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ABSTRACT

We focus on solving the univariate times series point forecasting problem using
deep learning. We propose a deep neural architecture based on backward and
forward residual links and a very deep stack of fully-connected layers. The ar-
chitecture has a number of desirable properties, being interpretable, applicable
without modification to a wide array of target domains, and fast to train. We test
the proposed architecture on several well-known datasets, including M3, M4 and
TOURISM competition datasets containing time series from diverse domains. We
demonstrate state-of-the-art performance for two configurations of N-BEATS for
all the datasets, improving forecast accuracy by 11% over a statistical benchmark
and by 3% over last year’s winner of the M4 competition, a domain-adjusted
hand-crafted hybrid between neural network and statistical time series models.
The first configuration of our model does not employ any time-series-specific
components and its performance on heterogeneous datasets strongly suggests that,
contrarily to received wisdom, deep learning primitives such as residual blocks are
by themselves sufficient to solve a wide range of forecasting problems. Finally, we
demonstrate how the proposed architecture can be augmented to provide outputs
that are interpretable without considerable loss in accuracy.

1 INTRODUCTION

Time series (TS) forecasting is an important business problem and a fruitful application area for
machine learning (ML). It underlies most aspects of modern business, including such critical areas as
inventory control and customer management, as well as business planning going from production and
distribution to finance and marketing. As such, it has a considerable financial impact, often ranging
in the millions of dollars for every point of forecasting accuracy gained (Jain, 2017; Kahn, 2003).
And yet, unlike areas such as computer vision or natural language processing where deep learning
(DL) techniques are now well entrenched, there still exists evidence that ML and DL struggle to
outperform classical statistical TS forecasting approaches (Makridakis et al., 2018a;b). For instance,
the rankings of the six “pure” ML methods submitted to M4 competition were 23, 37, 38, 48, 54,
and 57 out of a total of 60 entries, and most of the best-ranking methods were ensembles of classical
statistical techniques (Makridakis et al., 2018b).

On the other hand, the M4 competition winner, an approach by S. Smyl, was based on a hy-
brid between neural residual/attention dilated LSTM stack with a classical Holt-Winters statistical
model (Holt, 1957; 2004; Winters, 1960) with learnable parameters. Since Smyl’s approach heavily
depends on this Holt-Winters component, Makridakis et al. (2018b) further argue that “hybrid ap-
proaches and combinations of method are the way forward for improving the forecasting accuracy and
making forecasting more valuable”. In this work we aspire to challenge this conclusion by exploring
the potential of pure DL architectures in the context of the TS forecasting. Moreover, in the context
of interpretable DL architecture design, we are interested in answering the following question: can
we inject a suitable inductive bias in the model to make its internal operations more interpretable, in
the sense of extracting some explainable driving factors combining to produce a given forecast?

1.1 SUMMARY OF CONTRIBUTIONS

Deep Neural Architecture: To the best of our knowledge, this is the first work to empirically
demonstrate that pure DL using no time-series specific components outperforms well-established
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statistical approaches on M3, M4 and TOURISM datasets (on M4, by 11% over statistical benchmark,
by 7% over the best statistical entry, and by 3% over the M4 competition winner). In our view, this
provides a long-missing proof of concept for the use of pure ML in TS forecasting and strengthens
motivation to continue advancing the research in this area.

Interpretable DL for Time Series: In addition to accuracy benefits, we also show that it is fea-
sible to design an architecture with interpretable outputs that can be used by practitioners in very
much the same way as traditional decomposition techniques such as the “seasonality-trend-level”
approach (Cleveland et al., 1990).

2 PROBLEM STATEMENT

We consider the univariate point forecasting problem in discrete time. Given a length-H forecast
horizon a length-T observed series history [y1, . . . ,yT ] ∈ RT , the task is to predict the vector of
future values y ∈ RH = [yT+1,yT+2, . . . ,yT+H ]. For simplicity, we will later consider a lookback
window of length t ≤ T ending with the last observed value yT to serve as model input, and denoted
x ∈ Rt = [yT−t+1, . . . ,yT ]. We denote ŷ the forecast of y. The following metrics are commonly
used to evaluate forecasting performance (Hyndman & Koehler, 2006; Makridakis & Hibon, 2000;
Makridakis et al., 2018b; Athanasopoulos et al., 2011):
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Here m is the periodicity of the data (e.g., 12 for monthly series). MAPE (Mean Absolute Percentage
Error), sMAPE (symmetric MAPE) and MASE (Mean Absolute Scaled Error) are standard scale-free
metrics in the practice of forecasting (Hyndman & Koehler, 2006; Makridakis & Hibon, 2000):
whereas sMAPE scales the error by the average between the forecast and ground truth, the MASE
scales by the average error of the naïve predictor that simply copies the observation measured m
periods in the past, thereby accounting for seasonality. OWA (overall weighted average) is a M4-
specific metric used to rank competition entries (M4 Team, 2018b), where sMAPE and MASE metrics
are normalized such that a seasonally-adjusted naïve forecast obtains OWA = 1.0.

3 N-BEATS

Our architecture design methodology relies on a few key principles. First, the base architecture
should be simple and generic, yet expressive (deep). Second, the architecture should not rely on time-
series-specific feature engineering or input scaling. These prerequisites let us explore the potential
of pure DL architecture in TS forecasting. Finally, as a prerequisite to explore interpretability, the
architecture should be extendable towards making its outputs human interpretable. We now discuss
how those principles converge to the proposed architecture.

3.1 BASIC BLOCK

The proposed basic building block has a fork architecture and is depicted in Fig. 1 (left). It accepts
an input x and outputs two vectors, x̂ and ŷ. Input x is a history lookback window of certain length
ending with the last measured observation, ŷ is the block’s forward forecast of length H, and x̂ is the
block’s best estimate of x, also known as the ‘backcast’, given the constraints on the functional space
that the block can use to approximate signals. We set the length of input window to a multiple of the
forecast horizon H, and typical lengths of x in our setup range from 2H to 7H.

Internally, the basic building block consists of two parts. First, the waveform generator gθ : T N 7→
Y N is a map from N points in the time domain T N ⊂ RN to N points in the forecast (or backcast)
value domain, Y N ⊂ RN . The number of points in forecast and backcast is different, in general. The
waveform generator is parameterized with θ ∈Θ⊂RM . The function of gθ is to provide a sufficiently
rich set of time-varying waveforms, selectable by varying θ . As shown below, gθ can either be
chosen to be learnable or can be set to specific funtional forms to reflect certain problem-specific
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Figure 1: Proposed architecture. The basic building block is a multi-layer FC network with ReLU
nonlinearities. It predicts basis expansion coefficients both forward, θ f , (forecast) and backward, θb,
(backcast). Blocks are organized into stacks using doubly residual stacking principle. A stack may
have layers with shared gθ . Forecasts are aggregated in hierarchical fashion. This enables building a
very deep neural network with interpretable outputs.

inductive biases in order to appropriately constrain the structure of outputs. Concrete examples of gθ

are discussed in Section 3.3.

