
Under review as a conference paper at ICLR 2020

DEEP SYMBOLIC SUPEROPTIMIZATION WITHOUT
HUMAN KNOWLEDGE

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep symbolic superoptimization refers to the task of applying deep learning
methods to simplify symbolic expressions. Existing approaches either perform
supervised training on human-constructed datasets that defines equivalent expres-
sion pairs, or apply reinforcement learning with human-defined equivalent trans-
formation actions. In short, almost all existing methods rely on human knowl-
edge to define equivalence, which suffers from large labeling cost and learning
bias, because it is almost impossible to define and comprehensive equivalent set.
We thus propose HISS, a reinforcement learning framework for symbolic super-
optimization that keeps human outside the loop. HISS introduces a tree-LSTM
encoder-decoder network with attention to ensure tractable learning. Our ex-
periments show that HISS can discover more simplification rules than existing
human-dependent methods, and can learn meaningful embeddings for symbolic
expressions, which are indicative of equivalence.

1 INTRODUCTION

Superoptimization refers to the task of simplifying and optimizing over a set of machine instruc-
tions, or code (Massalin, 1987; Schkufza et al., 2013), which is a fundamental problem in computer
science. As an important direction in superoptimization, symbolic expression simplification, or
symbolic superoptimization, aims at transforming symbolic expression to a simpler form in an ef-
fective way, so as to avoid unnecessary computations. Symbolic superoptimization is an important
component in compilers, e.g. LLVM and Halide, and it also have a wide application in mathematical
engines including Wolfram1, Matlab, and Sympy.

Over the recent years, applying deep learning methods to address symbolic superoptimization has
attracted great attention. Despite their variety, existing algorithms can be roughly divided into two
categories. The first category is supervised learning, i.e. to learn a mapping between the input
expressions and the output simplified expressions from a large number of human-constructed ex-
pression pairs (Arabshahi et al., 2018; Zaremba & Sutskever, 2014). Such methods rely heavily on
a human-constructed dataset, which is time- and labor-consuming. What is worse, such systems
are highly susceptible to bias, because it is generally very hard to define a minimum and compre-
hensive axiom set for training. It is highly possible that some forms equivalence are not covered in
the training set, and fail to be recognized by the model. In order to remove the dependence on hu-
man annotations, the second category of methods leverages reinforcement learning to autonomously
discover simplifying equivalence (Chen et al., 2018). However, to make the action space tractable,
such systems still rely on a set of equivalent transformation actions defined by human beings, which
again suffers from the labeling cost and learning bias.

In short, the existing neural symbolic superoptimization algorithms all require human input to define
equivalence. It would have benefited from improved efficiency and better simplification if there were
algorithms independent of human knowledge. In fact, symbolic superoptimization should have been
a task that naturally keeps human outside the loop, because it directly operates on machine code,
whose consumers and evaluators are machines, not humans.

Therefore, we propose Human-Independent Symbolic Superoptimization (HISS), a reinforcement
learning framework for symbolic superoptimization that are completely independent of human

1https://www.wolframalpha.com/

1

https://www.wolframalpha.com/

Under review as a conference paper at ICLR 2020

knowledge. Instead of using human-defined equivalence, HISS adopts a set of unsupervised tech-
niques to maintain the tractability of action space. First, HISS introduces a tree-LSTM encoder-
decoder architecture with attention to ensure that its exploration is confined within the set syntacti-
cally correct expressions. Second, the process of generating a simplified expression is broken into
two stages. The first stage selects a sub-expression that can be simplified and the second stage sim-
plifies the sub-expression. We performed a set of evaluations on artificially generated instruction as
well as publicly available code datasets, and show that HISS can achieve compeititive performance.
We also find out that HISS can obtain meaningful embeddings for symbolic expressions, in the sense
that equivalent expressions have closer embeddings than do non-equivalent expressions.

2 RELATED WORKS

Superoptimization origins from 1987 with the first design of Massalin (1987). With the probabilistic
testing to reduce the testing cost, the brute force searching is aided with pruning strategy to avoid
searching sub-spaces that contains pieces of code that have known shorter alternatives. Due to
the explosive searching space for exhaustive searching, the capability of the first superoptimizer is
limited to only very short programs. More than a decades later, Joshi et al. (2002) presented Denali,
which splits the superoptimization problem to two phases to expand the capability to optimize longer
programs. STOKE (Schkufza et al., 2013) follows the two phase, but sacrifices the completeness for
efficiency at the second phase.

