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Abstract

Representation learning of knowledge bases aims to embed both entities and

relations into a continuous vector space. Most existing models such as TransE,

TransH and TransR consider only binary relations involved in knowledge bases,

while multi-fold relations are converted to triplets and treated as instances of

binary relations, resulting in a loss of structural information. M-TransH is a

recently proposed direct modeling framework for multi-fold relations but ignores

the relation-level information that certain facts belong to the same relation.

This paper proposes a Group-constrained Embedding method which embeds

entity nodes and fact nodes from entity space into relation space, restricting the

embedded fact nodes related to the same relation to groups with Zero Constraint,

Radius Constraint or Cosine Constraint. Using this method, a new model

is provided, i.e. Gm-TransH. We evaluate our model on link prediction and

instance classification tasks, experimental results demonstrate that our approach

outperforms related methods by a significant margin.
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1. Introduction

Knowledge bases are directed graphs with nodes representing entities and

edges representing relations between entities. Great achievements have been

made in building large scale knowledge bases, such as Freebase [1], WordNet

[2], YAGO [3] and DBpedia [4]. These knowledge bases can be used in many5

areas like semantic search, question answering, drug discovery and disease

diagnosis. Although the current knowledge bases contain large amounts of

entities and relations, they are far from completeness. This calls for knowledge

base completion techniques to inference or predict missing entities and unknown

links between entities based on existing ones. Furthermore, the entities and10

relations in the knowledge bases are symbolic and inadequate for inference or

calculation.

To this end, representation learning [5] has been proposed as a kind of

promising approach for knowledge base completion. It embeds entities and

relations of a knowledge base into continuous vector space and preserves the15

structural information of original relational data. The representation of entities

and relations are obtained by minimizing a global loss function involving entire

entities and relations. Compared with the traditional logic-based inference

approaches, representation learning shows strong feasibility and robustness in

the applications.20

Despite the promising achievements, most existing techniques for knowledge

base representation learning (such as TransE [6], TransH [7], TransR [8] and

ProjE [9], ComplEx [10] etc.) consider only binary relations therein, namely

RDF(Resource Description Framework) data with triples each involving two

entities and a binary relation between them. For example, “Donald J. Trump is25

the president of America” consists of two entities “Donald J. Trump”, “America”

and a binary relation “president of country”. However, a large amount of the

knowledge in our real life are instances with multi-fold (N-ary, N ≥ 2) relations,

involving three or even more entities in one instance (such as “Harry Potter is

a British-American film series based on the Harry Potter novels by author J.30
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K. Rowling”). As reported[11, 12], more than 1/3rd of the entities in Freebase

participate in non-binary relations and 61% of the relations are non-binary.

A general approach for this problem is to convert each multi-fold relation

into multiple triples with binary relations and learn the embedding of each

triple using the existing translating embedding methods [5, 6, 7, 8]. Thus, an35

instance with an N-ary relation is converted to
(
N
2

)
triples according to the

S2C 1 conversion[11] or to N triples via RDF reification[12]. Although S2C

conversion is capable of capturing part of the structures of multi-fold relations

[13], it’s irreversible and leads to a heterogeneity of the predicates, unfavorable

for embedding. As to RDF reification method, it’s difficult to reify the test40

samples and define a way to embed the newly created entities when we have little

information about them. Wen et al.[11] advocates an instance representation

of multi-fold relations and proposes a direct modeling framework “m-TransH”

for knowledge base embedding. However, we show that m-TransH has several

shortcomings:45

(1) Treats fact nodes the same as general entity nodes, this can be seen from

the loss function of m-TransH:ID2 in which embeddings of entities and facts of

the same N-ary relations are calculated via a linear combination operator. Thus

do harm to the learning of semantic information and to distinguishing of these

two types of nodes.50

(2) For binary relations, the relation between two entities can be easily

estimated via cost function of most existing knowledge base embedding models

(e.g. ‖h+ r − t‖22 from TransE[6] model). While for multi-fold relations, the

m-TransH:ID model, we can hardly infer or classify the relation type of a set of

entities as an instance without the fact node information.55

(3) The correlation of facts and their linked entities can not be explicitly

1Star-to-Clique Conversion: For each two entities (with relation role r1 and r2) of an N-ary

relation instance, form a labeled edge r1.r2 between them, then delete the instance node and

all edges (i.e. relations) connecting to it.
2m-TransH:ID is a variation of m-TransH for multi-fold relational instances with fact nodes

in FACT-ID role.
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learned through linear combination of their embeddings, which we argue to be a

key factor for multi-fold relation embedding.

