
Under review as a conference paper at ICLR 2020

NEURAL OBLIVIOUS DECISION ENSEMBLES
FOR DEEP LEARNING ON TABULAR DATA

Anonymous authors
Paper under double-blind review

ABSTRACT

Nowadays, deep neural networks (DNNs) have become the main instrument for
machine learning tasks within a wide range of domains, including vision, NLP,
and speech. Meanwhile, in an important case of heterogenous tabular data, the
advantage of DNNs over shallow counterparts remains questionable. In particular,
there is no sufficient evidence that deep learning machinery allows constructing
methods that outperform gradient boosting decision trees (GBDT), which are of-
ten the top choice for tabular problems. In this paper, we introduce Neural Obliv-
ious Decision Ensembles (NODE), a new deep learning architecture, designed to
work with any tabular data. In a nutshell, the proposed NODE architecture gen-
eralizes ensembles of oblivious decision trees, but benefits from both end-to-end
gradient-based optimization and the power of multi-layer hierarchical representa-
tion learning. With an extensive experimental comparison to the leading GBDT
packages on a large number of tabular datasets, we demonstrate the advantage of
the proposed NODE architecture, which outperforms the competitors on most of
the tasks. We open-source the PyTorch implementation of NODE and believe that
it will become a universal framework for machine learning on tabular data.

1 INTRODUCTION

The recent rise of deep neural networks (DNN) resulted in a substantial breakthrough for a large
number of machine learning tasks in computer vision, natural language processing, speech recogni-
tion, reinforcement learning (Goodfellow et al., 2016). Both gradient-based optimization via back-
propagation (Rumelhart et al., 1985) and hierarchical representation learning appear to be crucial in
increasing the performance of machine learning for these problems by a large margin.

While the superiority of deep architectures in these domains is undoubtful, machine learning for
tabular data still did not fully benefit from the DNN power. Namely, the state-of-the-art perfor-
mance in problems with tabular heterogeneous data is often achieved by ”shallow” models, such as
gradient boosted decision trees (GBDT) (Friedman, 2001; Chen & Guestrin, 2016; Ke et al., 2017;
Prokhorenkova et al., 2018). While the importance of deep learning on tabular data is recognized
by the ML community, and many works address this problem (Zhou & Feng, 2017; Yang et al.,
2018; Miller et al., 2017; Lay et al., 2018; Feng et al., 2018; Ke et al., 2018), the proposed DNN
approaches do not consistently outperform the state-of-the-art shallow models by a notable margin.
In particular, to the best of our knowledge, there is still no universal DNN approach that was shown
to systematically outperform the leading GBDT packages (e.g., XGBoost (Chen & Guestrin, 2016)).
As additional evidence, a large number of Kaggle ML competitions with tabular data are still won
by the shallow GBDT methods (Harasymiv, 2015). Overall, at the moment, there is no dominant
deep learning solution for tabular data problems, and we aim to reduce this gap by our paper.

We introduce Neural Oblivious Decision Ensembles (NODE), a new DNN architecture, designed to
work with tabular problems. The NODE architecture is partially inspired by the recent CatBoost
package (Prokhorenkova et al., 2018), which was shown to provide state-of-the-art performance on
a large number of tabular datasets. In a nutshell, CatBoost performs gradient boosting on oblivi-
ous decision trees (decision tables) (Kohavi, 1994; Lou & Obukhov, 2017), which makes inference
very efficient, and the method is quite resistant to overfitting. In its essence, the proposed NODE
architecture generalizes CatBoost, making the splitting feature choice and decision tree routing dif-
ferentiable. As a result, the NODE architecture is fully differentiable and could be incorporated

1



Under review as a conference paper at ICLR 2020

in any computational graph of existing DL packages, such as TensorFlow or PyTorch. Further-
more, NODE allows constructing multi-layer architectures, which resembles ”deep” GBDT that is
trained end-to-end, which was never proposed before. Besides the usage of oblivious decision ta-
bles, another important design choice is the recent entmax transformation (Peters et al., 2019), which
effectively performs a ”soft” splitting feature choice in decision trees inside the NODE architecture.
As discussed in the following sections, these design choices are critical to obtain state-of-the-art
performance. In a large number of experiments, we compare the proposed approach with the lead-
ing GBDT implementations with tuned hyperparameters and demonstrate that NODE outperforms
competitors consistently on most of the datasets.

Overall, the main contributions of our paper can be summarized as follows:

1. We introduce a new DNN architecture for machine learning on tabular data. To the best
of our knowledge, our method is the first successful example of deep architectures that
substantially outperforms leading GBDT packages on tabular data.

2. Via an extensive experimental evaluation on a large number of datasets, we show that the
proposed NODE architecture outperforms existing GBDT implementations.

3. The PyTorch implementation of NODE is available online1.

The rest of the paper is organized as follows. In Section 2 we review prior work relevant to our
method. The proposed Neural Oblivious Decision Ensembles architecture is described in Section 3
and experimentally evaluated in Section 4. Section 5 concludes the paper.

