized inference, which we
find to be crucial for recovering disentangled shared and private representations.

4 EXPERIMENTS

In order to determine the effectiveness of our approach as well as demonstrate several possible
applications, we evaluate it with a number of experiments on tasks including image denoising, sub-
group discovery, classification, and continual learning.

Each experiment employs the following setup: the encoder and decoder are strided convolutional
neural networks with ReLU activations and batch normalization after each layer. The decoder em-
ploys residual skip connections which have been shown to help prevent posterior collapse in VAEs
(Dieng et al., 2018). We optimize using Adam (Kingma & Ba, 2014) with a base learning rate of
0.001.

4.1 DENOISED GENERATIVE MODELING APPLIED TO GRASSY-MNIST

We evaluate our model on a synthetic dataset of handwritten digits from the MNIST (LeCun et al.,
1998) superimposed on grassy backgrounds from ImageNet (Russakovsky et al., 2015) (see Figure 2,
top row for example images). In Abid et al. (2018); Severson et al. (2019); Abid & Zou (2019), the
authors train contrastive models on this dataset along with the original grass images in order to learn
more salient latent representations of the digits.

In our experiment, we split this synthetic data into two populations consisting of digits 0-4 and digits
5-9. We use a shared latent dimension of 100 and a population-specific latent size of 25. We show
that our model is able to effectively separate the complex background representations in the shared
latent space from that of the digits in each private space. Crucially, the model is never shown either
the original background grass images nor the original non-noisy digits.

A sample of reconstructed images can be seen in Figure 2. The first and second rows show the
original digits with noise and the full CPVAE reconstructions, respectively. The third and fourth
rows show the reconstructions when the shared or the private latent spaces are ignored, respectively.
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Figure 3: Visualization of subgroups within MNIST digit population after t-SNE projection of latent
space for our method (left) vs a standard VAE (right). Each color represents one of the five digits
within the population.

Figure 4: CPVAE reconstructions of CelebA dataset images. Top row: original images. Second row:
reconstructions with male and shared space decoders. Third row: reconstructions with non-male
and shared space decoders. Bottom row: shared decoder only.

These results qualitatively demonstrate CPVAE’s ability to separate the shared and private feature
representations.

As an evaluation of the salience of the private space representations, we also measure the ability
of our model to do sub-group discovery within each population. K-means clustering is applied to
the private space latent representations and compared to the true class labels using the adjusted rand
index (ARI), which measures the correspondence of the cluster assignments with the true labels
(Menezes & Roth, 2017). The results are in Table 1 and a TSNE visualization of one of the private
latent spaces for this task compared with that of a standard VAE is in Figure 3. Our model outper-
forms the standard VAE, demonstrating the ability of our model to learn improved representations by
incorporating cross-population structure. Incorporating the MI objective (α = 1) further improves
ARI scores in the private space and worsens scores in the shared space, suggesting that the MI term
effectively mitigates the leakage of population-specific features in the shared space.

4.2 DISENTANGLING LABELED ATTRIBUTES IN CELEBRITY IMAGES

CPVAE allows us to model data such that latent structure which corresponds to some labeled at-
tribute of interest can be isolated. To demonstrate this, we perform an experiment on the Large-scale
CelebFaces Attributes (CelebA) dataset (Liu et al., 2015). This data consists of 202,599 aligned and
cropped pictures of celebrities with 40 binary attributes labeled for each image. See Figure 4.

6



Under review as a conference paper at ICLR 2020

DATASET ANNEAL α α = 1 NO MI RESNET50

MNIST 99.5 98.2 97.3 99.6
MNIST-GRASS 77.5 75.1 70.5 85.7
CIFAR-10 76.2 47.9 42.2 84.1

Table 2: Maximum likelihood classification test accuracies (%) for
our model with and without mutual information terms evaluated on
different datasets. For reference, we also include accuracies from a
ResNet50 classifier.

We train a CPVAE model on this dataset with two populations determined by the male attribute
label. Under this setup, the model is incentivized to learn representations of gender-specific features
in the private latent spaces while the shared space infers the remaining factors of variation. As a
qualitative evaluation of this model, we autoencode a sample of images with each private space and
examine the resulting reconstructions. By reconstructing an image with the non-corresponding pop-
ulation’s decoder, we get reconstructions that closely resemble the original image but with features
that appear traditionally male when constructed from the male space and female when constructed
from the non-male space. See Figure 4 for a sample of these results. This serves as additional
evidence of our model’s ability to separate population-specific features from shared latent structure.

4.3 MAXIMUM MARGINAL LIKELIHOOD CLASSIFICATION

As an additional evaluation of our model’s ability to learn disentangled population-specific repre-
sentations, we test our model’s ability to classify unseen data points into their corresponding popu-
lations. We assign an instance x∗ to the population that maximizes its marginal likelihood,

k̂i = arg max
k∈K

p(x∗ | θk, θs) = arg max
k∈K

Ep(zki,tki) [p(x∗ | zki, tki; θk, θs)] . (7)

We use importance sampling to compute the intractable expectation,

Ep(zki,tki) [p(x∗ | zki, tki; θk, θs)] = Eqφ(zki,tki|xi)
[
p(x∗ | zki, tki; θk, θs)

p(zki, tki)

qφ(zki, tki | x∗)

]
.

