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ABSTRACT

Network compression technology can compress large and complex networks into
small networks, so that it can be deployed on devices with limited resources.
Sparse regularization method, such as L1 or L21 regularization, is the most
popular method that can induce sparse model. However, it introduces new hy-
perparameters, which not only affects the degree of sparsity, but also involves
whether the network can be effectively trained (gradient explosion or model non-
convergence). How to select hyperparameters becomes an important and open
problem for regularization-based network compression method. In this paper, we
propose an auto network compression framework with cross-validation gradient
which can automatically adjust the hyperparameters. Firstly, we design an uni-
fied framework which combines model parameter learning with hyperparametric
learning. Secondly, in order to solve the problem of non-derivability of L1 norm,
we introduce auxiliary variables to transform it into a solvable problem, and then
obtain the derivative of model parameters with respect to hyperparameters. Fi-
nally, the derivative of the hyperparametric vector is solved by the chain rule. In
solving the inverse problem of Heisen matrix, we compare three methods and
only calculate the mixed partial derivatives. To a certain extent, this method re-
alizes the automatic network compression. Classical network structures such as
VGG, ResNet and DensNet are tested on CIFAR-10 and CIFAR-100 datasets to
prove the effectiveness of our algorithm.

1 INTRODUCTION

Network compression technology compresses the increasing size of model into one that occupies
less memory resources and reduces the amount of computation of the big model, making it possible
for AI to run on mobile phones. Common model compression methods are divided into four different
categories: network pruning, network quantization, knowledge distillation, and matrix-based low-
rank approximation (Cheng et al., 2018; Lee et al., 2019; Sakr & Shanbhag, 2019; Crowley et al.,
2018; Peng et al., 2018). Pruning simplifies the large networks and select one of the subsets of large
model essentially. It can reduce more than half of the parameters without significantly reducing the
accuracy and greatly improve the compression rate. Our method discussed in this paper fall into the
category of pruning.

Pruning based on regularization term is a very popular method. Classical machine learning methods
use L0 regularization to induce sparse models. Because L0 norm is difficult to optimize, it is usually
replaced by L1 norm. In the field of deep learning, previous work used various norms to train
the model parameters (Han et al., 2015; Mummadi et al., 2019; Liu et al., 2019; Li et al., 2019;
Mehta et al., 2019). However, few work consider the problem of selecting hyper-parameters which
introducd by regularization term. Hyperparameters not only determine the penalty intensity of the
model, but also affect the network accuracy after fine-tuning. So how to select hyperparameters
becomes an important and open problem for model compression.

In order to alleviate the above problem, a general method for automatically determining hyperparam-
eters is studied. Both L1 norm and L2 norm are conducive to induce sparse model. The objective
function of our study is based on the above two norms. We calculate the gradients of the coeffi-
cients of L1 and L2 regularization terms, and use cross validation to update hyperparameters. Our
contributions are summarized as follows:
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Figure 1: The whole big circle is only one iteration, and the white bottom rectangle on the left is
the optimization process of the inner neural network. The inner process optimizes W by mini-batch
SGD to minimize the loss function in training set. The blue part on the right is the gradient descent
of cross validation loss on validation set. Weight is fixed and regularization coefficient is updated
for several epoches.

• We propose a unified framework (see figure 1) that combines the whole parameters training
process with hyperparametric optimization.

• Using auxiliary variables, we construct a problem that satisfies the differentiable condition
and solve the derivative problem of network parameters with respect to hyperparameter.
The chain rule of derivatives is used to obtain the complete solution of derivatives of val-
idation set loss with respect to hyperparameters. Finnally, the stochastic gradient descent
algorithm are used to update and optimize the hyperparameters.

• Compared with state of art methods, our algorithm achieves a higher sparse rate in VGG,
ResNet, DensNet on CIFAR-10 and CIFAR-100 datasets. Accuracy loss is controlled in a
negligible range.