Recent attempts to improve superoptimization are categorized to two fields: exploring transforma-
tion rules and accelerating trajectory searching. Searching the rules are similar to the problem of
superoptimization on limited size program, but targeting more on comprehensiveness of the rules.
Buchwald (2015) exhaustively enumerates all possible expressions given the syntax, and checks the
equivalence of pairs of expressions by SMT solver. A similar method with adaption of the SMT
solver to reuse the previous result is proposed by Jangda & Yorsh (2017). On the other hand, deep
neural networks are trained to guide the trajectory searching (Cai et al., 2018; Chen & Tian, 2018).

Considering transformation rule discovery as a limited space superoptimization, the large action
space and sparse reward are the main challenge for using neural network. Special neural generator
structures are proposed for decoding valid symbolic programs, which leverage the syntax constrains
to reduce the searching space as well as learn the reasoning of operations, and are gaining popu-
larity in program synthesis (Parisotto et al., 2016; Zhong et al., 2017; Bunel et al., 2018), program
translation (Chen et al., 2018; Drissi et al., 2018), and other code generation tasks (Ling et al., 2016;
Alvarez-Melis & Jaakkola, 2016). Among the symbolic expression decoders, the family of tree
structure RNNs (Parisotto et al., 2016; Drissi et al., 2018; Alvarez-Melis & Jaakkola, 2016; Chen
et al., 2018) are more flexible than template-based predictors (Ling et al., 2016; Zhong et al., 2017).

3 THE HISS ARCHITECTURE

In this section, we will detail our proposed HISS architecture. We will first introduce a few notations.
T denotes a tree; a denotes a vector, and A denotes a matrix. We introduce an LSTM(·) function
that summarizes standard one-step LSTM operation as

[ht, ct] = LSTM(xt,ht−1, ct−1), (1)

where ht, ct and xt denote the output, cell and input at time t of a standard LSTM respectively. This
notation is very helpful for us to introduce our tree-LSTM structure in the subsequent subsections.

3.1 THE OVERALL FRAMEWORK

Our problem can be formulated as follows. Given a symbolic expression TI , represented in the
expression tree form, our goal is to find a simplified expression TO, such that 1) the two expressions
are equivalent; and 2) TO contains smaller number of nodes than TI .

It is important to write the symbolic expressions in their expression tree form, rather than strings,
because HISS will be operating on tree structures. An expression tree assigns a node for each op-
eration or variable. Each non-terminal node represents an operation, and each terminal node, or
leaf node, represents a variable or a constant. The arguments of an operation are represented as the

2

Under review as a conference paper at ICLR 2020

LSTM1

LSTM2

LP

LP

Att

LP

LSTMout

Softmax ⋮

⋮

LSTM

LP

LSTM

LSTM

LP

Sigmoid

LP

Softmax⋯

⋯

⋯
⋯

⋯

⋯

⋮
⋮

⋯

⋮

⋮

⋯

#$

#%

#&

#'

(%

('

(&

)%→+,-.

/%→+,-.

)%→0
.

/%→0
.

)%.
/%.

)&.
/&.

)'.
/'.

)%→&.

/%→&.)'
/'

)&
/&)%

/%

{)%}

)%→+,-.

Prob.	of	choosing	sub-tree

)%

D%

Copy & Split Concatenate

LSTM Output	
&	Cell

Input

Output
Previous
Output	&	
Cell

LP

Linear	Projection	
(Feed	Forward)

Att

Attention	Module	
(Eq.	(6))

(a) The tree encoder (green) and
sub-tree selector (orange).

LSTM1

LSTM2

LP

LP

Att

LP

LSTMout

Softmax ⋮

⋮

LSTM

LP

LSTM

LSTM

LP

Sigmoid

LP

Softmax⋯

⋯

⋯
⋯

⋯

⋯

⋮
⋮

⋯

⋮

⋮

⋯

#$

#%

#&

#'

(%

('

(&

)%→+,-.

/%→+,-.

)%→0
.

/%→0
.

)%.
/%.

)&.
/&.

)'.
/'.

)%→&.