(8)

In order to achieve a high accuracy, the model must learn features in each population-specific latent
space which are unique to its corresponding set. We therefore evaluate our model’s classification per-
formance on several labeled image datasets of varying difficulty — MNIST, CIFAR-10 (Krizhevsky
et al., 2009), and the Grassy MNIST described in experiments above. In each case, we define a
distinct population for each class and evaluate its performance on a held-out test set. We emphasize
that our goal with this experiment is not to demonstrate state-of-the-art classification performance,
but to provide a convenient, quantitative benchmark for evaluating the quality of the model’s learned
representations. For reference, we also provide classification accuracies from a ResNet-50 convolu-
tional model (He et al., 2015; LeCun et al., 2015) trained by maximizing p(k∗ | x∗) for five hundred
epochs. Note that these CNN scores are not the state of the art for each task, but serve as a contextual
reference point for understanding our model’s performance. We compare this against our CPVAE
models both with and without the mutual information regularization as well as a variant where the
weight on the mutual information term, α, is gradually annealed over training. Additional details
about model architectures and the α annealing scheme can be found in the supplement.

The results can be seen in Table 2. Our model approaches the performance of the convolutional
neural network despite not being trained to directly maximize classification performance. We find
that performance improves by utilizing our mutual information regularized objective, particularly
when α is annealed over training. This result provides compelling evidence that our model is able to
effectively learn private space representations which are unique to each corresponding population.

4.4 CONTINUAL LEARNING

Neural networks are widely known to be susceptible to a phenomenon known as catastrophic for-
getting (McCloskey & Cohen, 1989), wherein a model’s performance on a previously learned task
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Figure 5: Image reconstructions for CPVAE vs VAE in continual learning setting. Each column
shows the reconstructions for the labeled task as well as previous tasks, demonstrating CPVAE’s
ability to retain previously learned information by utilizing both population-specific and shared la-
tent vectors.

degrades rapidly as new tasks are encountered. We show the merit of our method in mitigating this
phenomenon in the context of variational autotencoders. By modeling sequentially arriving tasks as
distinct populations, our method models the structure unique to each task in the population-specific
latent spaces and learns general information useful to all tasks in the shared space.

We perform an experiment on the 17 Category Flower dataset (Nilsback & Zisserman, 2006). We
evaluate our model’s ability to reconstruct images from five sequentially-arriving image categories:
sunflower, daisy, iris, daffodil, and pansy. Each category is assigned its own population and train-
ing proceeds in two phases: first, tasks 1 and 2 are learned together using the mutual information
regularized objective. This step allows the model to infer structure that is shared between the two
tasks that can then be utilized for learning later tasks. For example, the shared space may learn
to represent the backgrounds while the private spaces learn to represent the corresponding flowers.
Next, each remaining task is learned in sequence with the evidence lower bound.

The results can be seen in Figure 5 where we show the reconstructions for an image from each task
throughout the training procedure for CPVAE in comparison to a VAE. In contrast to the VAE whose
reconstructions are profoundly impacted by introduction of new tasks, the reconstructions from our
model are relatively unaffected.

5 CONCLUSION

In this work, we presented a framework for using a VAE-like architecture to model multiple sets
of data which are independent but come from differing distributions. We developed an architec-
ture which encourages the isolation of shared and private latent factors, and presented a mutual
information regularized version of the evidence lower bound which discourages entanglement of
the shared and population-specific latent vectors. Our experiments on the Grassy MNIST dataset
demonstrated our model’s ability to learn more salient representations and to effectively separate the
shared and private latent factors on the task of image denoising. We also showed the effectiveness
of our regularized objective in learning population-specific representations on several image classi-
fication tasks. Lastly, we demonstrated the value of learning population-specific representations in
the context of continual learning where our method retains performance on previously encountered
tasks in comparison to a VAE.
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Appendices
A GRASSY MNIST GENERATIVE SAMPLES

Figure 6: Generative samples from CPVAE trained on Grassy MNIST. Each row is from a population
corresponding to a different digit.

Figure 7: Generative samples from the private space of CPVAE trained on Grassy MNIST. Each row
is from a population corresponding to a different digit.

11



Under review as a conference paper at ICLR 2020

B EXPERIMENT DETAILS

B.1 MAXIMUM MARGINAL LIKLIHOOD CLASSIFICATION

The weight on the mutual information term is annealed according to α(e) = min(1.1e, 1000) where
e is the training epoch number. For MNIST, the shared and private latent dimensions are 2 and 5,
respectively. For CIFAR-10, the latent dimensions are 10 and 20. For Grassy MNIST, they are 30
and 5. We augment each set by randomly translating the images by up to 10% in each direction
during training which we find to help reduce overfitting and increase test performance.

B.2 CONTINUAL LEARNING

The continual learning experiment uses a total of K = 5 populations, one for each task. The
dimensions of the latent vectors are 10 for the shared space and 10 for each private space. The VAE
which we use for comparison has a latent size of 60 so that the total latent size of each model is the
same. During the first training phase we use a base learning rate of 0.001, and lower it to 0.0001
during tasks 3-5.
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