The structure of the paper is as follows: The second part introduces the related works: regularization-
based sparse method and gradient-based hyperparameter selection; the third part introduces the
whole framework, focuses on the cross-validation gradient solution of non-derivative norm, and
gives the corresponding theorem and proof. Finally, a hyperparameter gradient approximation
method and algorithm are introduced, which effectively solves the optimization problem of deep
neural network. The fourth part mainly compares with state of art methods using three different
types of network models and two data sets.

2 RELATED WORKS

2.1 DEEP NEURAL NETWORK PRUNING

The pruning methods are divided into supervised pruning and unsupervised pruning according to
different criteria. Unsupervised criteria, as the name implies, analyze the importance of model
parameters after training, and the analysis rules need not to be acquired through learning. For
example, the L1 norm criterion was used in Li et al. (2017) and followed by retraining. This method
calculates the L1 norm values of every channel in each layer, and retains the channel weights with
large norm values. It is simple and effective. The learned rules (Liu et al., 2017; Zhuang et al.,
2018; Luo et al., 2017) are more persuasive than simply determined by experience. Liu et al. (2017)
learned an important factor for each channel and adds sparse constraints to the objective function.
After the training is completed, the less important channels under a certain threshold are removed
and retrain the new network. DCP (Zhuang et al., 2018) chose the larger F norm of the current
channel gradient as the channel to be retained. Luo et al. (2017) used the output of the next layer to
guide the pruning of the current layer, that is, to approximate the output with a subset of the input of
the current layer. The channels only in the subset are retained. We synthesize the advantages of L1

and L2 norms and add them to the objective function. The difference between L2 norm and weight
delay is that L2 norm only acts on weight coefficients. Compared with other norms, L1 norm has
better sparsity performance.
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Adding sparse regularization term to the original loss function is another technical means in pruning
algorithm. Han et al. (2015) proposed to use L1 and L2 norms to induce network sparsity, and found
that L1 regularization can achieve better accuracy after pruning, while sparse network induced by
L2 regularization can achieve higher accuracy after fine-tuning. Mummadi et al. (2019) proposed
that the bounded-Lp0 norm is used to approximate the parameters to zero to ensure the accuracy
of the task, and then the bounded-Lp0 norm is used to further induce the parameters of additional
gating layer to 0. However, two regularization coefficients are directly given without further dis-
cussion. Liu et al. (2019) used L21 norm of each instance feature to learn sparsity during training.
The selection of the coefficients of the regularization factor is only based on a limited test. Li et al.
(2019) proposed a criterion to measure the importance of the channel by using the Group Lasso
of two consecutive layers, and then the pruned network is trained with a OICSR loss. Mehta et al.
(2019) discussed the error rate of different regularization coefficients under different optimizers. Al-
though regularization-based pruning methods have been extensively studied, none of them explored
regularization coefficients in a manner of automatically updating hyperparameters. Based on this
background, we analyze how to optimize the regularized hyperparameters. As far as we know, this
is the first time that the coefficient of a regular term is determined by an automatic method.

2.2 HYPERPARAMETER OPTIMIZATION BASED ON GRADIENT

There are many studies on hyperparameter selection, such as grid search, random search, bayesian
optimization and gradient-based cross-validation (Barratt & Sharma, 2018). The gradient-based
method can find a suitable solution more quickly. Rencent works have explored gradient-based
hyperparameter optimization. They focus on optimizing multiple parameters and reducing compu-
tational costs. Barratt (2018) proposed that the solution map of convex optimization problems sat-
isfying certain conditions is differentiable by implicit function theorem. Barratt & Sharma (2018)
demonstrated that the derivatives of the solution for many common convex machine learning algo-
rithms: logistic regression, elastic-net regression, support vector machines.

In the field of deep learning, there are also some studies on gradient optimization of hyperparame-
ter for different purposes. Ren et al. (2018) solved the problem of hyperparameter adjustment for
example reweighting algorithms using cross validation based on gradient descent. Reverse mode au-
tomatic differentiation allow for optimizing hyperparameters with gradients (Maclaurin et al., 2015).
But they consider that every iteration in the whole gradient descent, it is a huge overhead to store
all gradients in memory, so they propose a reverse mode differentiation of SGD with finite precision
arithmetic to avoid avoid the memory limitation on the task of hyperparameters optimization. Fu
et al. (2016) distilled the knowledge of the gradients in the forward propagation and transfer them
by adding short connections, so that the gradients in the forward propagation can be approximately
calculated in the reverse process. This algorithm greatly improves computational efficiency and
reduces memory consumption. Luketina et al. (2016) only considered one iteration in the training
process, and approximated the Heisen matrix as a identity matrix.