/%→&.)'
/'

)&
/&)%

/%

{)%}

)%→+,-.

Prob.	of	choosing	sub-tree

)%

D%

Copy & Split Concatenate

LSTM Output	
&	Cell

Input

Output
Previous
Output	&	
Cell

LP

Linear	Projection	
(Feed	Forward)

Att

Attention	Module	
(Eq.	(6))

(b) The tree decoder.

LSTM1

LSTM2

LP

LP

Att

LP

LSTMout

Softmax ⋮

⋮

LSTM

LP

LSTM

LSTM

LP

Sigmoid

LP

Softmax⋯

⋯

⋯
⋯

⋯

⋯

⋮
⋮

⋯

⋮

⋮

⋯

#$

#%

#&

#'

(%

('

(&

)%→+,-.

/%→+,-.

)%→0
.

/%→0
.

)%.
/%.

)&.
/&.

)'.
/'.

)%→&.

/%→&.)'
/'

)&
/&)%

/%

{)%}

)%→+,-.

Prob.	of	choosing	sub-tree

)%

D%

Copy & Split Concatenate

LSTM Output	
&	Cell

Input

Output
Previous
Output	&	
Cell

LP

Linear	Projection	
(Feed	Forward)

Att

Attention	Module	
(Eq.	(6))

Figure 1: The HISS architecture, illustrated on a three-node binary sub-tree, where i is the parent of
j, k, and p is the parent of i.

descendant sub-trees of the corresponding node. Compared to string representation, tree representa-
tion naturally ensures any randomly generated expression in its form is syntactically correct. It also
makes working with sub-expressions easier – simply by working with sub-trees.

HISS approaches the problem using the reinforcement learning framework, where the action of
generating simplified expressions are divided into two consecutive actions. The first action is to pick
a sub-expression (or sub-tree) that can be simplified, and the second action generates the simplified
expression for the selected sub-expression.

Accordingly, HISS contains three modules. The first module is a tree encoder, which computes an
embedding for each sub-tree (including the entire tree) of the input expression. The embeddings
are useful for picking sub-tree for simplification as well as simplifying a sub-tree. The second
module is a sub-tree selector, which selects a sub-tree for simplification. The third module is a
tree decoder with attention mechanism, which generates a simplified expression based on the input
sub-tree embedding. The subsequent subsections will introduce each module respectively.

3.2 THE TREE ENCODER

The tree encoder generates embedding for every sub-tree of the input expression. We apply the
N -ary Tree LSTM as proposed in Tai et al. (2015), where N represents the maximum number of
arguments that an operation has. It is important to note that although different operations have
different number of arguments, for structural uniformity, we assume that all operations have N
arguments, with the excessive arguments being an NULL symbol.

The tree encoder consists of two layers. The first layer is called the embedding layer, which is a fully-
connected layer that converts the one-hot representation of each input symbol to an embedding. The
second layer is the tree LSTM layer, which is almost the same as the regular LSTM, except that the
cell information now flows from the children nodes to their parent node. Formally, denote ci, hi

and xi as the cell, output and input of node i respectively. Then the tree LSTM encoder performs
the following information

[hi, ci] = LSTM

xi,
⋃

j∈D(i)

hj ,
⋃

j∈D(i)

cj

 , (2)

where D(i) denotes the set of children of node i. Fig. 1(a) plots the architecture of the tree LSTM
encoder (in green). Since each node fuses the information from its children, which again fuse the
information from their own children, it is easy to see that the output hi summarizes the information
of the entire sub-tree led by node i, and thus can be regarded as an embedding for this sub-tree.

3.3 THE SUB-TREE SELECTOR

The sub-tree selector preforms the first action to select a sub-tree for simplification. It takes the
output of the tree encoder, {hi}, as its input, and produces the probability with which each sub-tree

3

Under review as a conference paper at ICLR 2020

is selected. It consists of two feed forward layers followed by a softmax layer across all the nodes
in the input tree. Fig. 1(a) shows the architecture of the sub-tree selector (in orange).

3.4 THE TREE DECODER

Once the sub-tree selector has selected a sub-tree, and suppose the root node of the selected sub-tree
is node i, the output of the encoder at node i, hi, is then fed into the tree decoder, which generates a
simplified version of the sub-tree. The tree decoder can be regarded as the inverse process of the tree
encoder – the latter fuses information from the children to the parents, whereas the former unrolls
the information from parents all the way down to the entire N -ary tree.