2 RELATED WORK

In this section, we briefly review the main ideas from prior work that are relevant to our method.

The state-of-the-art for tabular data. Ensembles of decision trees, such as GBDT (Friedman,
2001) or random forests (Barandiaran, 1998), are currently the top choice for tabular data problems.
Currently, there are several leading GBDT packages, such as XGBoost (Chen & Guestrin, 2016),
LightGBM (Ke et al., 2017), CatBoost (Prokhorenkova et al., 2018), which are widely used by both
academicians and ML practitioners. While these implementations vary in details, on most of the
tasks their performances do not differ much (Prokhorenkova et al., 2018; Anghel et al.). The most
important distinction of CatBoost is that it uses oblivious decision trees (ODTs) as weak learners.
As ODTs are also an important ingredient of our NODE architecture, we discuss them below.

Oblivious Decision Trees. An oblivious decision tree is a regular tree of depth d that is constrained
to use the same splitting feature and splitting threshold in all internal nodes of the same depth. This
constraint essentially allows representing an ODT as a table with 2d entries, corresponding to all
possible combinations of d splits (Lou & Obukhov, 2017). Of course, due to the constraints above,
ODTs are significantly weaker learners compared to unconstrained decision trees. However, when
used in an ensemble, such trees are less prone to overfitting, which was shown to synergize well
with gradient boosting (Prokhorenkova et al., 2018). Furthermore, the inference in ODTs is very
efficient: one can compute d independent binary splits in parallel and return the appropriate table
entry. In contrast, non-oblivious decision trees require evaluating d splits sequentially.

Differentiable trees. The significant drawback of tree-based approaches is that they usually do not
allow end-to-end optimization and employ greedy, local optimization procedures for tree construc-
tion. Thus, they cannot be used as a component for pipelines, trained in an end-to-end fashion.
To address this issue, several works (Kontschieder et al., 2015; Yang et al., 2018; Lay et al., 2018)
propose to ”soften” decision functions in the internal tree nodes to make the overall tree function
and tree routing differentiable. In our work, we advocate the usage of the recent entmax transforma-
tion (Peters et al., 2019) to ”soften” decision trees. We confirm its advantages over the previously
proposed approaches in the experimental section.

Entmax. The key building block of our model is the entmax transformation (Peters et al., 2019),
which maps a vector of real-valued scores to a discrete probability distribution. This transforma-
tion generalizes the traditional softmax and its sparsity-enforcing alternative sparsemax (Martins &
Astudillo, 2016), which has already received significant attention in a wide range of applications:

1https://github.com/anonICLR2020/node

2

https://github.com/anonICLR2020/node


Under review as a conference paper at ICLR 2020

probabilistic inference, topic modeling, neural attention (Niculae & Blondel, 2017; Niculae et al.,
2018; Lin et al., 2019). The entmax is capable to produce sparse probability distributions, where
the majority of probabilities are exactly equal to 0. In this work, we argue that entmax is also an
appropriate inductive bias in our model, which allows differentiable split decision construction in
the internal tree nodes. Intuitively, entmax can learn splitting decisions based on a small subset of
data features (up to one, as in classical decision trees), avoiding undesired influence from others.
As an additional advantage, using entmax for feature selection allows for computationally efficient
inference using the sparse pre-computed choice vectors as described below in Section 3.

Multi-layer non-differentiable architectures. Another line of work (Miller et al., 2017; Zhou &
Feng, 2017; Feng et al., 2018) promotes the construction of multi-layer architectures from non-
differentiable blocks, such as random forests or GBDT ensembles. For instance, (Zhou & Feng,
2017; Miller et al., 2017) propose to use stacking of several random forests, which are trained sepa-
rately. In recent work, (Feng et al., 2018) introduces the multi-layer GBDTs and proposes a training
procedure that does not require each layer component to be differentiable. While these works report
marginal improvements over shallow counterparts, they lack the capability for end-to-end training,
which could result in inferior performance. In contrast, we argue that end-to-end training is crucial
and confirm this claim in the experimental section.

Specific DNN for tabular data. While a number of prior works propose architectures designed for
tabular data (Ke et al., 2018; Shavitt & Segal, 2018), they mostly do not compare with the properly
tuned GBDT implementations, which are the most appropriate baselines. The recent preprint (Ke
et al., 2018) reports the marginal improvement over GBDT with default parameters, but in our
experiments, the baseline performance is much higher. To the best of our knowledge, our approach
is the first to consistently outperform the tuned GBDTs over a large number of datasets.

3 NEURAL OBLIVIOUS DECISION ENSEMBLES

We introduce the Neural Oblivious Decision Ensemble (NODE) architecture with a layer-wise struc-
ture similar to existing deep learning models. In a nutshell, our architecture consists of differentiable
oblivious decision trees (ODT) that are trained end-to-end by backpropagation. We describe our im-
plementation of the differentiable NODE layer in Section 3.1, the full model architecture in Section
3.2, and the training and inference procedures in section 3.3.