These works mainly focus on the optimization of multiple parameters and only consider traditional
machine learning problems or shallow neural network due to a large amount of computation and
memory consumption. We mainly study the hyperparameter selection of large-scale neural network
models (VGG-16, ResNet-56, ResNet-110, DenseNet-40) for the purpose of model compression. In
the context of sparse regularization compression, we often encounter non-derivative cases, such as
L1 norm, L21 norm. Direct hyperparameter gradient is almost impossible to obtain. In this paper,
we use auxiliary variables to transform non-derivable norms into equivalent derivable optimization
problems. We also redesign the training process and propose a new framework which combines
model parameter training with hyperparametric learning to compress big model, which makes the
hyperparameter optimization of large CNN models possible and obtains sparse neural network mod-
els.

3 THE PROPOSED ALGORITHM

3.1 REGULARIZATION-BASED NETWORK SPARSIFICATION METHOD

In order to obtain sparse network structures and minimize the loss drop, we use an objective function
with L1 and L2 regularization terms for neural networks. (see equation 1). Adding L1 regularization
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term can induce sparse neuronal connections. The purpose of adding L2 regularization term is
to reduce the over-fitting of the model and increase the generalization performance of the model.
Weight delay is such a technique to avoid model over-fitting. The L2 norm used in this paper is
slightly different from the weighted delay. The weighted delay is limited to all parameters, including
bias terms, but the L2 norm is only limited to the weighted coefficients.

e(W, λ1, λ2) = −
N∑

n=1

m∑
k=1

(ynk log onk ) + λ1w1 +
λ2
2
w2, (1)

w1 =

L∑
l=1

‖Wl ‖1 =

L∑
l=1

∑
i,j

|wl
i,j |, (2)

w2 =

L∑
l=1

‖Wl ‖2F =

L∑
l=1

∑
i,j

|wl
i,j |2. (3)

The loss function is cross entropy function −
∑m

k=1(y
n
k log onk ). o is the output of a neural network

model, y is the one-hot laber. w1 is the L1 norm sum of all weight tensors of the target model
(see definition 2). w2 is the square sum of Frobenius norm of all weight tensors (see definition 3).
The training set is {(Xn,yn)} for n = 1, 2, 3, . . . , N . (Xn,yn) ∈ Rd×d × Rm. The input is a
d-dimensional image matrix. Our target is minimize e on the training set. Our objective function not
only guarantees the sparsity of the model, but also improves the accuracy of the model on the test
set. In order to balance loss function and regularization terms, λ1, λ2 are introduced to represent the
weight of each part. Automatic hyperparameter selection based on gradient descent method reduces
the labor and time cost. We use cross-validation gradient to select appropriate hyperparameters and
obtain sparse models. The cross-validation loss function used in this paper is cv. It is also possible
to use other loss functions instead of cross-entropy loss function.

cv(W, λ1, λ2) = −
M∑
n=1

m∑
k=1

(ỹnk log õnk ). (4)

In addition, we minimize cv on the verification set {(X̂n, ŷn)} for n = 1, 2, 3, . . . ,M . In fact, M
and N represent the batch size of training set and verification set respectively.

3.2 OUR OVERALL FRAMEWORK

The proposed process is as follows:

• 1. Initialize hyperparameter λ = [λ1, λ2];
• 2. On the training set {(Xn,yn)}, using a standard mini-batch SGD algorithm to learn the

optimal W(t):
W(t) = argmin

W
e(W,λ). (5)

• 3. On the verification set {X̃n, ỹn}, update the λ(t), this is also achieve by using a mini-
batch SGD algorithm.

λ(t) = λ(t−1) − η∇λcv. (6)
• 4. Go to step 2 or stop when satisfie the termination condition of iteration (see equation 7)

and obtain sparse model.