(4) Ignores the associated information of facts and relations that certain facts

belong to the same relation. It’s impossible to infer the relation type of a fact60

through the fact embedding only and to discover the facts of the same relation

type.

In this paper, we first discuss the problems of existing models for multi-fold

relation embedding, why they are important, our motivation, necessity and

significance.65

Then we extend the m-TransH model and present a Group-constrained

Embedding method which embeds fact nodes as well as entity nodes and their

relations into three different vector space (named as entity embedding space, fact

embedding space and relation embedding space). We model three correlations,

namely, correlation between entities and their relations, correlation between70

entities and facts, correlation between facts and their relation types. For the first

correlation, we extend the m-TransH model by replacing the coefficient function

ar(ρ) of entity embeddings Pnr(t(ρ)) to a diagonal matrix Mr(ρ) to improve

it’s expressive ability. To model the correlation between entities and facts, we

utilize a graph convolutional network to learn the embedding of facts through75

the connected entities. Then we restrict the embedded fact nodes related to

the same relation to groups with three different constraint strategies, i.e. zero

constraint (by making the embedded fact vector to be close to its corresponding

relation vector indefinitely), radius constraint (by forcing the Euclidean distance

between the embedded fact vector and its corresponding relation vector to be80

smaller than a radius ε) or cosine constraint (by rendering the cosine distance

between the embedded fact vector and its corresponding relation vector to be

zero).

The Group-constrained Embedding method for knowledge base with multi-

fold relations is named as “Gm-TransH” . In terms of the three different constraint85

strategies, we advocate three variation of Gm-TransH, i.e. Gm-TransH:zero,

Gm-TransH:radius, Gm-TransH:cosine. We conduct extensive experiments on
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the link prediction and instance classification tasks based on benchmark datasets

FB15K [6] and JF17K [11]. Comparing with baseline models including Trans(E,

H, R) and m-TransH, experimental results show that Gm-TransH outperforms90

the previous multi-fold relation embedding methods by a large margin and

achieves up to 13.8% improvement over the comparative models.

The main contributions of our work are as follows:

(a) Present a Group-constrained Embedding method for multi-fold relation

embedding (Gm-TransH), which not only embed entities and relations into95

continuous vector space, we also learn the embedding of facts and model the

correlation with entities and relations explicitly.

(b) Instead of modeling the correlations of entities, facts and relations as a whole,

we learn the correlation of each two of them separately. This settles the 4

shortcomings of m-TransH and is shown to be efficient for predicting and100

classification.

(c) To model the correlation between facts and relation types, we constrain the

instantiated fact embeddings to be close to their belonging relation embed-

dings and far away from others that are not. In this way, the translation

embedding model for entity-relation correlation learning and the GCN model105

for entity-fact correlation learning are interacted and balanced during the

training stage.

(d) We clean the redundant data and generate a new subset Gfact for the JF17K

datasets in which the repetitive instances are removed and the missing facts

are appended.110

(e) We compare our model with the optimal translating embedding approaches,

tensor factorization approaches and the most up to dated GCN models on

several canonical datasets and have shown continuous improvements over

the existing models.
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2. Motivation and Related Work115

The most related works on representation learning of knowledge bases can

be divided into two classes: binary relation embedding and multi-fold relation

embedding. These works are briefly summarized in Table 1.

2.1. Binary Relation Embedding

Most of the models proposed for knowledge base embedding are based on120

binary relations, datasets are in triple representation.

TransE [6] sets (h+ r) to be the nearest neighbor of t when (h, r, t) holds,

far away otherwise. The cost function is defined as

fr (h, t) = ‖h+ r − t‖22 (1)

TransH [7] is developed to enable an entity to have distinct distributed

representations when involved in different relations. For a relation r, TransH

models the relation as a vector r on a hyperplane with nr as the normal vector.

For a triple (h, r, t), the entity embeddings h and t are first projected to the

hyperplane of nr, denoted as h⊥ and t⊥. The cost function is defined as

fr (h, t) = ‖h⊥ + r − t⊥‖22 (2)

where h⊥ = nTr hnr and t⊥ = nTr tnr.