Second, the forward and the backward predictors of parameters of the waveform generator are maps
ϕ

f
φ

:Rdim(x) 7→Θ and ϕb
φ

:Rdim(x) 7→Θ. The task of ϕ
f

φ
is to predict the forward expansion parameters

θ f with the ultimate goal of optimizing the accuracy of the partial forecast ŷ by properly mixing the
waveforms supplied by gθ . Conversely, the task of ϕb

φ
is to produce an estimate of x with the ultimate

goal of helping the downstream blocks by removing components of their input that are not helpful for
forecasting. We use ϕφ that has a form of the multi-layer fully connected (FC) neural network with
ReLU non-linearity (Nair & Hinton, 2010). The number of hidden layers in the network is 4 and the
width of each layer may be 256, 512 or 2048 units depending on where it is used (more details in
Section 3.3 and Appendix E).

3.2 DOUBLY RESIDUAL STACKING

The classical well-known residual network architecture adds the input of the stack of layers to its
output before passing the result to the next stack (He et al., 2016). The DenseNet architecture
proposed by Huang et al. (2017) further extends this principle by introducing extra connections from
the output of each layer stack to the input of every other layer stack that follows it. These approaches
provide clear advantages in improving the trainability of very deep architectures. Their disadvantage
in the context of this work is that they result in network structures that are difficult to interpret.

We propose a novel hierarchical doubly residual topology depicted in Fig. 1 (middle and right). The
proposed architecture has two residual branches, one running over backcast prediction branch of
each layer and the other one is running over the forecast branch of each layer. The backcast residual
branch can be thought of as running a sequential analysis of the input signal. Each block removes
the portion of the signal that it can explain well, making the forecast job of the downstream blocks
easier. This structure also facilitates more fluid gradient backpropagation. More importantly, each
layer outputs a partial forecast that is first aggregated at the stack level and then at the overall network
level, providing a hierarchical decomposition. In a generic model context, when stacks are allowed to
have arbitrary gθ for each layer, this does not have an effect other than making the network more
transparent to gradient flows. In a special situation of deliberate structure enforced in gθ shared over
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a stack, explained next, this has the critical importance of enabling interpretability via the aggregation
of meaningful partial forecasts.

3.3 INTERPRETABILITY

We propose two configurations of the architecture, based on the selection of gθ . One of them is
generic DL, the other one is augmented with certain inductive biases to be interpretable.

The generic architecture does not rely on TS-specific knowledge. We set gθ to be a linear projection
of the previous layer output. In this case the partial forecast at the output of block j in stack i is:

ŷi, j = Wi, jθi, j +bi, j.

The interpretation of this model is that the FC layers in the basic building block depicted in Fig. 1
learn the predictive decomposition of the partial forecast ŷi, j in the basis Wi, j learned by the network.
Matrix Wi, j has dimensionality H×dim(θi, j). Therefore, the first dimension of Wi, j has the inter-
pretation of discrete time index in the forecast domain. The second dimension of the matrix has the
interpretation of the indices of the basis functions, with θi, j being the expansion coefficients for this
basis. Thus the columns of Wi, j can be thought of as waveforms in the time domain. Because no
additional constraints are imposed on the form of Wi, j, the waveforms learned by the deep model do
not have inherent structure (and none is apparent in our experiments). This leads to ŷi, j as well as
stack outputs ŷi = ∑ j ŷi, j not being interpretable.

The interpretable architecture can be constructed by reusing the overall architectural approach
in Fig. 1 and by adding structure to gθ for each stack. Forecasting practitioners often use the
decomposition of time series into trend and seasonality, such as those performed by the STL (Cleveland
et al., 1990) and X13-ARIMA (U.S. Census Bureau, 2013). We propose to design the trend and
seasonality decomposition into the model to make the stack outputs more easily interpretable.

Trend model. A typical characteristic of trend is that most of the time it is a monotonic function, or
at least a slowly varying function. In order to mimic this behaviour we propose to constrain gθ to be
a polynomial of small degree p, a function slowly varying across forecast window:

gθ (t) =
p

∑
i=0

θit i. (1)

Here time vector t = [0,1,2, . . . ,H−2,H−1]T/H is defined on a discrete grid running from 0 to
(H−1)/H, forecasting H steps ahead. The trend forecast will then have the form:

ŷtr
i, j = Tθi, j,

where θi, j are polynomial coefficients predicted by a FC network of layer j of stack i and T =
[1, t, . . . , tp] is the matrix of powers of t. If p is low, e.g. 2 or 3, it forces ŷtr

i, j to mimic trend.

Seasonality model. Typical characteristic of seasonality is that it is a regular, cyclical, recurring
fluctuation. Therefore, to model seasonality, we propose to constrain gθ to belong to the class of
periodic functions gθ (t) = gθ (t− s), where s is a seasonality period. A natural choice for the basis to
model periodic function is the Fourier series:

gθ (t) =
bH/2−1c

∑
i=0

θi cos(2πit)+θi+bH/2c sin(2πit), (2)

The seasonality forecast will then have the form:
ŷs

i, j = Sθi, j,

where θi, j are Fourier coefficients predicted by a FC network of layer j of stack i and S =
[1,cos(2πt), . . .cos(2πbH/2− 1ct)),sin(2πt), . . . ,sin(2πbH/2− 1ct))] is the matrix of sinusoidal
waveforms. The forecast ŷs

i, j is then a periodic function mimicking typical seasonal patterns.

The overall interpretable architecture consists of two stacks only: the trend modeling stack is followed
by the seasonality modeling stack. The doubly residual stacking combined with the forecast/backcast
principle result in (i) the trend component being removed from the input window x before it is fed
into the seasonality analysis stack and (ii) the partial forecasts of trend and seasonality are available
as separate interpretable outputs. Structurally, each of the stacks consists of several blocks connected
with residual connections as depicted in Fig. 1 and each of them shares its respective, non-learnable
gθ . The number of blocks is 3 for both trend and seasonality. We found that on top of sharing gθ ,
sharing all the weights across blocks in a stack resulted in better performance on validation set.
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3.4 ENSEMBLING

Ensembling is used by all the top entries in the M4-competition. We rely on ensembling as well
to be comparable. We found that ensembling is a much more powerful regularization technique
than the popular alternatives, e.g. dropout or L2-norm penalty. The addition of those methods
improved individual models, but was hurting the performance of the ensemble. The core property of
an ensemble is diversity. We build an ensemble using several sources of diversity. First, the ensemble
models are fit on three different metrics: sMAPE,MASE and MAPE, a version of sMAPE that has only
the ground truth value in the denominator. Second, for every horizon H, individual models are trained
on input windows of different length: 2H,3H, . . . ,7H, for a total of six window lengths. Thus the
overall ensemble exhibits a multi-scale aspect. Finally, we perform a bagging procedure (Breiman,
1996) by including models trained with different random initializations. We use 180 total models to
report results on the test set (please refer to Appendix C for the ablation of ensemble size). We use
the median as ensemble aggregation function.