λ∗ = argmin
λ

cv(W,λ). (7)

The key point and difficulty of the whole algorithm is to solve the hyperparameter gradient:

∇λcv =
∂cv

∂s(λ)
∇λs(λ). (8)

In equation 8, the left part derivative is the conventional derivative, while the right part derivative
does not necessarily exist because that the L1 norm is not differentiable. s(λ) means the intermedi-
ate variable consist of the optimal weight variables in W. W can be expressed as an implicit function
vector. We will give the results in the next section.
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3.3 DERIVATIVES OF SOLUTION MAPPING WITH RESPECT TO HYPERPARAMETERS

In order to solve the problem of nondifferentiability of L1 norm, we introduce auxiliary variables

W̃
l+
> 0, W̃

l−
> 0 to transform the original problem into a general solvable form. Satisfy Wl =

Wl+ −Wl−. w̃ is a vector which consisit of the elements of W̃
l+
, W̃

l−
, µ̃. µ is dual variables with

respect to Wl+,Wl−. ˜ means the optimal solution.
Theorem 1. Deep Neural Network performs classification, where {(Xn,yn)} is sample datas. The

activation function is differentiable, the derivatives of the optimal solution w̃ = [W̃
l+
, W̃

l−
, µ̃] with

respect to λ are:

∇λs∗(λ) = −∇w̃g(W̃
l+
, W̃

l−
, µ̃,λ)−1∇λg(W̃

l+
, W̃

l−
, µ̃,λ). (9)

Proof. Because L1 is not differentiable, then we use Wl+,Wl− (Wl = Wl+ −Wl−) to rewrite the
problem as (1 is a column vector and its elements are 1):

e(W, λ1, λ2) = −
N∑

n=1

m∑
k=1

(ynk log onk ) + λ1

L∑
l=1

1T(Wl+ + Wl−)1+

+
λ2
2

L∑
l=1

(‖Wl+ −Wl− ‖2F ), (10)

Namely

minimize e(W, λ1, λ2),

subject to W l+
i,j,p,q > 0,W l−

i,j,p,q > 0, for l = 1, 2, 3, . . . , L.

We expansion the optimal solution W̃
l+
, W̃

l−
with dual variables µ̃ = [µ̃1, µ̃2, µ3, . . . , µd2 ] by

vector, then we can get w̃. θ is only the optimal solution W̃
l+
, W̃

l−
expansioned by vector. The

dimension of w̃ is d1 =
∑L

l=1(4iljl). d2 = 2
∑L

l=1(iljl) is dimension of µ. Let s∗(λ) = w̃T

denote the optimal w̃ for a given λ in equation 10, we can get the derivative of w̃ with respect to
λ (Barratt, 2018; Barratt & Sharma, 2018).

g(W̃
l+
, W̃

l−
, µ̃,λ) =

 ∇w̃Te(W̃
l+
, W̃

l−
, µ̃,λ)

−diag(µ̃)θ̃T

 , (11)

∇λs(λ)∗ = −∇w̃g(W̃
l+
, W̃

l−
, µ̃,λ)−1∇λg(W̃

l+
, W̃

l−
, µ̃,λ). (12)

The general form of derivatives of model parameter with respect to hyperparameters is given by this
theorem, which is the most important part of cross-validation gradient. The model here includes but
is not limited to CNN, DNN, LSTM, RNN and other deep neural network models.

3.4 APPROXIMATE GRADIENT FOR HYPERPARAMETER

Because the calculation of hyperparameter gradient involves the inverse operation of Heisen matrix,
its complexity is cubic dimension. The order of magnitude of the parameters of the deep neural
network is 106. The time complexity of the matrix inversion is o(d3) ≈ o(1018). Unless the number
of network parameters is small, it is impossible to calculate them. In order to calculate the inverse of
Heisen matrix conveniently, we only consider the diagonal approximation of Heisen matrix. Ricotti
et al. (1988) given an exact formula for calculating diagonal elements:

∂2En

∂w2
j,i

=

[
h′(aj)