3.1 DIFFERENTIABLE OBLIVIOUS DECISION TREES

The core building block of our model is a Neural Oblivious Decision Ensemble (NODE) layer. The
layer is composed ofm differentiable oblivious decision trees (ODTs) of equal depth d. As an input,
allm trees get a common vector x ∈ Rn, containing n numeric features. Below we describe a design
of a single differentiable ODT.

  

...

input

F1 σα(F1(x)−b1)

σα(F2(x)−b2) σα(F2(x)−b2)

σα(F3(x)−b3) σα(F3(x)−b3)

F2

F3

F2

F3

entmax
choice

R000 R001 R110 R111

output

tree
root

Figure 1: The single ODT inside the NODE layer. The splitting features and the splitting thresholds
are shared across all the internal nodes of the same depth. The output is a sum of leaf responses
scaled by the choice weights.

In its essence, an ODT is a decision table that splits the data along d splitting features and compares
each feature to a learned threshold. Then, the tree returns one of the 2d possible responses, corre-
sponding to the comparisons result. Therefore, each ODT is completely determined by its splitting

3



Under review as a conference paper at ICLR 2020

features f ∈ Rd, splitting thresholds b ∈ Rd and a d-dimensional tensor of responses R ∈ R
2× 2× 2︸ ︷︷ ︸

d .
In this notation, the tree output is defined as:

h(x) = R[1(f1(x)− b1), . . . ,1(fd(x)− bd)], (1)

where 1(·) denotes the Heaviside function.

To make the tree output (1) differentiable, we replace the splitting feature choice fi and the compar-
ison operator 1(fi(x)− bi) by their continuous counterparts. There are several existing approaches
that can be used for modelling differentiable choice functions in decision trees (Yang et al., 2018),
for instance, REINFORCE (Williams, 1992) or Gumbel-softmax (Jang et al., 2016). However, these
approaches typically require long training time, which can be crucial in practice.

Instead, we propose to use the α-entmax transformation (Peters et al., 2019) as it is able to learn
sparse choices, depending only on a few features, via standard gradient descent. The choice function
is hence replaced by a weighted sum of features, with weights computed as entmax over the learnable
feature selection matrix F ∈ Rd×n:

f̂i(x) =
n∑
j=1

xj · entmaxα(Fij) (2)

Similarly, we relax the Heaviside function 1(fi(x)− bi) as a two-class entmax, which we denote as
σα(x)=entmaxα([x, 0]). As different features can have different characteristic scales, we use the
scaled version ci(x) = σα

(
fi(x)−bi

τi

)
, where bi and τi are learnable parameters for thresholds and

scales respectively.

Based on the ci(x) values, we define a ”choice” tensorC ∈ R
2× 2× 2︸ ︷︷ ︸

d of the same size as the response
tensor R by computing the outer product of all ci:

C(x) =

[
c1(x)

1− c1(x)

]
⊗
[

c2(x)
1− c2(x)

]
⊗ · · · ⊗

[
cd(x)

1− cd(x)

]
(3)

The final prediction is then computed as a weighted linear combination of response tensor entries R
with weights from the entries of choice tensor C:

ĥ(x) =
∑

i1,...id∈{0,1}d
Ri1,...,id · Ci1,...,id(x) (4)

Note, that this relaxation equals to the classic non-differentiable ODT h(x)(1) iff both feature selec-
tion and threshold functions reach one-hot state, i.e. entmax always returns non-zero weights for a
single feature and ci always return exactly zeros or ones.

Finally, the output of the NODE layer is composed as a concatenation of the outputs ofm individual
trees

[
ĥ1(x), . . . , ĥm(x)

]
.

Multidimensional tree outputs. In the description above, we assumed that tree outputs are one-
dimensional ĥ(x) ∈ R. For classification problems, where NODE predicts probabilities of each
class, we use multidimensional tree outputs ĥ(x) ∈ R|C|, where |C| is a number of classes.

3.2 GOING DEEPER WITH THE NODE ARCHITECTURE

The NODE layer, described above, can be trained alone or within a complex structure, like fully-
connected layers that can be organized into the multi-layer architectures. In this work, we introduce
a new architecture, following the popular DenseNet (Huang et al., 2017) model and train it end-to-
end via backpropagation.

Similar to DenseNet, our architecture is a sequence of k NODE layers (see Section 3.1), where each
layer uses a concatenation of all previous layers as its input. The input layer 0 of this architecture
corresponds to the input features x, accessible by all successor layers. Due to such a design, our

4



Under review as a conference paper at ICLR 2020

  

input

... ... ... ...

layer 1

... ... ... ...

layer 2

... ... ... ...

layer 3

Σ
prediction

layer 3

...

tree

a

b
c

Concatenation:
c = cat(a, b)    

Figure 2: The NODE architecture, consisting of densely connected NODE layers. Each layer con-
tains several trees whose outputs are concatenated and serve as input for the subsequent layer. The
final prediction is obtained by averaging the outputs of all trees from all the layers.

architecture is capable to learn both shallow and deep decision rules. A single tree on i-th layer can
rely on chains of up to i− 1 layer outputs as features, allowing it to capture complex dependencies.
The resulting prediction is a simple average of all decision trees from all layers.