TransR [8] models entities and relations in distinct spaces and performs

translation in relation space. For each relation r, a projection matrix Mr is used

to project entities from entity space to relation space, i.e. hr = hMr, tr = tMr.

The cost function is correspondingly defined as

fr (h, t) = ‖hr + r − tr‖22 (3)

Besides TransE, TransH and TransR, there are also many other embedding

methods based on binary relations, such as Unstructured Model(UM) [14], Struc-

tured Embedding Model(SME) [15], Single Layer Model(SLM) [16], Semantic125

Matching Energy Model(SME) [17, 14] and Neural Tensor Network Model(NTN)

[16], Latent Factor Model(LFM) [18], PTransE [5], TransA [19], TransD [20],

TranSparse [21], KG2E [22], ITransF [23], ProjE [9] and so on.
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2.2. Multi-fold Relation Embedding

For knowledge bases with multi-fold relations, S2C conversion and decompo-130

sition framework [11] are usually used. Then, multi-fold relations are converted

to triples and treated as binary relations.

We find that the existing models for multi-fold relation embedding directly

without converting into binaries mostly focus on modeling either the correlation

between entities and their relations or the relatedness of entities participate135

in a common instance. These methods neglect the fact information and it’s

relatedness to entity components and relation types.

Wen et al. [11] proposes m-TransH model with a direct modeling framework

to learn the embeddings of the entities and the n-ary relations, which generalizes

TransH directly to multi-fold relations. In m-TransH, the cost function fr is

defined by

fr (t) =

∥∥∥∥∥∥
∑

ρ∈M(Rr)

ar(ρ)Pnr (t(ρ)) + br

∥∥∥∥∥∥
2

2

, t ∈ NM(Rr) (4)

Where M(Rr) denotes roles of relation Rr, N denotes all entities in a KB,

Rr on N with rolesM(Rr) is a subset of NM(Rr), t is an instance of Rr. Pnr (z)

is the function that maps a vector z ∈ U to the projection of z on the hyperplane

with normal vector nr, namely,

Pnr (z) = z − n>r znr (5)

nr and br are unit length orthogonal vectors in U , ar ∈ RM(Rr) is a function

that ∑
ρ∈M(Rr)

ar(ρ) = 0 (6)

3. Representation and Embedding Problem Definition

From an algebraic point of view, a multi-fold (n-ary) relation on set N is

defined as a subset of the cartesian product of n sets N ×N × · · · × N , namely140
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Nn. Each coordinate of the n-dimensional cartesian product should be specified

to a different role of the relation.

We focus on the representation and embedding of multi-fold relations in the

form of either triples (with binary relations), instances (with n-ary relations,

n ≥ 2) or facts (each role may involves a list of entities) in knowledge bases. We145

first introduce an unified way to represent knowledge base (KB) with multi-fold

relations, then based on the unified representation, we discuss the embedding

problem of these n-ary relations and give a mathematical definition of the

problem.

Unified Relation Representation150

Different from the most common methods to represent KB as a collection

of entity nodes, relations and samples of triples or instances, we create a fact

node (a.k.a. instance node) to represent the relation instance with links to all

its participants (i.e. entity nodes) and employ an unified framework to represent

KB as a collection of entity nodes, fact nodes, relations and relation instances.155

We design the unified representation framework as below:

For a given knowledge base (KB) G, let Ne denote the set of all entities

in G, R indexes a set of distinct multi-fold relations on Ne, T denotes a set of

instances defined over Ne and R. We create a fact (or instance) node for each

instance in T and form a fact node set Nf . For each index r ∈ R, relation Rr160

on entities Ne with roles M(Rr) is a subset of NM(Rr)
e , where M(Rr) is a set

of ordered role tuples {ρ1, ρ2, ..., ρ|M(Rr)|} of relation Rr, NM(Rr)
e denotes the

set of all functions mapping from M(Rr) to Ne. We call Rr a J-fold or J-ary

relation if cardinality |M(Rr)| = J , J is the “fold” or “arity” of Rr, each relation

Rr is allowed to have an arbitrary arity. Let Tr be the set of instances of relation165

Rr in G, each instance t ∈ Tr in the relation Rr is a vector (x1, x2, ..., x|M(Rr)|)

of entities, in which entity xi corresponds to role ρi ∈ M(Rr), and instance t

corresponds to a unique fact node uj ∈ Nf . The relation Rr can be semantically

understood from the set of all such participated vectors. Then the knowledge

base G can be specified as (Ne,Nf ,R, {Tr : r ∈ R}), named as unified relation170

representation.
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We argue that this unified relation representation method can represent a

variety of relations, including binary relations as triples, n-ary relations (n ≥ 2)

as instances and relations (such as facts) whose roles may involve a list of entities.