2
∑
k

′∑
k

wk,jwk′,j
∂2En

∂aka′k
+ h′′(aj)

∑
k

wk,j
∂En

∂ak

]
z2i . (13)
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Becker & Lecun (1989) and LeCun et al. (1989) given the formula for calculating the diagonal
elements:

∂2En

∂w2
j,i

=

[
h′(aj)

2
∑
k

w2
k,j

∂2En

∂a2k
+ h′′(aj)

∑
k

wk,j
∂En

∂ak

]
z2i . (14)

This formula is still complicated. Here we follow the example used in (Luketina et al., 2016):

λt+1 = λt + η2(∇θC2)(∇λ∇θC̃1), (15)

and approximate it to a identity matrix:

∇λs(λ) ≈ −I−1d ∇λg(
˜Wl+,

˜Wl−, µ̃,λ). (16)

Then we can get∇λcv ≈ − ∂cv
∂s(λ)∇λg(

˜Wl+,
˜Wl−, µ̃,λ). By simplifying the multiplication of zero

Algorithm 1 Cross-Validation Gradient Method for Model Compression
Input: Initialize hyperparameter λ = [λ1, λ2]

1: for all λ not converged do
2: Fix W(t), minimize cv on verification set {X̃n, ỹn}
3: Calculate the gradients of hyperparameters: ∇λcv
4: Update λ(t) = λ(t−1) + η ∂cv

∂s(λ)∇λg(
˜Wl,λ)

5: Reinitialize parameters W(t)

6: for all W(t) not converged do
7: Fix λ, minimize e on training set {(Xn,yn)}
8: Update parameters W(t) by mini-batch SGD method
9: end for

10: end for

elements, we can see that dual variables µ can be simplified eventually. By observing the auxiliary
variables in the mixed partial derivatives, their forms are consistent and can be reconstituted into
one variable. Then we get:

∇λcv ≈ −
∂cv

∂s(λ)
∇λg( ˜Wl,λ). (17)

Finally, we use the automatic derivation module in PyTorch, an open source framework, to assist
in calculating the hyperparameter gradient. The computational cost of the algorithm 1 is product of
outer training epoches and inner training epoches.

4 EXPERIMENT

4.1 NETWORK MODEL AND DATA SET

The network models we use are VGG (Simonyan & Zisserman, 2015), ResNet (He et al., 2016) and
DenseNet (Huang et al., 2017). The vision(VGG-16) of VGG we used is consisted of 13 convolution
layer, 2 full connected layer and 4 max pooling layer. The dimension of the full connection layer
is 512*512 and 512*class number. We also compare residual networks with different depths of
ResNet-56 and ResNet-110. DenseNet-40 is a dense connected network of 3 blocks. In each block,
the features of each layer stack up and flow down to the next layer.

The data sets we use are CIFAR-10 and CIFAR-100 (Krizhevsky & Hinton, 2009). CIFAR-10 has
60,000 images: 50,000 training images and 10,000 test images. Each sample is a 32*32 color image.
There are 5000 training samples in each category in CIFAR-10. The sample partitioning of CIFAR-
100 is the same with CIFAR-10, but with the increase of the number of categories, the number of
samples for each category is reduced to 500. This greatly improves the difficulty of classification
tasks. The same model structure shows worse performance in CIFAR-10. In addition, due to the
requirement of our algorithm, we divide a part of the data set from the training set as the verification
set which number is 5000. Reducing the number of training samples will affect the accuracy of
classification to a certain extent.
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Table 1: The overall results compared with different methods on CIFAR-10. We compare four dif-
ferent neural network: VGG-16, ResNet-56, ResNet-110, DenseNet-40. Acc gain is the absolute
error of the percentage of accuracy compared to each algorithm’ own baseline for relatively fair
comparison. Parameters and FLOPs represent the total parameters of the network model and the
sum of addition and multiplication operations. Pruned and Reduced represent the percentage of pa-
rameter reduction and computation reduction. CV represent the proposed Cross-validation method
by us.