The tree decoder adopts a novel LSTM architecture with attention, which, compared with the at-
tention LSTM proposed by Chen et al. (2018), is more parameter- and computationally-efficient.
It consists of two layers. The first layer is a tree LSTM layer, and the second layer is the symbol
generation layer with attention. Fig. 1(b) illustrates the decoder structure.

Tree LSTM Layer The tree LSTM in the decoder needs to accomplish two tasks. First, it needs
to extract the information for generating the output for the current node. Second, it needs to split
and pass on the information to its children. To better control the information flow, we introduce two
tracks of LSTMs for the two different tasks. Formally, denote [h′

i, c
′
i] as the output and cell of node

i, and assume [j1, · · · , jN] are children nodes of i. Also denote yp as the decoder output for node p,
which is the parent node of node i (If node i is already the root node of the selected sub-tree, then yp

becomes a special start token ¡s¿). Then the first LSTM track extracts the information that generates
the current output:

[h′i→out, c
′
i→out] = LSTMout(yp,h

′
i, c
′
i). (3)

The second LSTM track splits and passes on the information to the children, i.e. ∀n ∈ {1, · · · , N}

[h′i→jn , c
′
i→jn] = LSTMn(yp,h

′
i, c
′
i). (4)

Notice that we have appended a subscript to the LSTM(·) to emphasize that LSTM functions with
different subscripts do not share parameters. Finally, the LSTM information for a specific children
is derived by linearly projecting the output track and that specific children track:

h′jn = Wh[h
′
j→out,h

′
i→jn] + bh, c′jn = Wc[c

′
j→out, c

′
i→jn] + bc. (5)

We find that this linear projection is useful for adding additional dependencies between the parent
output and the descendants, so that the generated expression is more coherent.

Symbol Generation Layer with Attention The symbol generation layer takes the output track
produced by the previous tree LSTM layer, h′

i→out, as input, and outputs the probability distribu-
tion of generating different output symbols for the current node. It adopts an attention mechanism
(Bahdanau et al., 2014) to attend to the relevant part in the encoder, so that the input and output
expressions have better correspondence. Formally, when generating the output for decoder node i,
the attention weight on encoder node j is computed from h′

i→out and hj as follows:

ei(j) = vT tanh(Wdh
′
i→out +Wehj + ba),

[ai(1), · · · , ai(J)] = softmax([ei(1), · · · , ei(J)]),
(6)

where J is the total number of input nodes at the encoder. Finally, the probability of symbol gen-
eration at node i, denoted as pi, is computed by passing into a linear projection layer h′

i→out and
an attention context vector ci, which is a linear combination of the encoder embeddings with the
attention weights, i.e.

pi = Wo[h
′
i→out; ci] + bo, where ci =

J∑
j=1

ai(j)hj . (7)

4 LEARNING WITH HISS

In this section, we will elaborate the training and inference schemes of HISS. In particular, we will
introduce several mechanisms to improve the exploration efficiency of HISS.

4

Under review as a conference paper at ICLR 2020

5 10 15 20
Sampling param

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Hi
t R

at
e

MCTS
MCMC
HISS

5 10 15 20
Sampling param

0.0

0.5

1.0

1.5

2.0

2.5

Ex
pr

es
sio

n
Le

ng
th

 R
ed

uc
tio

n MCTS
MCMC
HISS

5 10 15 20
Sampling param

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Tr
ee

 S
ize

 R
ed

uc
tio

n

MCTS
MCMC
HISS

Figure 2: Comparison with human-independent methods in terms of hit rate (left), expression length
reduction (middle), tree size reduction (right), on randomly generated short expressions.

4.1 TRAINING

We apply the standard REINFORCE framework (Williams, 1992) for training, where the reward
function function is given by

R(TI , TO) = γcard(TO) if TI ≡ TO, −0.1γcard(TO) otherwise, (8)

where ‘≡’ denotes that the two expressions are equivalent; card(·) denotes the number of nodes in
the tree expression, or equivalently the length of the expression. This reward prioritizes equivalence,
and given equivalence, favors shorter expressions. We applied a probabilistic testing scheme to
determine equivalence as proposed in Massalin (1987). We introduce the following modifications to
the standard REINFORCE algorithm to maintain the efficiency and stability of training.