4 RELATED WORK

The approaches to TS forecasting can be split in a few distinct categories. The statistical modeling
approaches based on exponential smoothing and its different flavors are well established and are
often considered a default choice in the industry (Holt, 1957; 2004; Winters, 1960). More advanced
variations of exponential smoothing include the winner of M3 competition, the Theta method (As-
simakopoulos & Nikolopoulos, 2000) that decomposes the forecast into several theta-lines and
statistically combines them. The pinnacle of the statistical approach encapsulates ARIMA, auto-
ARIMA and in general, the unified state-space modeling approach, that can be used to explain and
analyze all of the approaches mentioned above (see Hyndman & Khandakar (2008) for an overview).
More recently, ML/TS combination approaches started infiltrating the domain with great success,
showing promising results by using the outputs of statistical engines as features. In fact, 2 out of top-5
entries in the M4 competition are approaches of this type, including the second entry (Montero-Manso
et al., 2019). The second entry computes the outputs of several statistical methods on the M4 dataset
and combines them using gradient boosted tree (Chen & Guestrin, 2016). Somewhat independently,
the work in the modern deep learning TS forecasting developed based on variations of recurrent neural
networks (Flunkert et al., 2017; Rangapuram et al., 2018; Toubeau et al., 2019; Zia & Razzaq, 2018)
being largely dominated by the electricity load forecasting in the multi-variate setup. A few earlier
works explored the combinations of recurrent neural networks with dilation, residual connections
and attention (Chang et al., 2017; Kim et al., 2017; Qin et al., 2017). These served as a basis for the
winner of the M4 competition, an approach developed by S. Smyl. The winning entry combines a
Holt-Winters style seasonality model with its parameters fitted to a given TS via gradient descent
and a unique combination of dilation/residual/attention approaches for each forecast horizon. The
resulting model is a hybrid model that architecturally heavily relies on a time-series engine. It is hand
crafted to each specific horizon of M4, making this approach hard to generalize to other datasets.

5 EXPERIMENTAL RESULTS

Our key empirical results based on aggregate performance metrics over several datasets—M4 (M4
Team, 2018b; Makridakis et al., 2018b), M3 (Makridakis & Hibon, 2000; Makridakis et al., 2018a)
and TOURISM (Athanasopoulos et al., 2011)—appear in Table 1. More detailed descriptions of the
datasets are provided in Section 5.1 and Appendix B. For each dataset, we compare our results with
best 5 entries for this dataset reported in the literature, according to the customary metrics specific to
each dataset (M4: OWA and sMAPE, M3: sMAPE, TOURISM: MAPE). More granular dataset-specific
results with data splits over forecast horizons and types of time series appear in respective appendices
(M4: Appendix D.1; M3: Appendix D.2; TOURISM: Appendix D.3).

In Table 1, we study the performance of two N-BEATS configurations: generic (N-BEATS-G) and
interpretable (N-BEATS-I), as well as N-BEATS-I+G (ensemble of all models from N-BEATS-G
and N-BEATS-I). On M4 dataset, we compare against 5 representatives from the M4 competi-
tion (Makridakis et al., 2018b): each best in their respective model class. Pure ML is the submission
by B. Trotta, the best entry among the 6 pure ML models. Statistical is the best pure statistical
model by N.Z. Legaki and K. Koutsouri. ML/TS combination is the model by P. Montero-Manso,
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Table 1: Performance on the M4, M3, TOURISM test sets, aggregated over each dataset. Evaluation
metrics are specified for each dataset; lower values are better. The number of time series in each
dataset is provided in brackets.

M4 Average (100,000) M3 Average (3,003) TOURISM Average (1,311)
sMAPE OWA sMAPE MAPE

Pure ML 12.894 0.915 Comb S-H-D 13.52 ETS 20.88
Statistical 11.986 0.861 ForecastPro 13.19 Theta 20.88
ProLogistica 11.845 0.841 Theta 13.01 ForePro 19.84
ML/TS combination 11.720 0.838 DOTM 12.90 Stratometrics 19.52
DL/TS hybrid 11.374 0.821 EXP 12.71 LeeCBaker 19.35

N-BEATS-G 11.168 0.797 12.47 18.47
N-BEATS-I 11.174 0.798 12.43 18.97
N-BEATS-I+G 11.135 0.795 12.37 18.52

T. Talagala, R.J. Hyndman and G. Athanasopoulos, second best entry, gradient boosted tree over
a few statistical time series models. ProLogistica is the third entry in M4 based on the weighted
ensemble of statistical methods. Finally, DL/TS hybrid is the winner of M4 competition designed by S.
Smyl. On the M3 dataset, we compare against the Theta method (Assimakopoulos & Nikolopoulos,
2000), the winner of M3; DOTA, a dynamically optimized Theta model (Fiorucci et al., 2016);
EXP, the most resent statistical approach and the previous state-of-the-art on M3 (Spiliotis et al.,
2019); as well as ForecastPro, an off-the-shelf forecasting software that is based on model selec-
tion between exponential smoothing, ARIMA and moving average (Athanasopoulos et al., 2011;
Assimakopoulos & Nikolopoulos, 2000). On the TOURISM dataset, we compare against 3 statis-
tical benchmarks (Athanasopoulos et al., 2011): ETS, exponential smoothing with cross-validated
additive/multiplicative model; Theta method; ForePro, same as ForecastPro in M3; as well as top 2
entries from the TOURISM Kaggle competition (Athanasopoulos & Hyndman, 2011): Stratometrics,
an unknown technique; LeeCBaker (Baker & Howard, 2011), a weighted combination of Naïve,
linear trend model, and exponentially weighted least squares regression trend.

According to Table 1, N-BEATS demonstrates state-of-the-art performance on three challenging
non-overlapping datasets containing time series from very different domains, sampling frequencies
and seasonalities. As an example, on M4 dataset, the OWA gap between N-BEATS and the M4
winner (0.821−0.795 = 0.026) is greater than the gap between the M4 winner and the second entry
(0.838−0.821 = 0.017). Generic N-BEATS model uses as little prior knowledge as possible, with
no feature engineering, no scaling and no internal architectural components that may be considered
TS-specific. Thus the result in Table 1 leads us to the conclusion that DL does not need support
from the statistical approaches or hand-crafted feature engineering and domain knowledge to perform
extremely well on a wide array of TS forecasting tasks. On top of that, the proposed general
architecture performs very well on three different datasets outperforming a wide variety of models,
both generic and manually crafted to respective dataset, including the winner of M4, a model
architecturally adjusted by hand to each forecast-horizon subset of the M4 data.