Note, in the multi-layer architecture described above, tree outputs ĥ(x) from early layers are used
as inputs for subsequent layers. Therefore, we do not restrict the dimensionality of ĥ(x) to be equal
to the number of classes, and allow it to have an arbitrary dimensionality l, which correspond to

the (d+ 1)-dimensional response tensor R ∈ R
2× 2× 2︸ ︷︷ ︸

d

×l

. When averaging the predictions from all
layers, only first |C| coordinates of ĥ(x) are used for classification problems and the first one for
regression problems. Overall, l is an additional hyperparameter with typical values in [1, 3].

3.3 TRAINING

Here we summarize the details of our training protocol.

Data preprocessing. First, we transform each data feature to follow a normal distribution via quan-
tile transform2. In experiments, we observed that this step was important for stable training and
faster convergence.

Initialization. Before training, we perform the data-aware initialization (Mishkin & Matas, 2016)
to obtain a good initial parameter values. In particular, we initialize the feature selection matrix
uniformly Fij ∼ U(0, 1), while the thresholds b are initialized with random feature values fi(x)
observed in the first data batch. The scales τi are initialized in such a way that all the samples in
the first batch belong to the linear region of σα, and hence receive nonzero gradients. Finally, the
response tensor entries are initialized with the standard normal distributionR[i1, . . . , id] ∼ N(0, 1).

Training. As for existing DNN architectures, NODE is trained end-to-end via mini-batch SGD.
We jointly optimize all model parameters: F, b,R. In this work, we experimented with traditional
objective functions (cross-entropy for classification and mean squared error for regression), but any
differentiable objective can be used as well. As an optimization method, we use the recent Quasi-
Hyperbolic Adam with parameters recommended in the original paper (Ma & Yarats, 2018). We
also average the model parameters over c = 5 consecutive checkpoints (Izmailov et al., 2018) and
pick the optimal stopping point on the hold-out validation dataset.

Inference. During training, a significant fraction of time is spent computing the entmax function
and multiplying the choice tensor. Once the model is trained, one can pre-compute entmax feature
selectors and store them as a sparse vector (e.g., in coordinate (coo) format), making inference more
efficient.

2sklearn.preprocessing.QuantileTransformer

5



Under review as a conference paper at ICLR 2020

4 EXPERIMENTS

In this section, we report the results of a comparison between our approach and the leading GBDT
packages. We also provide several ablation studies that demonstrate the influence of each design
choice in the proposed NODE architecture.

4.1 COMPARISON TO THE STATE-OF-THE-ART.

As our main experiments, we compare the proposed NODE architecture with two state-of-the-art
GBDT implementations on a large number of datasets. In all the experiments we set α parameter in
the entmax transformation to 1.5. All other details of the comparison protocol are described below.

Datasets. We perform most of the experiments on six open-source tabular datasets from different
domains: Epsilon, YearPrediction, Higgs, Microsoft, Yahoo, Click. The detailed description of
the datasets is available in appendix. All the datasets provide train/test splits, and we used 20%
samples from the train set as a validation set to tune the hyperparameters. For each dataset, we fix
the train/val/test splits for a fair comparison. For the classification datasets (Epsilon, Higgs, Click),
we minimize cross-entropy loss and report the classification error. For the regression and ranking
datasets (YearPrediction, Microsoft, Yahoo), we minimize and report mean squared error (which
corresponds to the pointwise approach to learning-to-rank).

Methods. We compare the proposed NODE architecture to the following baselines:

• Catboost. The recent GBDT implementation (Prokhorenkova et al., 2018) that uses oblivious
decision trees as weak learners. We use the open-source implementation, provided by the authors.

• XGBoost. The most popular GBDT implementation widely used in machine learning competi-
tions (Chen & Guestrin, 2016). We use the open-source implementation, provided by the authors.

• FCNN. Deep neural network, consisting of several fully-connected layers with ReLU non-
linearity layers (Nair & Hinton, 2010).

Regimes. We perform comparison in two following regimes that are the most important in practice:

• Default hyperparameters. In this regime, we compare the methods as easy-to-tune toolkits that
could be used by a non-professional audience. Namely, here we do not tune hyperparameters
and use the default ones provided by the GBDT packages. The only tunable parameter here
is a number of trees (up to 2048) in CatBoost/XGBoost, which is set based on the validation
set. We do not compare with FCNN in this regime, as it typically requires much tuning, and
we did not find the set of parameters, appropriate for all datasets. The default architecture in
our model contains only a single layer with 2048 decision trees of depth six. Both of these
hyperparameters were inherited from the CatBoost package settings for oblivious decision trees.
With these parameters, the NODE architecture is shallow, but it still benefits from end-to-end
training via back-propagation.