Curriculum Learning Since generating the simplified expression is divided into two actions, sub-
tree selection and sub-tree simplification, directly learning both can lead to very inefficient explo-
ration. Instead, we introduce a two-stage curriculum. The first stage trains only the encoder and
decoder on very short expressions (maximum depth less than four). The sub-tree selector is not
trained. Instead we always feed the entire tree to the decoder for simplification. The second stage
trains all the modules on longer expressions.

Sub-tree Embedding Similarity In order to guide the encoder to learning meaning embeddings,
we introduce an additional `2 loss to enforce that the equivalent expressions have similar encoder
embeddings, i.e. similar his . Specifically, for each input expressions TI , we decode a set of gen-
erated expressions S = {TO} with beam search, and obtain their embeddings {h(TO)} by feeding
them back into the encoder (here we add an argument to h to emphasize that the embedding is a
function of input expression). Then the `2 loss is expressed as follows:

L =
1

|S|
∑
TO∈S

‖h(TO)− h(TI)‖22 · (−1)1[TI 6≡TO], (9)

where 1[·] denotes the indicator function, which equals one if the statement in its argument is true,
and zero otherwise. Note that this `2 applies to the encoder only, and can be optimized by regular
gradient descent methods. REINFORCE is not needed.

4.2 INFERENCE

Similar to training, the inference is performed by feeding the input expression to HISS and find the
best results among the multiple outputs. In order to accelerate the inference process, we introduce
an offline procedure. During the first stage of the curriculum training, i.e. training on very short
expressions, all the simplified equivalence discovered are logged. During inference, if the sub-
tree to be fed into the decoder has an exact match in the log, we will apply the logged simplified
equivalence directly, rather than redoing the entire decoding process.

5 EXPERIMENT

We have performed two experiments. The first experiment compares HISS with human-independent
naive search algorithms. The second experiment compares HISS with existing human-dependent
state-of-the-art algorithms on benchmark datasets.

5

Under review as a conference paper at ICLR 2020

0

5

10

15

20

25

30

35

40

Ex
pr

es
sio

n
Le

ng
th

 R
ed

uc
tio

n

17.7

36.1

30.1

Z3
Halide
HISS

0

2

4

6

8

10

12

Tr
ee

 S
ize

 R
ed

uc
tio

n

7.4

9.7

8.1

Z3
Halide
HISS

Figure 3: Comparison with human-dependent methods in terms of expression length reduction (left),
and tree size reduction (right), on random expressions generated by Halide’s generation tool

5.1 COMPARING WITH HUMAN-INDEPENDENT METHODS

Since there are no existing human-independent methods specifically for symbolic superoptimization,
we compare several search algorithms. Due to the search complexity, the evaluation can only be
performed on very short expressions (maximum depth is three). Therefore, our stage-one model in
the curriculum learning (the one with no sub-tree selection) suffices to perform the task.

Baselines Two baseline searching methods are compared: Monte Carlo Tree Search (MCTS) (Bert-
sekas, 1995) and Markov Chain Monte Carlo (MCMC) (Schkufza et al., 2013). MCTS decides the
expression tree from root to leaves, and adopts Upper Confidence Bound (Kocsis & Szepesvári,
2006) for balancing exploration and exploitation. Similar to Schkufza et al. (2013), MCMC takes
one of four transformations: 1) replace a operator by another random operator, and generate or dis-
card operands if two operator takes different number of operands. 2) replace a variable/constant
with another random variable/constant. 3) replace a sub-expression with a random single vari-
able/constant. 4) replace a variable/constant with a random expression. The probability distribution
of taking the transformation is defined as same as in Schkufza et al. (2013).

Dataset The random expression is generated from Halide Intermediate Representation (IR) syntax,
which contains 16 operators, taking one to three operands. To limit the searching space, the operands
are limited to five common constants (0, 1, 2, true, false), and 39 variables. We applied brute force
method to select only the expression that matches to a simpler equivalent within some computation
budget. The dataset contains short expressions of depth two to three, length two to 29. Notice that
even the dataset is drafted using brute force matching method, the brute force matching is extremely
time consuming, and definitely fails to find the equivalent ones in most of time due to vast searching
space. Also, the matched equivalent is not known to the models in any way.