5.1 DATASETS

M4 (M4 Team, 2018b; Makridakis et al., 2018b) is the latest in an influential series of forecasting
competitions organized by Spyros Makridakis since 1982 (Makridakis et al., 1982). The 100k-series
dataset is large and diverse, consisting of data frequently encountered in business, financial and
economic forecasting, and sampling frequencies ranging from hourly to yearly. A table with summary
statistics is presented in Appendix B.1, showing wide variability in TS characteristics.

M3 (Makridakis & Hibon, 2000) is similar in its composition to M4, but has a smaller overall scale
(3003 time series total vs. 100k in M4). A table with summary statistics is presented in Appendix B.2.
Over the past 20 years, this dataset has supported significant efforts in the design of more optimal
statistical models, e.g. Theta and its variants (Assimakopoulos & Nikolopoulos, 2000; Fiorucci et al.,
2016; Spiliotis et al., 2019). Furthermore, a recent publication (Makridakis et al., 2018a) based on a
subset of M3 presented evidence that ML models are inferior to the classical statistical models.
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TOURISM (Athanasopoulos et al., 2011) dataset was released as part of the respective Kaggle
competition conducted by Athanasopoulos & Hyndman (2011). The data include monthly, quarterly
and yearly series supplied by both governmental tourism organizations (e.g. Tourism Australia, the
Hong Kong Tourism Board and Tourism New Zealand) as well as various academics, who had used
them in previous studies. A table with summary statistics is presented in Appendix B.3.

5.2 TRAINING METHODOLOGY

We split each dataset into train, validation and test subsets. The test subset is the standard test set
previously defined for each dataset (M4 Team, 2018a; Makridakis & Hibon, 2000; Athanasopoulos
et al., 2011). The validation and train subsets for each dataset are obtained by splitting their full train
sets at the boundary of the last horizon of each time series. We use the train and validation subsets to
tune hyperparameters. For M4, we also use validation set to report the results of ablation studies (see
Appendix C). Once the hyperparameters are determined, we train the model on the full train set and
report results on the test set. N-BEATS is implemented and trained in Tensorflow (Abadi et al., 2015).

We share parameters of the network across horizons, therefore we train one model per horizon for
each dataset. If every time series is interpreted as a separate task, this can be linked back to the
multitask learning and furthermore to meta-learning (see discussion in Appendix A), in which a
neural network is regularized by learning on multiple tasks to improve generalization. We would like
to stress that models for different horizons and datasets reuse the same architecture. Architectural
hyperparameters (width, number of layers, number of stacks, etc.) are fixed to the same values
across horizons and across datasets (see Appendix E). The fact that we can reuse architecture and
even hyperparameters across horizons indicates that the proposed architecture design generalizes
well across time series of different nature. The same architecture is successfully trained on the M4
Monthly subset with 48k time series and the M3 Others subset with 174 time series. This is a much
stronger result than e.g. the result of S. Smyl (Makridakis et al., 2018b) who had to use very different
architectures hand crafted for different horizons.

To update network parameters for one horizon, we sample train batches of fixed size 1024. We pick
1024 TS ids from this horizon, uniformly at random with replacement. For each selected TS id we
pick a random forecast point from the historical range of length LH immediately preceding the last
point in the train part of the TS. LH is a cross-validated hyperparameter. We observed that for subsets
with large number of time series it tends to be smaller and for subsets with smaller number of time
series it tends to be larger. For example, in massive Yearly, Monthly, Quarterly subsets of M4 LH is
equal to 1.5; and in moderate to small Weekly, Daily, Hourly subsets of M4 LH is equal to 10. Given
a sampled forecast point, we set one horizon worth of points following it to be the target forecast
window y and we set the history of points of one of lengths 2H,3H, . . . ,7H preceding it to be the
input x to the network. We use the Adam optimizer with default settings and initial learning rate
0.001. The neural network training is run with early stopping and the number of batches is determined
on the validation set. The GPU based training of one ensemble member for entire M4 dataset takes
between 30 min and 2 hours depending on neural network settings and hardware.

5.3 INTERPRETABILITY RESULTS

Fig. 2 studies the outputs of the proposed model in the generic and the interpretable configurations.
As discussed in Section 3.3, to make the generic architecture presented in Fig. 1 interpretable, we
constrain gθ in the first stack to have the form of polynomial (1) while the second one has the form
of Fourier basis (2). Furthermore, we use the outputs of the generic configuration of N-BEATS as
control group (the generic model of 30 residual blocks depicted in Fig. 1 is divided into two stacks)
and we plot both generic (suffix “-G”) and interpretable (suffix “-I”) stack outputs side by side in
Fig. 2. The outputs of generic model are arbitrary and non-interpretable: either trend or seasonality
or both of them are present at the output of both stacks. The magnitude of the output (peak-to-peak)
is generally smaller at the output of the second stack. The outputs of the interpretable model exhibit
distinct properties: the trend output is monotonic and slowly moving, the seasonality output is
regular, cyclical and has recurring fluctuations. The peak-to-peak magnitude of the seasonality output
is significantly larger than that of the trend, if significant seasonality is present in the time series.
Similarly, the peak-to-peak magnitude of trend output tends to be small when no obvious trend
is present in the ground truth signal. Thus the proposed interpretable architecture decomposes its