• Tuned hyperparameters. In this regime, we tune the hyperparameters for both NODE and the
competitors on the validation subsets. The optimal configuration for NODE contains between
two and eight NODE layers, while the total number of trees across all the layers does not exceed
2048. The details of hyperparameter optimization are provided in appendix.

The results of the comparison are summarized in Table 1 and Table 2. For all methods, we report
mean performance and standard deviations computed over ten runs with different random seeds.
Several key observations are highlighted below:

1. With default hyperparameters, the proposed NODE architecture consistently outperforms both
CatBoost and XGBoost on all datasets. The results advocate the usage of NODE as a handy tool
for machine learning on tabular problems.

2. With tuned hyperparameters, NODE also outperforms the competitors on most of the tasks. Two
exceptions are the Yahoo and Microsoft datasets, where tuned XGBoost provides the highest
performance. Given the large advantage of XGBoost over CatBoost on Yahoo, we speculate
that the usage of oblivious decision trees is an inappropriate inductive bias for this dataset. This
implies that NODE should be extended to non-oblivious trees, which we leave for future work.

6



Under review as a conference paper at ICLR 2020

Epsilon YearPrediction Higgs Microsoft Yahoo Click
Default hyperparameters

CatBoost 0.1119±2e−4 80.68±0.04 0.2434±2e−4 0.5587±2e−4 0.5781±3e−4 0.3438±1e−3
XGBoost 0.1144 81.11 0.2600 0.5637 0.5756 0.3461

NODE 0.1043±4e−4 77.43±0.09 0.2412±5e−4 0.5584±3e−4 0.5666±5e−4 0.3309±3e−4

Table 1: The comparison of NODE with the shallow state-of-the-art counterparts with default hy-
perparameters. The results are computed over ten runs with different random seeds.

Epsilon YearPrediction Higgs Microsoft Yahoo Click
Tuned hyperparameters

CatBoost 0.1113±4e−4 79.67±0.12 0.2378±1e−4 0.5565±2e−4 0.5632±3e−4 0.3401±2e−3
XGBoost 0.1112±6e−4 78.53±0.09 0.2328±3e−4 0.5544±1e−4 0.5420±4e−4 0.3334±2e−3

FCNN 0.1041±2e−4 79.99±0.47 0.2140±2e−4 0.5608±4e−4 0.5773±1e−3 0.3325±2e−3
NODE 0.1034±3e−4 76.21±0.12 0.2101±5e−4 0.5570±2e−4 0.5692±2e−4 0.3312±2e−3

mGBDT OOM 80.67 OOM OOM OOM OOM

DeepForest 0.1179 — 0.2391 — — 0.3333

Table 2: The comparison of NODE with both shallow and deep counterparts with hyperparameters
tuned for optimal performance. The results are computed over ten runs with different random seeds.

3. In the regime with tuned hyperparameters on some datasets FCNN outperforms GBDT, while on
others GBDT is superior. Meanwhile, the proposed NODE architecture appears to be a universal
instrument, providing the highest performance on most of the tasks.

For completeness we also aimed to compare to previously proposed architectures for deep learning
on tabular data. Unfortunately, many works did not publish the source code. We were only able
to perform a partial comparison with mGBDT (Feng et al., 2018) and DeepForest (Zhou & Feng,
2017), which source code is available. For both baselines, we use the implementations, provided by
the authors, and tune the parameters on the validation set. Note, that the DeepForest implementation
is available only for classification problems. Moreover, both implementations do not scale well, and
for many datasets, we obtained Out-Of-Memory error (OOM). On datasets in our experiments it
turns out that properly tuned GBDTs outperform both (Feng et al., 2018) and (Zhou & Feng, 2017).

4.2 ABLATIVE ANALYSIS

In this section, we analyze the key architecture components that define our model.

Choice functions. Constructing differentiable decision trees requires a function that selects items
from a set. Such function is required for both splitting feature selection and decision tree routing.
We experimented with four possible options, each having different implications:
• Softmax learns dense decision rules where all items have nonzero weights;
• Gumbel-Softmax (Jang et al., 2016) learns to stochastically sample a single element from a set;
• Sparsemax (Martins & Astudillo, 2016) learns sparse decision rules, where only a few items

have nonzero weights;
• Entmax (Peters et al., 2019) generalizes both sparsemax and softmax; it is able to learn sparse

decision rules, but is smoother than sparsemax, being more appropriate for gradient-based opti-
mization. In comparison α parameter was set to 1.5.

We experimentally compare the four options above with both shallow and deep architectures in Ta-
ble 3. We use the same choice function for both feature selection and tree routing across all experi-
ments. In Gumbel-Softmax, we replaced it with hard argmax one-hot during inference. The results
clearly show that Entmax with α=1.5 outperforms the competitors across all experiments. First, Ta-
ble 3 demonstrates that sparsemax and softmax are not universal choice functions. For instance, on
the YearPrediction dataset, sparsemax outperforms softmax, while on the Epsilon dataset softmax is
superior. In turn, entmax provides great empirical performance across all datasets. Another obser-
vation is that Gumbel-Softmax is unable to learn deep architectures with both constant and annealed
temperature schedules. This behavior is probably caused by the stochasticity of Gumbel-Softmax
and the responses on the former layers are too noisy to produce useful features for the latter layers.