Metrics Three metric are introduced: 1) hit rate, defined as percentage of expressions that the model
successfully found an equivalence given the computation budget parameter; 2) expression length
reduction, defined as reduction in the total number of tokens; and 3) tree size reduction, defined as
reduction in the number of nodes in the expression tree.

Results The performance comparison of three models is shown in Fig. 2. The sampling parameter in
the horizontal axis refers to the beam size for HISS , the max trials budget for MCTS for each token
decoded, and the sampling budget for MCMC. These quantities equivalently define the number of
search attempts per token. As can be seen, HISS is significantly more powerful in finding the simpler
equivalent than MCTS and MCMC. MCMC performs almost equally well as HISS in terms of Hit
Rate, and both of them far outperform MCTS. However, both MCTS and HISS adopt top-down
decoding in the huge decoding space, while MCMC starts with the input expression and applies
local transformation, which makes it much easier to find an equivalence. Also, MCMC achieves
much worse average length reduction and average tree size reduction than HISS.

5.2 COMPARING WITH HUMAN-DEPENDENT METHODS

In this section, we compare HISS with existing human-dependent state-of-the-art methods. We use
the full model of HISS, i.e. the stage-two model with sub-tree selection, for the comparison.

Baselines The two baselines are included: 1) Halide (Ragan-Kelley et al., 2013), which applies
manually defined rules; 2) Z3, the simplification function in Z3, a high performance theorem prover
developed by De Moura & Bjørner (2008), to perform transformations using its pre-defined rules.

6

Under review as a conference paper at ICLR 2020

60 40 20 0 20 40
Component 1

40

20

0

20

40

Co
m

po
ne

nt
 2

(a)

cluster

0.5

1.0

1.5

2.0

2.5

3.0

3.5

di
st

an
ce

Intra-
Inter-

(b)

Figure 4: Evaluation of similarity of the embeddings of equivalent expressions. (a) Scatter plots of
embeddings projected onto two-dimensional space using t-SNE. Points corresponding to equivalent
expressions are shown in the same color. (b) Box plots of intra- (blue) and inter-subset (orange)
distances of the embeddings. The bars in the box represent 25%, 50% and 75% quantile values. The
line intervals detnote the 1.5 inter-quaterline range (IQR) beyond the quartertile values. The dots
represent the extreme values.

Dataset The dataset contains reducible expressions generated by Halide’s random expression gener-
ation tool (Ragan-Kelley et al., 2013), which is for testing the simplification function in Halide. The
dataset contains long sequences The dataset is biased toward Halide simplification, as the random
patterns are very likely to match to some pre-defined rules in Halide.

Constant Folding Unlike the dataset in the previous subsection, which contains only five constant
values, the expressions in this dataset contains a large number of constant values. We thus apply a
constant folding technique to HISS as it is also performed in all other baselines. Specifically, once
the expression is rewritten by the neural network in symbolic domain, it will be checked if all the
leaf nodes in the sub-tree are constant. If so, the expression is executed and replaced by a new single
node with the execution result. Constant folding is applied in both training and inference.

Metrics Expression length reduction and tree size reduction are applied as the metrics.

Results HISS outperformed Z3 in both metrics, but slightly worse than Halide. The reason is
twofold. First, the data are generated using only Halide pre-defined rules, and thus algorithms that
have access to these oracle rules have an advantage. HISS does not benefit from going beyond these
predefined rules. Second, the HISS operates in symbolic domain, but the most common pattern that
is simplified in the dataset is constant based. For example, in Halide rule, ((x − 64) + z) < 32
should be rewritten to (x + z) < (32 + 64). However, the transformation rule can hardly be pre-
ferred by HISS in symbolic domain, since it reduces neither the tree size or expression length in
symbolic domain. Nevertheless, HISS still approaches the performance with the algorithm with
oracle knowledge.