7



Under review as a conference paper at ICLR 2020

0 1 2 3 4 5
t

0.8

0.9

1.0 ACTUAL
FORECAST-I
FORECAST-G

0 1 2 3 4 5
t

0.80

0.82

0.84

0.86
STACK1-G

0 1 2 3 4 5
t

0.01

0.02

0.03 STACK2-G

0 1 2 3 4 5
t

0.80

0.85

0.90

0.95
STACK1-I

0 1 2 3 4 5
t

0.02

0.03

0.04

0.05 STACK2-I

0 2 4 6
t

0.85

0.90

0.95

1.00

ACTUAL
FORECAST-I
FORECAST-G

0 2 4 6
t

0.86

0.87

0.88

0.89

STACK1-G
0 2 4 6

t

0.00

0.02

STACK2-G
0 2 4 6

t
0.88

0.89

0.90 STACK1-I

0 2 4 6
t

0.05

0.00

0.05 STACK2-I

0 5 10 15
t

0.4

0.6

0.8

1.0

ACTUAL
FORECAST-I
FORECAST-G

0 5 10 15
t

0.75

0.80

0.85

0.90 STACK1-G

0 5 10 15
t

0.10

0.05

0.00

STACK2-G
0 5 10 15

t

0.85

0.90

0.95
STACK1-I

0 5 10 15
t

0.3

0.2

0.1

0.0 STACK2-I

0 2 4 6 8 10 12
t

0.6

0.8

1.0 ACTUAL
FORECAST-I
FORECAST-G

0 2 4 6 8 10 12
t

0.625

0.650

0.675

0.700
STACK1-G

0 2 4 6 8 10 12
t

0.00

0.01

0.02
STACK2-G

0 2 4 6 8 10 12
t

0.65

0.70

0.75
STACK1-I

0 2 4 6 8 10 12
t

0.000

0.005

STACK2-I

0.0 2.5 5.0 7.5 10.0 12.5
t

0.96

0.98

1.00 ACTUAL
FORECAST-I
FORECAST-G

0.0 2.5 5.0 7.5 10.0 12.5
t

0.974

0.976

0.978 STACK1-G

0.0 2.5 5.0 7.5 10.0 12.5
t

0.0010

0.0005

0.0000 STACK2-G

0.0 2.5 5.0 7.5 10.0 12.5
t

0.974

0.976 STACK1-I

0.0 2.5 5.0 7.5 10.0 12.5
t

0.0002

0.0000

0.0002
STACK2-I

0 10 20 30 40
t

0.25

0.50

0.75

1.00 ACTUAL
FORECAST-I
FORECAST-G

(a) Combined

0 10 20 30 40
t

0.4

0.6

STACK1-G

(b) Stack1-G

0 10 20 30 40
t

0.01

0.00

STACK2-G

(c) Stack2-G

0 10 20 30 40
t

0.34

0.36

0.38
STACK1-I

(d) StackT-I

0 10 20 30 40
t

0.2

0.0

0.2

STACK2-I

(e) StackS-I

Figure 2: The outputs of generic and the interpretable configurations, M4 dataset. Each row is one
time series example per data frequency, top to bottom (Yearly: id Y3974, Quarterly: id Q11588,
Monthly: id M19006, Weekly: id W246, Daily: id D404, Hourly: id H344). The magnitudes in a row
are normalized by the maximal value of the actual time series for convenience. Column (a) shows the
actual values (ACTUAL), the generic model forecast (FORECAST-G) and the interpretable model
forecast (FORECAST-I). Columns (b) and (c) show the outputs of stacks 1 and 2 of the generic model,
respectively; FORECAST-G is their summation. Columns (d) and (e) show the output of the Trend
and the Seasonality stacks of the interpretable model, respectively; FORECAST-I is their summation.

forecast into two distinct components. Our conclusion is that the outputs of the DL model can be
made interpretable by encoding a sensible inductive bias in the architecture. Table 1 confirms that
this does not result in performance drop.

6 CONCLUSIONS

We proposed and empirically validated a novel architecture for univariate TS forecasting. We showed
that the architecture is general, flexible and it performs well on a wide array of TS forecasting prob-
lems. We applied it to three non-overlapping challenging competition datasets: M4, M3 and TOURISM
and demonstrated state-of-the-art performance in two configurations: generic and interpretable. This
allowed us to validate two important hypotheses: (i) the generic DL approach performs exceptionally
well on heterogeneous univariate TS forecasting problems using no TS domain knowledge, (ii) it is
viable to additionally constrain a DL model to force it to decompose its forecast into distinct human
interpretable outputs. We also demonstrated that the DL models can be trained on multiple time series
in a multi-task fashion, successfully transferring and sharing individual learnings. We speculate that
N-BEATS’s performance can be attributed in part to it carrying out a form of meta-learning, a deeper
investigation of which should be the subject of future work.
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A DISCUSSION: CONNECTIONS TO META-LEARNING

Meta-learning defines an inner learning procedure and an outer learning procedure. The inner
learning procedure is parameterized, conditioned or otherwise influenced by the outer learning
procedure (Bengio et al., 1991). The prototypical inner vs. outer learning is individual learning in
the lifetime of an animal vs. evolution of the inner learning procedure itself over many generations
of individuals. To see the two levels, it often helps to refer to two sets of parameters, the inner
parameters (e.g. synaptic weights) which are modified inside the inner learning procedure, and the
outer parameters or meta-parameters (e.g. genes) which are get modified only in the outer learning
procedure.

N-BEATS can be cast as an instance of meta-learning by drawing the following parallels. The outer
learning procedure is encapsulated in the parameters of the whole network, learned by gradient
descent. The inner learning procedure is encapsulated in the set of basic building blocks and modifies
the parameters θ of gθ . The inner learning proceeds through a sequence of stages, each corresponding
to a block within the stack of the architecture. Each of the blocks can be thought of as performing
the equivalent of an update step which gradually modifies the parameters θ which eventually feed
into gθ in each block (which get added together to form the final prediction). The inner learning
procedure takes a single history from a piece of a TS and sees that history as a training set. It produces
forward parameters θ f (see Fig. 1), which parametrically map inputs to predictions. In addition, each
preceding block modifies the input to the next block by producing backward parameters θ b, thus
conditioning the learning and the output of the next block. In the case of the interpretable model,
the meta-parameters are only in the FC layers because the gθ ’s are fixed. In the case of the generic
model, the meta-parameters also include the W’s which define the gθ non-parametrically. This point
of view is further reinforced by the results of the ablation study reported in Appendix C showing that
increasing the number of blocks in the stack, as well as the number of stacks improves generalization
performance, and can be interpreted as more iterations of the inner learning procedure.

B DATASET DETAILS

B.1 M4 DATASET DETAILS

Table 2 outlines the composition of the M4 dataset across domains and forecast horizons by listing the
number of time series based on their frequency and type (M4 Team, 2018b). The M4 dataset is large
and diverse: all forecast horizons are composed of heterogeneous time series types (with exception of
Hourly) frequently encountered in business, financial and economic forecasting. Summary statistics
on series lengths are also listed, showing wide variability therein, as well as a characterization (smooth
vs erratic) that follows Syntetos et al. (2005), and is based on the squared coefficient of variation of
the series. All series have positive observed values at all time-steps; as such, none can be considered
intermittent or lumpy per Syntetos et al. (2005).

B.2 M3 DATASET DETAILS

Table 3 outlines the composition of the M3 dataset across domains and forecast horizons by listing
the number of time series based on their frequency and type (Makridakis & Hibon, 2000). The
M3 is smaller than the M4, but it is still large and diverse: all forecast horizons are composed
of heterogeneous time series types frequently encountered in business, financial and economic
forecasting. Summary statistics on series lengths are also listed, showing wide variability in length,
as well as a characterization (smooth vs erratic) that follows Syntetos et al. (2005), and is based
on the squared coefficient of variation of the series. All series have positive observed values at all
time-steps; as such, none can be considered intermittent or lumpy per Syntetos et al. (2005).

B.3 TOURISM DATASET DETAILS

Table 4 outlines the composition of the TOURISM dataset across forecast horizons by listing the
number of time series based on their frequency. Summary statistics on series lengths are listed,
showing wide variability in length. All series have positive observed values at all time-steps. In
contrast to M4 and M3 datasets, TOURISM includes a much higher fraction of erratic series.
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Table 2: Composition of the M4 dataset: the number of time series based on their sampling frequency
and type.