Model Acc gain Parameters Pruned FLOPs Reduced
VGG-16(Our baseline) 93.55% 14.99M 0% 0.31G 0%
CV-40(Ours) -0.26% 0.34M 97.7% - -
CV-120(Ours) -0.21% 2.30M 84.7% - -
L1 norm (Li et al., 2017) 0.15% 5.4M 64% 0.21G 34.2%
GAL-0.05 (Lin et al., 2019) -0.19% 3.36M 77.6% 189.49M 39.6%
GAL-0.1 (Lin et al., 2019) -0.54% 2.67M 82.2% 171.89M 45.2%
SSS* (Huang & Wang, 2018)(GAL) -0.33% 4.99M 66.7% 199.93M 36.3%
SSS* (Huang & Wang, 2018)(GAL) -0.94% 3.93M 73.8% 183.13M 41.6%
COP (Wang et al., 2019) -0.25% 1.44M 92.8% 211.2M 73.5%
ResNet-56(Our baseline) 93.25% 0.85M 0% 0.25G 0%
CV-40(Ours) -0.03% 0.34M 60.0% - -
CV-80(Ours) +0.26% 0.79M 7.0% - -
L1 norm (Li et al., 2017) 0.02% 0.73M 13.7% 90.9M 27.6%
GAL-0.6 (Lin et al., 2019) 0.12% 0.75M 11.8% 78.30M 37.6%
GAL-0.8 (Lin et al., 2019) -1.68% 0.29M 65.9% 49.99M 60.2%
NISP (Yu et al., 2018) -0.03% 0.49M 42.60% 70.49M 43.61%
CP (He et al., 2017) -1.0% - - 62.5M 50%
ADC (He & Han, 2018) -0.9% - - 62.5M 50%
PP-1 (Singh et al., 2019) -0.03% 0.06M 92.5% 21.5M 82.8%
PP-2 (Singh et al., 2019) -0.14% 0.05M 94.3% 19.4M 84.5%
ResNet-110(Our baseline) 94.07% 1.73M 0% 0.51G 0%
CV-40(Ours) 0.16% 0.47M 72.8% - -
L1 norm (Li et al., 2017) -0.23% 1.16M 32.4% 155M 38.6%
GAL-0.1 (Lin et al., 2019) 0.09% 1.65M 4.1% 205.7M 18.7%
GAL-0.5 (Lin et al., 2019) -0.76% 0.95M 44.8% 130.2M 48.5%
NISP (Yu et al., 2018) -0.18% 0.98M 43.25% 142M 43.78%
DenseNet-40(Our baseline) 94.35% 1.07M 0% 0.57G 0%
CV-40(Ours) -0.23% 0.31M 71.3% - -
CV-40-lr(Ours) -0.62% 0.17M 84.2% - -
GAL-0.05 (Lin et al., 2019) -0.31% 0.45M 56.7% 128.11M 54.7%
GAL-0.1 (Lin et al., 2019) -1.58% 0.26M 75.0% 80.89M 71.4%
network slimming (Liu et al., 2017) 0.92% 0.66M 35.7% 381M 28.4%
network slimming (Liu et al., 2017) 0.92% 0.35M 65.2% 240M 55.0%
Synapse Pruning (Lin et al., 2018) -0.34% 0.21M 80.4% 71M 74.82%

4.2 EXPERIMENTAL ENVIRONMENT AND CONFIGURATION

Our experimental implementation is based on PyTorch with a Tesla P100 GPU. The training and
sparsification of the model are accomplished together, and it is an end-to-end process. Except for
the coefficients of regularization terms, the other hyperparameters are fixed. The batch sizes of
training and testing are 64 and 256 respectively. The SGD momentum is 0.9. The initial learning
rate is 0.1 and then divided by 10 at 1/2 and 3/4 total epoches. The weight decay is not set because
that we add anL2 regularization term only on weight. Other hyperparameters affecting the algorithm
are demonstrated and analyzed in experiments.
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Table 2: Ablation experiment for different start epoch of pruning on CIFAR-10 with VGG-16. Start
Epoch means the epoch that begin to prune. Iter means one alternate training in training set and test
set. P Paras and P rate mean the number of pruned parameters in the iteration and the percentage of
pruned parameter. Acc means accuracy rate.