5.3 SUB-TREE EMBEDDING ANALYSIS

We would like to see if HISS can learn similar embeddings for different expressions that produce the
same result. To evaluate this, in experiment 5.1, we select the six most-populated subsets of equiva-
lent expressions in the test set, and evaluate the similarity of their embedding in two ways. First, the
embeddings are further projected to two-dimensional space using t-SNE (Maaten & Hinton, 2008),
which form a scatter plot as in Fig. 4(a). The points corresponding to equivalent expressions are
shown in the same color. As can be seen, the embeddings equivalent expressions are highly clus-
tered. Notice that this result is on low-dimensional projection of the embedding. To better evaluate
their similarity in the original space, we compare their inter- and intra-subset distances. The inter-
/intra-subset distance of a subset is defined as the Euclidean distance between the centroid of the
subset and the samples outside/within the subset. Fig. 4(b) illustrated the box plot of these dis-
tances. As shown, there is a significant difference between intra- and inter-subset distances – except
for the first subset, the quatertile intervals are well separated. We can therefore conclude that HISS
is able to learn meaningful embeddings that are indicative of expression equivalence.

7

Under review as a conference paper at ICLR 2020

Table 1: Intuitive (left) and unintuitive (right) rewrite rules discovered by HISS.

Input Output Input Output
x&&false false (!true) < (y − 1) !(true >= y)
(x+ y)− x y (y − true)||(y >= true) true

0/x 0 max(z, 1) >= (false||x) true
x+ x 2 ∗ x (1− z) >= (z − 1) 1 >= z
y/y 1 min(x, true)&&(z/2) x&&z

max(x, x) x 1− (1 < x) 1 >= x
!(0 < y) 0 >= y select(z, z, true) == select(z, false, true) !z
!(2− y) 2 == y (x ∗ y)&&true y&&x

(−y) == y y == 0 (y + 1) > (y&&2) y >= 0

!(true >= y)

1)

-

(y

<

true)

(!
0.10

0.15

0.20

0.25

0.30

y >= 0

2)
&&

(y
>

1)
+

(y

0.09

0.12

0.15

0.18

0.21

x <= y

0
==

y)
-

y)
(x

,
(m

ax

0.08

0.10

0.12

0.14

0.16

1 >= z

1)
-

(z
>=

z)
-

(1 0.04

0.08

0.12

0.16

0.20

Figure 5: Attention weights on input sequence for each token decoded. The x-axis shows the output
sequence, and the y-axis shows the input sequence. Input sequence is encoded from leaves to root
and output sequence is decoded from root to leaves. Tokens are re-arranged in natural order for
better visualization.

5.4 ATTENTION VISUALIZATION

To understand the attention mechanism, we visualize the attention to the input sequence shown in
Fig. 5. We find that when decoding an operation, the attention tends to be flat (with a few exceptions
in the right two figures), because it needs to understand the overall logic. This is different from
machine translation or summarization, where output attention of a single word is usually focus on
several input tokens. On the other hand, when decoding a variable, the model attends sharply to the
corresponding variable in the input.

5.5 EXAMPLE SIMPLIFICATION RULES

In order to appreciate the ability of HISS in finding equivalence, we list some simplification rules
discovered by HISS on randomly generated expressions in Table 1. There are two column groups. In
the left column group, we list some intuitive rewrite rules, where we can find many axiomatic iden-
tities. Notice that most human-defined equivalence in the existing algorithms are such fundamental
identities. Therefore, the left column group shows that these identities can be autonomously learnt
even without human knowledge. More interestingly, the right column group shows some rewrite
rules that are unintuitive to humans. It takes the authors quite a while to figure out the equivalence.
These rules are hardly useful in practice, because no humans will code in this way, but it is a vivid
illustration of the advantage of HISS in finding powerful simplifications beyond human knowledge.

6 CONCLUSIONS

We have presented HISS as a symbolic expression simplication algorithm that is independent of
human knowledge. We demonstrated that removing the dependence on humans is advantageous for
this task, because machines can autonomously figure out rewrite rules that humans fail to discover,
and thus achieve comparably well simplification results. We also showed that we are one step
closer to finding an equivalence-preserving embedding for symbolic expressions. Although HISS
has achieved promising results, there is still much room for improvement. Although HISS has
adopted several techniques to reduce the complexity of the search space, learning simplification
rules on very long expressions is still challenging, which calls for the exploration on more efficient
reinforcement learning algorithms as a future research direction.

8

Under review as a conference paper at ICLR 2020

REFERENCES

David Alvarez-Melis and Tommi S Jaakkola. Tree-structured decoding with doubly-recurrent neural
networks. 2016.