Frequency / Horizon

Type Yearly/6 Qtly/8 Monthly/18 Wkly/13 Daily/14 Hrly/48 Total

Demographic 1,088 1,858 5,728 24 10 0 8,708
Finance 6,519 5,305 10,987 164 1,559 0 24,534
Industry 3,716 4,637 10,017 6 422 0 18,798
Macro 3,903 5,315 10,016 41 127 0 19,402
Micro 6,538 6,020 10,975 112 1,476 0 25,121
Other 1,236 865 277 12 633 414 3,437

Total 23,000 24,000 48,000 359 4,227 414 100,000

Min. Length 19 24 60 93 107 748
Max. Length 841 874 2812 2610 9933 1008
Mean Length 37.3 100.2 234.3 1035.0 2371.4 901.9
SD Length 24.5 51.1 137.4 707.1 1756.6 127.9
% Smooth 82% 89% 94% 84% 98% 83%
% Erratic 18% 11% 6% 16% 2% 17%

Table 3: Composition of the M3 dataset: the number of time series based on their sampling frequency
and type.

Frequency / Horizon

Type Yearly/6 Quarterly/8 Monthly/18 Other/8 Total

Demographic 245 57 111 0 413
Finance 58 76 145 29 308
Industry 102 83 334 0 519
Macro 83 336 312 0 731
Micro 146 204 474 4 828
Other 11 0 52 141 204

Total 645 756 1,428 174 3,003

Min. Length 20 24 66 71
Max. Length 47 72 144 104
Mean Length 28.4 48.9 117.3 76.6
SD Length 9.9 10.6 28.5 10.9
% Smooth 90% 99% 98% 100%
% Erratic 10% 1% 2% 0%

Table 4: Composition of the TOURISM dataset: the number of time series based on their sampling
frequency.

Frequency / Horizon

Yearly/4 Quarterly/8 Monthly/24 Total

518 427 366 1,311

Min. Length 11 30 91
Max. Length 47 130 333
Mean Length 24.4 99.6 298
SD Length 5.5 20.3 55.7
% Smooth 77% 61% 49%
% Erratic 23% 39% 51%
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Table 5: sMAPE on the validation set, generic ar-
chitecture. sMAPE for varying number of stacks,
each having one residual block.

Stacks sMAPE

1 11.154
3 11.061
9 10.998

18 10.950
30 10.937

Table 6: sMAPE on the validation set, inter-
pretable architecture. Ablation of the synergy
of the layers with different basis functions and
multi-block stack gain.

Detrend Seasonality sMAPE

0 2 11.189
2 0 11.572
1 1 11.040
3 3 10.986

C ABLATION STUDIES

We performed an ablation study on the validation set, using sMAPE metric as performance criterion.
We addressed two specific questions with this study. First, Is stacking layers helpful? Second, Does
the architecture based on the combination of layers with different basis functions results in better
performance than the architecture using only one layer type?

Layer stacking. We start our study with the generic architecture that consists of stacks of one
residual block of 5 FC layers each of the form Fig. 1 and we increase the number of stacks. Results
presented in Table 5 confirm that increasing the number of stacks decreases error and at certain point
the gain saturates. We would like to mention that the network having 30 stack of depth 5 is in fact a
very deep network of total depth 150 layers.

Basis synergy. Stacking works well for the interpretable architecture as can be seen in Table 6
depicting the results of ablating the interpretable architecture configuration. Here we experiment
with the architecture that is composed of 2 stacks, stack one is trend model and stack two is the
seasonality model. Each stack has variable number of residual blocks and each residual block has 5
FC layers. We found that this architecture works best when all weights are shared within stack. We
clearly see that increasing the number of layers improves performance. The largest network is 60
layers deep. On top of that, we observe that the architecture that consists of stacks based on different
basis functions wins over the architecture based on the same stack. It looks like chaining stacks of
different nature results in synergistic effects. This is logical as function classes that can be modelled
by trend and seasonality stacks have small overlap.

Ensemble size. Figure 3 demonstrates that increasing the ensemble size results in improved perfor-
mance. Most importantly, according to Figure 3, N-BEATS achieves state-of-the-art performance
even if comparatively small ensemble size of 18 models is used. Therefore, computational efficiency
of N-BEATS can be traded very effectively for performance and there is no over-reliance of the
results on large ensemble size.
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Figure 3: M4 test performance (OWA) as a function of ensemble size, based on N-BEATS-G. This
figure shows that N-BEATS loses less than 0.5% in terms of OWA performance even if 10 times
smaller ensemble size is used.
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Table 7: Performance on the M4 test set, sMAPE. Lower values are better. Red – second best.

Yearly Quarterly Monthly Others Average
(23k) (24k) (48k) (5k) (100k)

Best pure ML 14.397 11.031 13.973 4.566 12.894
Best statistical 13.366 10.155 13.002 4.682 11.986
Best ML/TS combination 13.528 9.733 12.639 4.118 11.720
DL/TS hybrid, M4 winner 13.176 9.679 12.126 4.014 11.374

N-BEATS-G 13.023 9.212 12.048 3.574 11.168
N-BEATS-I 12.924 9.287 12.059 3.684 11.174
N-BEATS-I+G 12.913 9.213 12.024 3.643 11.135

Table 8: Performance on the M4 test set, OWA and M4 rank. Lower values are better. Red – second
best.

Yearly Quarterly Monthly Others Average Rank
(23k) (24k) (48k) (5k) (100k)

Best pure ML 0.859 0.939 0.941 0.991 0.915 23
Best statistical 0.788 0.898 0.905 0.989 0.861 8
Best ML/TS combination 0.799 0.847 0.858 0.914 0.838 2
DL/TS hybrid, M4 winner 0.778 0.847 0.836 0.920 0.821 1

N-BEATS-G 0.765 0.800 0.820 0.822 0.797
N-BEATS-I 0.758 0.807 0.824 0.849 0.798
N-BEATS-I+G 0.758 0.800 0.819 0.840 0.795

D DETAILED EMPIRICAL RESULTS

D.1 DETAILED RESULTS: M4 DATASET

Tables 7 and 8 present our key quantitative empirical results showing that the proposed model achieves
the state of the art performance on the challenging M4 benchmark. We study the performance of two
model configurations: generic (Ours-G) and interpretable (Ours-I), as well as Ours-I+G (ensemble of
all models from Ours-G and Ours-I). We compare against 4 representatives from the M4 competition:
each best in their respective model class. Best pure ML is the submission by B. Trotta, the best entry
among the 6 pure ML models. Best statistical is the best pure statistical model by N.Z. Legaki and K.
Koutsouri. Best ML/TS combination is the model by P. Montero-Manso, T. Talagala, R.J. Hyndman
and G. Athanasopoulos, second best entry, gradient boosted tree over a few statistical time series
models. Finally, DL/TS hybrid is the winner of M4 competition designed by S. Smyl.

N-BEATS outperforms all other approaches on all the studied subsets of time series. The average
OWA gap between our generic model and the M4 winner (0.821−0.795 = 0.026) is greater than the
gap between the M4 winner and the second entry (0.838−0.821 = 0.017).