7



Under review as a conference paper at ICLR 2020

Dataset YearPrediction Epsilon
Function softmax Gumbel sparsemax entmax softmax Gumbel sparsemax entmax
1 layer 78.41 79.39 78.13 77.43 0.1045 0.1979 0.1083 0.1043
2 layers 77.61 79.31 76.81 77.05 0.1041 0.2884 0.1052 0.1031
4 layers 77.58 79.69 76.60 76.21 0.1034 0.2908 0.1058 0.1033
8 layers 77.47 80.49 76.31 76.17 0.1036 0.3081 0.1058 0.1036

Table 3: The experimental comparison of various choice functions and architecture depths. The
values represent mean squared error for YearPrediction and classification error rate for Epsilon.

Figure 3: NODE on UCI Higgs dataset: Left-Top: individual feature importance distributions for
both original and learned features. Left-Bottom: mean absolute contribution of individual trees to
the final response. Right: responses dependence on feature importances. See details in the text.
Feature importance. In this series of experiments, we analyze the internal representations, learned
by the NODE architecture. We begin by estimating the feature importances from different layers of
a multi-layer ensemble via permutation feature importance, initially introduced in (Breiman, 2001).
Namely, for 10.000 objects from the Higgs dataset we randomly shuffle the values of each feature
(original or learnt on some NODE layer) and compute the increase in the classification error. Then
for each layer, we split feature importance values into seven equal bins and calculate the total feature
importance of each bin, shown on Figure 3 (left-top). We discovered that the features from the first
layer are used the most, with feature importances decreasing with depth. This figure shows that deep
layers are able to produce important features, even though earlier layers have an advantage because
of the DenseNet architecture. Next, we estimated the mean absolute contribution of individual
trees to the final response, reported on Figure 3 (left-bottom). One can see the reverse trend, deep
trees tend to contribute more to the final response. Figure 3 (right) clearly shows that there is
anticorrelation of feature importances and contributions in the final response, which implies that the
main role of ealier layers is to produce informative features, while the latter layers mostly use them
for accurate prediction.

Training/Inference runtime. Finally, we compare the NODE runtime to the timings of the state-
of-the-art GBDT implementations. In Table 4 we report the training and inference time for million
of objects from the YearPrediction dataset. In this experiment, we evaluate ensembles of 1024 trees
of depth six with all other parameters set to their default values. Our GPU setup has a single 1080Ti
GPU and 2 CPU cores. In turn, our CPU setup has a 28-core Xeon E5-2660 v4 processor (which
costs almost twice as much as the GPU). We use CatBoost v0.15 and XGBoost v0.90 as baselines,
while NODE inference runs on PyTorch v1.1.0. Overall, NODE inference time is on par with heavily
optimized GBDT libraries despite being implemented in pure PyTorch (i.e. no custom kernels).

Method NODE 8 layers 1080Ti XGBoost Xeon XGBoost 1080Ti CatBoost Xeon
Training 7min 42s 5min 39s 1min 13s 41s
Inference 8.56s 5.94s 4.45s 4.62s

Table 4: Training and inference runtime for models with 1024 trees of depth six on the YearPredic-
tion dataset, averaged over five runs. Both timings of eight-layer NODE architecture are on par with
timings of shallow counterparts of the same total number of trees in an ensemble.

5 CONCLUSION

In this paper, we introduce a new DNN architecture for deep learning on heterogeneous tabular data.
The architecture is differentiable deep GBDTs, trained end-to-end via backpropagation. In extensive
experiments, we demonstrate the advantages of our architecture over existing competitors with the
default and tuned hyperparameters. A promising research direction is incorporating the NODE
layer into complex pipelines trained via back-propagation. For instance, in multi-modal problems,
the NODE layer could be employed as a way to incorporate the tabular data, as CNNs are currently
used for images, or RNNs are used for sequences.

8



Under review as a conference paper at ICLR 2020

REFERENCES

Andreea Anghel, Nikolaos Papandreou, Thomas Parnell, Alessandro de Palma, and Haralampos
Pozidis. Benchmarking and optimization of gradient boosting decision tree algorithms.

Iñigo Barandiaran. The random subspace method for constructing decision forests. IEEE transac-
tions on pattern analysis and machine intelligence, 1998.

Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001. doi: 10.1023/A:
1010933404324. URL https://doi.org/10.1023/A:1010933404324.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the
22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785–794,
2016.

Ji Feng, Yang Yu, and Zhi-Hua Zhou. Multi-layered gradient boosting decision trees. In Advances
in Neural Information Processing Systems 31: Annual Conference on Neural Information Pro-
cessing Systems 2018, NeurIPS, 2018.