Forough Arabshahi, Sameer Singh, and Animashree Anandkumar. Combining symbolic expressions
and black-box function evaluations in neural programs. arXiv preprint arXiv:1801.04342, 2018.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

Dimitri P Bertsekas. Dynamic programming and optimal control, volume 1. Athena scientific
Belmont, MA, 1995.

Sebastian Buchwald. Optgen: A generator for local optimizations. In International Conference on
Compiler Construction, pp. 171–189. Springer, 2015.

Rudy Bunel, Matthew Hausknecht, Jacob Devlin, Rishabh Singh, and Pushmeet Kohli. Lever-
aging grammar and reinforcement learning for neural program synthesis. arXiv preprint
arXiv:1805.04276, 2018.

Cheng-Hao Cai, Yanyan Xu, Dengfeng Ke, and Kaile Su. Learning of human-like algebraic reason-
ing using deep feedforward neural networks. Biologically inspired cognitive architectures, 25:
43–50, 2018.

Xinyun Chen and Yuandong Tian. Learning to progressively plan. arXiv preprint arXiv:1810.00337,
2018.

Xinyun Chen, Chang Liu, and Dawn Song. Tree-to-tree neural networks for program translation. In
Advances in Neural Information Processing Systems, pp. 2547–2557, 2018.

Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In International conference
on Tools and Algorithms for the Construction and Analysis of Systems, pp. 337–340. Springer,
2008.

Mehdi Drissi, Olivia Watkins, Aditya Khant, Vivaswat Ojha, Pedro Sandoval, Rakia Segev, Eric
Weiner, and Robert Keller. Program language translation using a grammar-driven tree-to-tree
model. arXiv preprint arXiv:1807.01784, 2018.

Abhinav Jangda and Greta Yorsh. Unbounded superoptimization. In Proceedings of the 2017 ACM
SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections on Program-
ming and Software, pp. 78–88. ACM, 2017.

Rajeev Joshi, Greg Nelson, and Keith Randall. Denali: a goal-directed superoptimizer, volume 37.
ACM, 2002.

Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In European conference
on machine learning, pp. 282–293. Springer, 2006.

Wang Ling, Edward Grefenstette, Karl Moritz Hermann, Tomáš Kočiskỳ, Andrew Senior, Fumin
Wang, and Phil Blunsom. Latent predictor networks for code generation. arXiv preprint
arXiv:1603.06744, 2016.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(Nov):2579–2605, 2008.

Henry Massalin. Superoptimizer: a look at the smallest program. In ACM SIGARCH Computer
Architecture News, volume 15, pp. 122–126. IEEE Computer Society Press, 1987.

Emilio Parisotto, Abdel-rahman Mohamed, Rishabh Singh, Lihong Li, Dengyong Zhou, and Push-
meet Kohli. Neuro-symbolic program synthesis. arXiv preprint arXiv:1611.01855, 2016.

Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand, and Saman
Amarasinghe. Halide: a language and compiler for optimizing parallelism, locality, and recom-
putation in image processing pipelines. Acm Sigplan Notices, 48(6):519–530, 2013.

9

Under review as a conference paper at ICLR 2020

Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic superoptimization. In ACM SIGPLAN
Notices, volume 48, pp. 305–316. ACM, 2013.

Kai Sheng Tai, Richard Socher, and Christopher D Manning. Improved semantic representations
from tree-structured long short-term memory networks. arXiv preprint arXiv:1503.00075, 2015.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229–256, 1992.

Wojciech Zaremba and Ilya Sutskever. Learning to execute. arXiv preprint arXiv:1410.4615, 2014.

Victor Zhong, Caiming Xiong, and Richard Socher. Seq2sql: Generating structured queries from
natural language using reinforcement learning. arXiv preprint arXiv:1709.00103, 2017.

10

	Introduction
	Related Works
	The Hiss Architecture
	The Overall Framework
	The Tree Encoder
	The Sub-tree Selector
	The Tree Decoder

	Learning with Hiss
	Training
	Inference

	Experiment
	Comparing with Human-Independent Methods
	Comparing with Human-Dependent Methods
	Sub-tree Embedding Analysis
	Attention Visualization
	Example Simplification Rules

	Conclusions