A more granular and detailed statistical analysis of our results on M4 is provided in Table 9. This
table first presents the sMAPE for N-BEATS, decomposed by M4 time series sub-type and sampling
frequency (upper part). Then (lower part), it shows the average sMAPE difference between the
N-BEATS results and the M4 winner (TS/DL hybrid by S. Smyl), adding the standard error of that
difference (in parentheses); bold entries indicate statistical significance at the 99% level based on a
two-sided paired t-test.

We note that each cross-section of the M4 dataset into horizon and type may be regarded as an
independent mini-dataset. We observe that over those mini-datasets there is a preponderance of
statistically significant differences between N-BEATS and Smyl (18 cases out of 31) to the advantage
of N-BEATS. This provides evidence that (i) the improvement observed on average in Tables 7 and 8
is statistically significant and consistent over smaller subsets of M4 and (ii) N-BEATS generalizes
well over time series of different types and sampling frequencies.
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Table 9: Performance decomposition on non-overlapping subsets of the M4 test set and comparison
with the Smyl model results.

Demographic Finance Industry Macro Micro Other

sMAPE per M4 series type and sampling frequency

Yearly 8.931 13.741 16.317 13.327 10.489 13.320
Quarterly 9.219 10.787 8.628 8.576 9.264 6.250
Monthly 4.357 13.353 12.657 12.571 13.627 11.595
Weekly 4.580 3.004 9.258 7.220 10.425 6.183
Daily 6.351 3.467 3.835 2.525 2.299 2.885
Hourly 8.197

Average sMAPE difference vs Smyl model, computed as N-BEATS – Smyl.
Standard error of the mean displayed in parenthesis.
Bold entries are significant at the 99% level (2-sided paired t-test).

Yearly −0.749 −0.337 −0.065 −0.386 −0.168 −0.157
(0.119) (0.065) (0.087) (0.085) (0.056) (0.140)

Quarterly −0.651 −0.281 −0.328 −0.712 −0.523 −0.029
(0.085) (0.047) (0.043) (0.060) (0.051) (0.083)

Monthly −0.185 −0.379 −0.419 0.089 0.338 −0.279
(0.023) (0.034) (0.036) (0.039) (0.034) (0.162)

Weekly −0.336 −1.075 −0.937 −1.627 −3.029 −1.193
(0.270) (0.221) (1.399) (0.770) (0.378) (0.772)

Daily 0.191 −0.098 −0.124 −0.026 −0.367 −0.037
(0.231) (0.018) (0.025) (0.057) (0.013) (0.015)

Hourly −1.132
(0.163)
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Table 10: Performance on the M3 test set, Average sMAPE, aggregate over all forecast horizons
(Yearly: 1-6, Quarterly: 1-8, Monthly: 1-18, Other: 1-8, Average: 1-18). Lower values are better.
Red – second best. †Numbers are computed by us.

Yearly Quarterly Monthly Others Average
(645) (756) (1428) (174) (3003)

Naïve2 17.88 9.95 16.91 6.30 15.47
ARIMA (B–J automatic) 17.73 10.26 14.81 5.06 14.01
Comb S-H-D 17.07 9.22 14.48 4.56 13.52
ForecastPro 17.14 9.77 13.86 4.60 13.19
Theta 16.90 8.96 13.85 4.41 13.01
DOTM (Fiorucci et al., 2016) 15.94 9.28 13.74 4.58 12.90
EXP (Spiliotis et al., 2019) 16.39 8.98 13.43 5.46 12.71†

LGT (Smyl & Kuber, 2016) 15.23 n/a n/a 4.26 n/a
BaggedETS.BC (Bergmeir et al., 2016) 17.49 9.89 13.74 n/a n/a

N-BEATS-G 16.2 8.92 13.19 4.19 12.47
N-BEATS-I 15.84 9.03 13.15 4.30 12.43
N-BEATS-I+G 15.93 8.84 13.11 4.24 12.37

D.2 DETAILED RESULTS: M3 DATASET

Results for M3 dataset are provided in Table 10. The performance metric is calculated using the
earlier version of sMAPE, defined specifically for the M3 competition:1

sMAPE =
200
H

H

∑
i=1

|yT+i− ŷT+i|
yT+i + ŷT+i

. (3)

For some of the methods, either average sMAPE was not reported or sMAPE for some of the splits was
not reported in their respective publications. Below, we list those cases. BaggedETS.BC (Bergmeir
et al., 2016) has not reported numbers on Others. LGT (Smyl & Kuber, 2016) did not report results on
Monthly and Quarterly data. According to the authors, the underlying RNN had problems dealing with
raw seasonal data, the ETS based pre-processing was not effective and the LGT pre-processing was
not computationally feasible given comparatively large number of time series and their comparatively
large length (Smyl & Kuber, 2016). Finally, EXP (Spiliotis et al., 2019) reported average performance
computed using a different methodology than the default M3 and M4 methodology (source: personal
communication with the authors). For the latter method we recomputed the Average sMAPE based on
the previously reported Yearly, Quarterly and Monthly splits. To calculate it, we follow the M3, M4
and TOURISM competition methodology and compute the average metric as the average over all time
series and over all forecast horizons. Given the performance metric values aggregated over Yearly,
Quarterly and Monthly splits, the average can be computed straightforwardly as:

sMAPEAverage =
NYear

NTot
sMAPEYear+

NQuart

NTot
sMAPEQuart+

NMonth

NTot
sMAPEMonth+

NOthers

NTot
sMAPEOthers .

(4)

Here NTot = NYear +NQuart +NMonth +NOthers and NYear = 6×645,NQuart = 8×756,NMonth = 18×
1428,NOthers = 8×174. It is clear that for each split, its N is the product of its respective number of
time series and its largest forecast horizon.

1With minor differences compared to the sMAPE definition used for M4. Please refer to Appendix A
in (Makridakis & Hibon, 2000) for the mathematical definition.
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Table 11: Performance on the TOURISM test set, Average MAPE, aggregate over all forecast horizons
(Yearly: 1-4, Quarterly: 1-8, Monthly: 1-24, Average: 1-24). Lower values are better. Red – second
best.