Jerome H Friedman. Greedy function approximation: a gradient boosting machine. Annals of
statistics, pp. 1189–1232, 2001.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

Vasyl Harasymiv. Lessons from 2 million machine learning models on kaggle, 2015.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, 2017.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wil-
son. Averaging weights leads to wider optima and better generalization. arXiv preprint
arXiv:1803.05407, 2018.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax.
CoRR, abs/1611.01144, 2016. URL http://dblp.uni-trier.de/db/journals/
corr/corr1611.html#JangGP16.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-
Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. In Advances in Neural
Information Processing Systems, pp. 3146–3154, 2017.

Guolin Ke, Jia Zhang, Zhenhui Xu, Jiang Bian, and Tie-Yan Liu. Tabnn: A universal neural network
solution for tabular data. 2018.

Ron Kohavi. Bottom-up induction of oblivious read-once decision graphs: strengths and limitations.
In AAAI, 1994.

Peter Kontschieder, Madalina Fiterau, Antonio Criminisi, and Samuel Rota Bulo. Deep neural
decision forests. In Proceedings of the IEEE international conference on computer vision, 2015.

Nathan Lay, Adam P Harrison, Sharon Schreiber, Gitesh Dawer, and Adrian Barbu. Random hinge
forest for differentiable learning. arXiv preprint arXiv:1802.03882, 2018.

Tianyi Lin, Zhiyue Hu, and Xin Guo. Sparsemax and relaxed wasserstein for topic sparsity. In
Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining, 2019.

Yin Lou and Mikhail Obukhov. Bdt: Gradient boosted decision tables for high accuracy and scoring
efficiency. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2017.

Jerry Ma and Denis Yarats. Quasi-hyperbolic momentum and adam for deep learning. arXiv preprint
arXiv:1810.06801, 2018.

9

https://doi.org/10.1023/A:1010933404324
http://dblp.uni-trier.de/db/journals/corr/corr1611.html#JangGP16
http://dblp.uni-trier.de/db/journals/corr/corr1611.html#JangGP16


Under review as a conference paper at ICLR 2020

Andre Martins and Ramon Astudillo. From softmax to sparsemax: A sparse model of attention and
multi-label classification. In International Conference on Machine Learning, 2016.

Kevin Miller, Chris Hettinger, Jeffrey Humpherys, Tyler Jarvis, and David Kartchner. Forward
thinking: building deep random forests. arXiv preprint arXiv:1705.07366, 2017.

Dmytro Mishkin and Jiri Matas. All you need is a good init. In 4th International Conference on
Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track
Proceedings, 2016.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines.
In Proceedings of the 27th international conference on machine learning (ICML-10), 2010.

Vlad Niculae and Mathieu Blondel. A regularized framework for sparse and structured neural atten-
tion. In Advances in Neural Information Processing Systems, 2017.

Vlad Niculae, André FT Martins, Mathieu Blondel, and Claire Cardie. Sparsemap: Differentiable
sparse structured inference. arXiv preprint arXiv:1802.04223, 2018.

Ben Peters, Vlad Niculae, and André F. T. Martins. Sparse sequence-to-sequence models. In ACL,
2019, pp. 1504–1519, 2019.

Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and Andrey
Gulin. Catboost: unbiased boosting with categorical features. In Advances in Neural Information
Processing Systems, pp. 6638–6648, 2018.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal representations
by error propagation. Technical report, California Univ San Diego La Jolla Inst for Cognitive
Science, 1985.

Ira Shavitt and Eran Segal. Regularization learning networks: Deep learning for tabular datasets. In
Advances in Neural Information Processing Systems, pp. 1379–1389, 2018.

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 8:229–256, 1992.

Yongxin Yang, Irene Garcia Morillo, and Timothy M Hospedales. Deep neural decision trees. arXiv
preprint arXiv:1806.06988, 2018.

Zhi-Hua Zhou and Ji Feng. Deep forest: Towards an alternative to deep neural networks. In Proceed-
ings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI, 2017.

A APPENDIX

A.1 DESCRIPTION OF THE DATASETS

In our experiments, we used six tabular datasets, described in Table 5. (1) Epsilon is high dimen-
sional dataset from the PASCAL Large Scale Learning Challenge 2008. The problem is a binary
classification. (2) YearPrediction is a subset of Million Song Dataset. It is regression dataset, and
the task is to predict the release year of the song by using the audio features. It contains tracks
from 1922 to 2011. (3) Higgs is a dataset from the UCI ML Repository. The problem is to predict
whether the given event produces Higgs bosons or not. (4) Microsoft is a Learning to Rank Dataset.
It consists of 136-dimensional feature vectors extracted from query-url pairs. Each pair has rele-
vance judgment labels, which take values from 0 (irrelevant) to 4 (perfectly relevant) (5) Yahoo is
very similar ranking dataset with query-url pairs labeled from 0 to 4. We treat both ranking problems
as regression (which corresponds to the pointwise approach to learning-to-rank) (6) Click is a subset
of data from the 2012 KDD Cup. For the subset construction, we randomly sample 500.000 objects
of a positive class and 500.000 objects of a negative class. The categorical features were converted
to numerical ones via Leave-One-Out encoder from category encoders package of the scikit-learn
library.