Figure 1: Illustration of unified relation representation for an instance of 5-ary relation “who

played which role in which film directed by whom in which year”.

For example, as shown in Figure 1, instance “Leonardo DiCaprio played175

the role of Jack Dawson in the film ‘Titanic’ directed by James Cameron in

1997” should be written as t=(Leonardo DiCaprio, Jack Dawson, Titanic, James

Cameron, 1997), which involves 5 entities each corresponding to a role in 5-fold

relation M(Rr):={ACTOR, CHARACTER, MOVIE, DIRECTOR, YEAR}.

An instance node u1 is attached to the instance to represent its structural180

information and enable the learning of correlation of instances with entities and

relations in embedding stage below.

Figure 2: Illustration of unified relation representation for fact with role ‘ACTOR’ involve two

entities ‘Leonardo DiCaprio’ and ‘Kate Winslet’. This fact is converted into two instances, i.e.

t1 and t2 , but share the same fact node uk.
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For multi-fold relations in the form of facts, where each role (or participant)

ρi ∈ M(Rr) of the relation Rr may involve an ordered list of individuals (i.e.

entities) rather than a single individual xi. We follow m-TransH and convert the185

multi-fold relations from a fact to several instances, i.e. instance representation,

in which each role ρi corresponds to an unique entity xi. Meanwhile, we introduce

a set of fact node, denoted as Nf , instances of the same fact share a same fact

node, this information is shown to be useful in m-TransH. For example, in

Figure 2, a fact “Leonardo DiCaprio and Kate Winslet acted in the film ‘Titanic’190

directed by James Cameron in 1997” can be converted into two instances of

4-fold relation “who acted in which film directed by whom in which year”, namely

t1=(Leonardo DiCaprio, Titanic, James Cameron, 1997) and t2=(Kate Winslet,

Titanic, James Cameron, 1997).

Multi-fold Relation Embedding195

Multi-fold relation embedding aims to embed the entities, n-fold relations and

the instances into continuous low-dimensional vector space (a.k.a. embedding

space), and represent these elements as tensors such as vectors or matrices, while

the structural information and correlation between them are preserved.

Based on the unified relation representation, we formulate the multi-fold200

relation embedding problem in KB as follows. In order to enhance the expressive

ability, we choose three different vector space over field R (typically real numbers)

as the embedding space for entity nodes, fact (or instance) nodes and relations

respectively, namely Ue, Uf and Ur. Let e ∈ Rk be an embedding vector of

entity node e in Ue, u ∈ Rl be an embedding vector of fact (or instance) node u205

in Uf , and r ∈ Rm is the embedding vector of relation Rr in Ur.

The objective of multi-fold relation embedding problem is to construct a

function φe : Ne → Ue, a function φf : Nf → Uf and a subset Cr ⊂ UM(Rr)
r for

each relation Rr such that ideally the following properties are satisfied.

1. For every r ∈ R and every instance t ∈ Rr, φ ◦ t ∈ Cr, where the symbol210

◦ denotes function composition.

2. For every r ∈ R and every function t ∈ NM(Rr) \Rr, φ ◦ t /∈ Cr.

Here, the function φe, serving as a representation of Ne, maps an entity e
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to its embedding vector e. The function φf , serving as a representation of Nf ,

maps a fact node u to its embedding vector u. The subsets {Cr : r ∈ R}, serving215

as a representation of {Rr : r ∈ R}, define a set of constraints on the embedding

vectors which preserve the intra-relational and inter-relational structures of

{Rr : r ∈ R}.

Note that each constraint Cr may be identified with a nonnegative cost

function fr : UM(Rr) → R such that220

fr(t) = 0 if t ∈ Cr, and

fr(t) > 0 if t /∈ Cr
Denote Θ := {fr : r ∈ R}. The problem then translates to determing

(Θ, φe, φf ). But {Rr : r ∈ R} is unknown, and all we have is the observed

instances {Tr : r ∈ R} and possibly some ”negative examples” {T −r : r ∈ R},225

where each T −r ⊂ NM(Rr) \Rr. Note that when the KB is large, for any t ∈ Tr,

if we replace its value t(ρ) for some role ρ ∈M(Rr) with a random entity, the

resulting function falls in NM(Rr) \Rr with high probability. This can be used

to construct T −r .