Yearly Quarterly Monthly Average
(518) (427) (366) (1311)

Statistical benchmarks (Athanasopoulos et al., 2011)

SNaïve 23.61 16.46 22.56 21.25
Theta 23.45 16.15 22.11 20.88
ForePro 26.36 15.72 19.91 19.84
ETS 27.68 16.05 21.15 20.88
Damped 28.15 15.56 23.47 22.26
ARIMA 28.03 16.23 21.13 20.96

Kaggle competitors (Athanasopoulos & Hyndman, 2011)

SaliMali n/a 14.83 19.64 n/a
LeeCBaker 22.73 15.14 20.19 19.35
Stratometrics 23.15 15.14 20.37 19.52
Robert n/a 14.96 20.28 n/a
Idalgo n/a 15.07 20.55 n/a

N-BEATS-G (Ours) 21.67 14.71 19.17 18.47
N-BEATS-I (Ours) 21.55 15.22 19.82 18.97
N-BEATS-I+G (Ours) 21.44 14.78 19.29 18.52

D.3 DETAILED RESULTS: TOURISM DATASET

Detailed results for the TOURISM competition dataset are provided in Table 11. The respective Kaggle
competition was divided into two parts: (i) Yearly time series forecasting and (ii) Quarterly/Monthly
time series forecasting (Athanasopoulos & Hyndman, 2011). Some of the participants chose to
take part only in the second part. Therefore, In addition to entries present in Table 1, we report
competitors from (Athanasopoulos & Hyndman, 2011) that have missing results in Yearly compe-
tition. In particular, SaliMali team is the winner of the Quarterly/Monthly time series forecasting
competition (Brierley, 2011). Their approach is based on a weighted ensemble of statistical methods.
Teams Robert and Idalgo used unknown approaches. We can see from Table 11 that N-BEATS
achieves state-of-the-art performance on all subsets of TOURISM dataset. On average, it is state of the
art and it gains 4.2% over the best-known approach LeeCBaker, and 11.5% over auto-ARIMA.

The average metrics have not been reported in the original competition results (Athanasopoulos et al.,
2011; Athanasopoulos & Hyndman, 2011). Therefore, in Table 11, we present the Average MAPE
metric calculated by us based on the previously reported Yearly, Quarterly and Monthly splits. To
calculate it, we follow the M4 competition methodology and compute the average metric as the
average over all time series and over all forecast horizons. Given the performance metric values
aggregated over Yearly, Quarterly and Monthly splits, the average can be computed straightforwardly
as:

MAPEAverage =
NYear

NTot
MAPEYear+

NQuart

NTot
MAPEQuart+

NMonth

NTot
MAPEMonth . (5)

Here NTot = NYear +NQuart +NMonth and NYear = 4×518,NQuart = 8×427,NMonth = 24×366. It is
clear that for each split, its N is the product of its respective number of time series and its largest
forecast horizon.

E HYPER-PARAMETER SETTINGS

Table 12 presents the hyperparameter settings used to train models on different subsets of M4, M3
and TOURISM datasets. A brief discussion of field names in the table is warranted.

Subset names Yly, Qly, Mly, Wly, Dly, Hly, Other correspond to yearly, quarterly, monthly, weekly,
daily, hourly and other frequency subsets defined in the original datasets.
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Table 12: Settings of hyperparameters across subsets of M4, M3, TOURISM datasets.

M4 M3 TOURISM

Yly Qly Mly Wly Dly Hly Yly Qly Mly Other Yly Qly Mly

Parameter N-BEATS-I

LH 1.5 1.5 1.5 10 10 10 20 5 5 20 20 10 20
Iterations 15K 15K 15K 5K 5K 5K 50 6K 6K 250 30 500 300
Losses sMAPE/MAPE/MASE sMAPE/MAPE/MASE MAPE

S-width 2048
S-blocks 3
S-block-layers 4
T-width 256
T-degree 2
T-blocks 3
T-block-layers 4
Sharing STACK LEVEL
Lookback period 2H,3H,4H,5H,6H,7H
Batch 1024

Parameter N-BEATS-G

LH 1.5 1.5 1.5 10 10 10 20 20 20 10 5 10 20
Iterations 15K 15K 15K 5K 5K 5K 20 250 10K 250 30 100 100
Losses sMAPE/MAPE/MASE sMAPE/MAPE/MASE MAPE

Width 512
Blocks 1
Block-layers 4
Stacks 30
Sharing NO
Lookback period 2H,3H,4H,5H,6H,7H
Batch 1024

N-BEATS-I and N-BEATS-G correspond to the interpretable and generic model configurations
defined in Section 3.3.

E.1 COMMON PARAMETERS

LH is the coefficient defining the length of training history immediately preceding the last point in
the train part of the TS that is used to generate training samples. For example, if for M4 Yearly the
forecast horizon is 6 and LH is 1.5, then we consider 1.5 ·6 = 9 most recent points in the train dataset
for each time series to generate training samples. A training sample from a given TS in M4 Yearly is
then generated by choosing one of the most recent 9 points as an anchor. All the points preceding the
anchor are used to create the input to N-BEATS, while the points following and including the anchor
become training target. Target and history points that fall outside of the time series limits given the
anchor position are filled with zeros and masked during the training. We observed that for subsets
with large number of time series LH tends to be smaller and for subsets with smaller number of time
series it tends to be larger. For example, in massive Yearly, Monthly, Quarterly subsets of M4 LH is
equal to 1.5; and in moderate to small Weekly, Daily, Hourly subsets of M4 LH is equal to 10.

Iterations is the number of batches used to train N-BEATS.

Losses is the set of loss functions that is used to build ensemble. We observed on the respective
validation sets that for M4 and M3 mixing models trained on a variety of metrics resulted in
performance gain. In the case of TOURISM dataset training only on MAPE led to the best validation
scores.
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Sharing defines whether the coefficients in the fully-connected layers are shared. We observed that
the interpretable model works best when weights are shared across stack, while generic model works
best when none of the weights are shared.

Lookback period is the length of the history window forming the input to the model (please refer to
Figure 1). This is the function of the forecast horizon length, H. In our experiments we mixed models
with lookback periods 2H,3H,4H,5H,6H,7H in one ensemble. As an example, for a forecast
horizon length H = 8 and a lookback period 7H, the model’s input will consist of the history window
of 7 ·8 = 56 samples.

Batch is the batch size. We used batch size of 1024. We observed that the training was faster with
larger batch sizes, however in our setup little gain was observed with batch sizes beyond 1024.

E.2 N-BEATS-I PARAMETERS

S-width is the width of the fully connected layers in the blocks comprising the seasonality stack of
the interpretable model (please refer to Figure 1).

S-blocks is the number of blocks comprising the seasonality stack of the interpretable model (please
refer to Figure 1).

S-block-layers is the number of fully-connected layers comprising one block in the seasonality
stack of the interpretable model (preceding the final fully-connected projection layers forming the
backcast/forecast fork, please refer to Figure 1).

T-width is the width of the fully connected layers in the blocks comprising the trend stack of the
interpretable model (please refer to Figure 1).

T-degree is the degree p of polynomial in the trend stack of the interpretable model (please refer to
equation (1)).

T-blocks is the number of blocks comprising the trend stack of the interpretable model (please refer
to Figure 1).

T-block-layers is the number of fully-connected layers comprising one block in the trend stack
of the interpretable model (preceding the final fully-connected projection layers forming the back-
cast/forecast fork, please refer to Figure 1).

E.3 N-BEATS-G PARAMETERS

Width is the width of the fully connected layers in the blocks comprising the stacks of the generic
model (please refer to Figure 1).

Blocks is the number of blocks comprising the stack of the generic model (please refer to Figure 1).

Block-layers is the number of fully-connected layers comprising one block in the stack of the generic
model (preceding the final fully-connected projection layers forming the backcast/forecast fork,
please refer to Figure 1).
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