10



Under review as a conference paper at ICLR 2020

Train Test Features Task Metric Description
Epsilon4 400K 100K 2000 Classification Error PASCAL Challenge 2008

YearPrediction5 463K 51.6K 90 Regression MSE Million Song Dataset
Higgs6 10.5M 500K 28 Classification Error UCI ML Higgs

Microsoft7 723K 241K 136 Regression MSE MSLR-WEB10K
Yahoo8 544K 165K 699 Regression MSE Yahoo LETOR dataset
Click9 800K 200K 11 Classification Error 2012 KDD Cup

Table 5: The datasets used in our experiments.

A.2 OPTIMIZATION OF HYPERPARAMETERS

In order to tune the hyperparameters, we performed a random stratified split of full training data into
train set (80%) and validation set (20%) for the Epsilon, YearPrediction, Higgs, Microsoft, and Click
datasets. For Yahoo, we use train/val/test split provided by the dataset authors. We use the Hyperopt3
library to optimize Catboost, XGBoost, and FCNN hyperparameters. For each method, we perform
50 steps of Tree-structured Parzen Estimator (TPE) optimization algorithm. As a final configuration,
we choose the set of hyperparameters, corresponding to the smallest loss on the validation set.

A.2.1 CATBOOST AND XGBOOST

On each iteration of Hyperopt, the number of trees was set based on the validation set, with maximal
trees count set to 2048. Below is the list of hyperparameters and their search spaces for Catboost.

• learning rate: Log-Uniform distribution [e−5, 1]

• random strength: Discrete uniform distribution [1, 20]

• one hot max size: Discrete uniform distribution [0, 25]

• l2 leaf reg: Log-Uniform distribution [1, 10]

• bagging temperature: Uniform distribution [0, 1]

• leaf estimation iterations: Discrete uniform distribution [1, 10]

XGBoost tuned parameters and their search spaces:

• eta: Log-Uniform distribution [e−7, 1]

• max depth: Discrete uniform distribution [2, 10]

• subsample: Uniform distribution [0.5, 1]

• colsample bytree: Uniform distribution [0.5, 1]

• colsample bylevel: Uniform distribution [0.5, 1]

• min child weight: Log-Uniform distribution [e−16, e5]

• alpha: Uniform choice {0, Log-Uniform distribution [e−16, e2]}
• lambda: Uniform choice {0, Log-Uniform distribution [e−16, e2]}
• gamma: Uniform choice {0, Log-Uniform distribution [e−16, e2]}

3https://github.com/hyperopt/hyperopt
4https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/binary.html
5https://archive.ics.uci.edu/ml/datasets/yearpredictionmsd
6https://archive.ics.uci.edu/ml/datasets/HIGGS
7https://www.microsoft.com/en-us/research/project/mslr/
8https://webscope.sandbox.yahoo.com/catalog.php?datatype=c
9http://www.kdd.org/kdd-cup/view/kdd-cup-2012-track-2

11



Under review as a conference paper at ICLR 2020

A.2.2 FCNN

Fully connected neural networks were tuned using Hyperas 10 library, which is a Keras wrapper for
Hyperopt. We consider FCNN constructed from the following blocks: Dense-ReLU-Dropout. The
number of units in each layer is independent of each other, and dropout value is the same for the
whole network. The networks are trained with the Adam optimizer with averaging the model pa-
rameters over c=5 consecutive checkpoints (Izmailov et al., 2018) and early stopping on validation.
Batch size is fixed to 1024 for all datasets. Below is the list of tuned hyperparameters.

• Number of layers: Discrete uniform distribution [2, 7]

• Number of units: Dicrete uniform distribution over a set {128, 256, 512, 1024}
• Learning rate: Uniform distribution [1e− 4, 1e− 2]

• Dropout: Uniform distribution [0, 0.5]

A.2.3 NODE

Neural Oblivious Decision Ensembles were tuned by grid search over the following hyperparameter
values. In the multi-layer NODE, we use the same architecture for all layers, i.e., the same number
of trees of the same depth. total tree count here denotes the total number of trees on all layers. For
each dataset, we use the maximal batch size, which fits in the GPU memory. We always use learning
rate 10−3.

• num layers: {2, 4, 8}
• total tree count: {1024, 2048}
• tree depth: {6, 8}
• tree output dim: {2, 3}

10https://github.com/maxpumperla/hyperas

12


	Introduction
	Related work
	Neural Oblivious Decision Ensembles
	Differentiable Oblivious Decision Trees
	Going deeper with the NODE architecture
	Training

	Experiments
	Comparison to the state-of-the-art.
	Ablative analysis

	Conclusion
	Appendix
	Description of the datasets
	Optimization of hyperparameters
	Catboost and XGBoost
	FCNN
	NODE