Treating the problem as learning (Θ, φe, φf ), we may not need the property230

1 above to hold strictly. Then the equality “=0” in (1) is taken as “as close to

0 as possible”. Towards a margin-based optimization formulation (which gives

better discriminative power and robustness), the threshold 0 in (2) is raised to a

positive value c. The problem can then be formulated as finding (Θ, φe, φf ) to

minimize the following global cost function.235

F (Θ, φe, φf ) :=
∑
r∈R(

∑
t∈Tr fr(φe ◦ t, φf ◦ t) +

∑
t−∈T −

r
[c− fr(φe ◦ t−, φf ◦

t−)]+)

where [.]+ denotes the rectifier function, namely, [a]+ := max(0, a).

What remains is to choose a proper space of Θ for this optimization problem,

which is at the heart of modeling.240
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4. Model Description

Towards the goal of multi-fold relation embedding problem, we need to learn

three functions, i.e. (Θ, φe, φf ). The function φe maps Ne to Ue, which can be

any of the models in “Trans series” such as TransH or DistMult. The function

φf maps Nf to Uf , and we argue that the fact nodes are correlated with the245

entities participated, so we use graph convolutional network (GCN) to learn

the embedding vector of fact nodes u in Nf . As to function Θ, it models the

multi-fold relations and should catch the structural information and correlation

between entity nodes, fact nodes and their relations. We model the function as a

threefold correlation, namely, to learn the correlation between each two of entity250

nodes, fact nodes and relation types.

In this section, we first propose a correlation-constrained embedding framework

for multi-fold relation embedding problem and show how to model the threefold

correlations (i.e. correlation between entity nodes and relations, correlation

between entity nodes and fact nodes, correlation between fact nodes and relations)255

in detail. Then, we analyze the complexity of the proposed framework and

compare with some of the canonical models. We discuss how to learn the

proposed model and an algorithm of high-efficiency is introduced in the end.

4.1. Our Framework

As depicted in Figure 3, based on the unified relation representation method,260

we introduce a correlation-constrained embedding framework to embed entity

nodes, fact nodes and relation types into three different vector spaces respectively

and model their correlations as a whole.

First, we model correlation between entity nodes and relations which reflects

the meaning of relation types. Second, we learn the representation of fact nodes265

by modeling correlation between entity nodes and fact nodes via a GCN model.

Finally, correlation between fact nodes and relations are used to model the

closeness of fact embeddings mapping to their belonging relation types.

12



We define the cost function for each instance t as

fr(t) = wER ∗ gERr (t) + wEF ∗ gEFr (t) + wFR ∗ gFRr (t), t ∈ NM(Rr) (7)

where gERr (t) denotes the loss for modeling correlation between entity nodes and

relations, gEFr (t) denotes the loss for modeling correlation between entity nodes270

and fact nodes, gFRr (t) denotes the loss for modeling correlation between fact

nodes and their relations.

4.2. Modeling Correlation between Entities and Relations

For an instance t = (x1, x2, ..., x|M(Rr)|) ∈ Tr, entity node xi, i ∈ |M(Rr)|

correlates with relation Rr via instantiating the corresponding role ρi ∈M(Rr).275

Motivated by m-TransH, ProjE and HolE models, we define the following cost

function for learning the correlation between entity nodes and relations in a

multi-fold relational knowledge base. In detail, we utilize a diagonal combination

operator to improve expressivity of the linear combination operator and choose a

diagonal matrix Dr(ρ) instead of a real number ar(ρ) as weight for the projection280

of entity to each role ρ, i.e. Pnr (t(ρ)).