Start Epoch Iter P Paras P rate Test Acc Valid Acc

10 epoch

1 6.19M 41.3% 91.02% 90.78%
2 12.74M 85.0% 91.83% 91.60%
3 13.63M 90.9% 92.48% 91.68%
4 13.95M 93.1% 92.53% 91.80%

20 epoch

1 2.88M 19.2% 91.01% 91.32%
2 8.65M 57.7% 91.90% 91.86%
3 11.31M 75.5% 92.49% 91.88%
4 12.18M 81.3% 92.60% 92.10%

30 epoch

1 2.13M 14.2% 91.10% 90.66%
2 8.55M 57.0% 92.20% 91.70%
3 11.28M 75.3% 92.11% 92.30%
4 12.19M 81.3% 92.61% 92.64%

baseline

1 0M 0% 91.01% 91.18%
2 0M 0% 91.98% 91.98%
3 0M 0% 92.55% 92.16%
4 0M 0% 92.42% 92.00%

Table 3: Ablation experiment for different number of start pruning epoches on CIFAR-10 with
ResNet-56 and ResNet-110. Model-Start Epoch means model and the number of start pruning
epoches with the same meaning as table 2. -B means the baseline without pruning. P Paras and
P rate means the number of the pruned parameter and the the percentage of pruned parameter. Test
Acc means the accuracy rate.

Model-Start Epoch P Paras P rate Test Acc
ResNet-56-10 0.27M 32.2% 92.39%
ResNet-56-B 0 0% 92.58%
ResNet-110-10 0.72M 41.4% 92.70%
ResNet-110-B 0 0% 92.57%

4.3 EXPERIMENTAL RESULTS AND ANALYSIS

Our algorithm is an automatic pruning method. The L1 regularization term is used to induce the
sparse network. When the training stage is completed, the pruning network can be obtained without
fine-tuning stage. The whole framework is an end-to-end iterative process. The training and valida-
tion stages alternate to achieve faster convergence results. In the training set, the objective function is
the cross-entropy loss function and two regularization terms. The cross-entropy function is to better
fit the probability distribution of the training set and achieve higher accuracy. The L2 regularization
term is to constantly punish the model to improve the generalization performance of the model in the
test set. The L1 regularization term shrinks the weight coefficients to a small numerical range and
tends to zero. Because L1 is not differentiable at zero, the approximate gradient calculation can not
make the weight zero in the limited number of training rounds. We design a threshold to assist the
L1 regularization term. On the verification set, we still choose the cross-entropy function as the ver-
ification loss. At this time, the parameters of the model are fixed and do not participate in the update.
We calculated the gradients of L1 and L2 regularization coefficients. Because the number of sam-
ples in the validation set is still large, we adopted mini-batch SGD to update the super-parameters.
The sample size of the verification set is only 1/10 of the training set, and the number of training
rounds of each iteration is also 1/10 of the training set for empirical consideration. The above pro-
cess is called an iteration. Strictly speaking, every iteration should train the model from scratch on
training set. Because a complete training takes a long time, we take a roundabout way that, each
iteration does not need to re-initialize the weight, but re-train the network of existing parameters.
The training epoches in each iteration is regard as the total number of training epoches.
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Figure 2: This Figure shows the performance of DenseNet-40 on CIFAR-10 with different learn-
ing rate of hyperparameters. We only list the data at the end of each iteration. Left: With the
LR=0.00001, the test accuracy rate of DenseNet-40 is steady increasing. When the learning rate
increases, there is a downward trend in test accuracy rate. Right: The larger the learning rate of
hyperparameters is, the sparser the model obtained in the same iteration process is.
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Figure 3: The performance of VGG-16 on CIFAR-100 with different starting pruning epoch. ”st”
means starting pruning epoch and the fraction (such as 1/4, 2/4) means the ratio of the initial pruning
epoch to the total epoch in an iteration. ”iter” meaans one iteration. ”pr” is the pruning rate and ”test
acc” means the accuracy rate in test set.

Results on CIFAR-10 We compare our results with state-of-art methods in Table 1. For VGG-16,
our algorithm(CV-40) achieves the highest compression rate of 97.7% with only 0.26% accuracy
loss, which is higher than COP in prune rate and 0.01 lower than COP in accuracy. SSS* means it
is reimplemented by GAL (Lin et al., 2019). Other results in Table 1 are copy from their original
paper. ”-40” means the begining of prune epoch is 40 in each iteration and the total epoch number
in each iteration is 160. Compared with GAL-0.1, CV-80 achieves few parameters of 2.3M which
is less than 2.67M achieved by GAL-0.1. At the same time, our accuracy is 0.33% higher than
GAL-0.1. The total computation of our algorithm is not reduced, but many parameters of the filter
are changed to zero in the process of training. For ResNet-56, our algorithm achieves the same
accuracy loss compared with NISP, however we have a higher compression rate of 60% than that of
42.6%. Compared with GAL-0.6 and L1 norm, our accuracy is improved by 0.26 in the case of low
compression rate. For deeper ResNet-110, we achieve a the best performance to the extent we know,
the compression ratio is 72.8%. However, the accuracy rate is 0.16 higher than the baseline. The
configuration of our algorithm is exactly the same with the baseline, the only difference is whether
to prune or not. For DenseNet-40, compared with Synapse Pruning, we achieve a higher pruning
rate with accuracy rate loss of 0.62% (CV-40-lr). ”CV-40-lr” means the starting pruning epoch is
40 with learning rate of 10−4. Compared to GAL-0.05, we get a high pruning rate of 71.3% than
56.7% and a lower accuracy loss of 0.23% than 0.31%.

Ablation Experiment for the Start Prune Epoch Table 2 show the differences in different start
prune epoch. The pruning threshold is 0.0001, and the weight below this threshold will be reset to

9
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0. We divide the total training epoches by four, - x means the number of epoches that start pruning.
Observed by us, the earlier the pruning starts, the better the sparsity of the network structure is.
Surprisingly, the pruned network can achieves better accuracy than the baseline. The essence of
pruning is to select a better network structure suitable for the task, and its performance will not
decline or even improve without over-pruning. Similar results are also found on deeper residual
networks, as shown in Table 3. Each iteration implies a hyperparameter update. The total number
of epoch is 160 with each iteration has only 40 epoches for quickly trial run.

Ablation Experiment for the Learning Rate of Hyperparameter The learning rate of hyperpa-
rameters has a great influence on the sparsity and prediction accuracy of the network (see figure 2).
Through experiments, we find that simple structure, easy-to-train network such as VGG can use
the learning rate of 10−4 appropriately, while for densely connected composite structures such as
DenseNet, a smaller learning rate of 10−5 can make the model still be fully trained in the process of
sparse.

Results on CIFAR-100 As shown in figure 3, we compare the accuracy of VGG-16 on CIFAR-100
before and after compression. Intuitively, without considering pruning rate, the performances of
models under different settings on the test set have very little difference. From the view of data,
pruning does not reduce the accuracy rate, and to some extent improves the generalization of the
model. Among them, the blue line is slightly higher and achieves the best performance of 72.79%.
It is also the blue line that achieves the highest compression rate of 90.6%.

5 CONCLUSION

In order to solve the problem of setting hyperparameters in model compression algorithm based on
regularization term, we propose a gradient-based hyperparameter learning method. In order to cal-
culate the derivative of network parameters with respect to hyperparameter, we introduce auxiliary
variables to construct a solvable problem. With the help of the chain rule, the derivative of verifi-
cation loss with resprct to hyperparameter can be solved. This method solves two problems, one is
the sparsity of deep neural network, and the other is the solution of regularization coefficient. We
calculate the exact gradient of L1 and L2 regularization coefficients, and propose an approximate
calculation method to realize the hyperparameter optimization of large convolutional neural net-
works. In addition, we have done comparative experiments on several classical network structures
and data sets to demonstrate the effectiveness of our algorithm. In the future, we will investigate
the effects of other hyperparameters such as batch size and momentum coefficient which may also
affect the sparsity.
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