The cost function gERr (t) for each instance t is then defined as

gERr (t) =

∥∥∥∥∥∥
∑

ρ∈M(Rr)

Dr(ρ)Pnr (t(ρ)) + br

∥∥∥∥∥∥
2

2

, t ∈ NM(Rr)
e (8)

where M(Rr) denotes roles of relation Rr, Ne denotes all entities in a KB, Rr

on Ne with roles M(Rr) is a subset of NMe (Rr), t is an instance of Rr and t(ρ)

is the entity to role ρ. Pnr(z) is the function that maps a vector z ∈ Ue to the

projection of z on the hyperplane with normal vector nr, namely,

Pnr (z) = z − n>r znr (9)

nr and br are unit length orthogonal vectors in U , Dr ∈ Rk×k is a function that∑
ρ∈M(Rr)

Dr(ρ) = 0 (10)
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Then the objective can be defined as a margin-based optimization problem:

LER =
∑
r∈R

(
∑
t∈Tr

gERr (t) +
∑

t−∈T −
r

[c− gERr (t−)]+) +
λ

2

∑
r∈R

(‖diag(
∑

ρ∈M(Rr)

Dr(ρ))‖2)

(11)

where [x]+ = max(0, x), function diag(X) get the leading diagonal vector,

λ ∈ [0, 1] is a balance factor.

4.3. Modeling Correlation between Entities and Facts

Entity node xi ∈ Ne, i ∈ |M(Rr)| links to fact/instance node t ∈ Nf via

roles of relation r ∈ Rr. To model the correlation between entity nodes and

their linked fact (or instance) nodes, we utilize the structure characteristics of

multi-fold relations in knowledge bases and employ graph convolutional network

(GCN) to learn the representation of fact nodes. GCNs [24, 25] are capable of

learning the structure of local graph neighborhoods for large-scale relational

data and are usually described as a differentiable message-passing framework:

h
(l+1)
i = δ(

∑
m∈Mi

gm(h
(l)
i , h

(l)
j )) (12)

where h
(l)
i ∈ Rd(l) is the hidden state of node vi in the l-th layer of the neural285

network, with d(l) being the dimensionality of this layer’s representations. In-

coming messages of the form gm(·, ·) are accumulated on the set of neighbors for

node vi, i.e. Mi, and passed through an element-wise activation function δ(·),

such as ReLU or Sigmoid.

In the circumstance of multi-fold relations in the unified representation, entity

nodes’ neighborhoods are consist of different nodes of instances they participated

in with role ρ ∈M(Rr) and vice versa for the instance nodes. Thus we extend

R-GCN framework [26] to modeling multi-fold relation and propose the following

model for calculating the forward-pass update of an entity node (or instance

node) denoted by vi in a multi-fold relational knowledge base:

h
(l+1)
i = δ(

∑
r∈R

∑
ρ∈M(Rr)

∑
j∈Nρi

1

cr ∗ ci,ρ
W (l)
ρ h

(l)
j +W

(l)
0 h

(l)
i ) (13)
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where Nρ
i denotes the set of neighbor indices of the node i under role ρ ∈M(Rr)290

of relaiton r. cr and ci,ρ are problem-specific normalization constant chosen here

as cr = |R| and ci,ρ = |Nρ
i |.

Following R-GCN framework, we add a single self-connection of a special

relation type to each node in the data to ensure the message passing from layer l

to layer l+ 1. To address the parameters explosion problem, we also apply bisis-295

decomposition and block-diagonal-decompostion methods [26] for regularizing the

weights of each layers.

The model takes one-hot vector for each entity (or instance) node in the

graph as input and stack L GCN layers as defined above, we choose DistMult

factorization [27] as the output layer and define the cost function of each instance

t of n-ary relation (n ≥ 2) r as an average cost of triples for each role ρ ∈M(Rr):

gEFr (t) =
1

|M(Rr)|
∑

ρ∈M(Rr)

f(et,ρ, ρ, et,f ) (14)

where f(et,ρ, ρ, et,f ) = eTt,ρMr(ρ)et,f with et,ρ denotes embedding vector of entity

et,ρ in role ρ and et,f denotes fact embedding of the instance t. Each role ρ is

associated with a diagonal matrix Mr ∈ Rd×d.300

We sample w negative examples for each observed (positive) instance by

randomly corrupting either entity of each positive example and utilize cross-

entropy loss bellow as our optimization objective to enforce the model to score

positive examples higher than the negative ones:

LEF = − 1

(1 + w)|T |
∑
r∈R

(
∑
t∈Tr

logl(gEFr (t)) +
∑

t−∈T −
r

log(c− l(gEFr (t−)))) (15)

where T is the total set of observed examples and consist of instances in Tr for

every r ∈ R, l is the logistic sigmoid function, c is a constant chosen as margin

such as 1.0.

4.4. Modeling Correlation between Facts and Relations

We argue that facts should be embedded close to their relations and fact

embeddings of the same relation should aggregate in a cluster, otherwise far

15



away from each other. To measure the similarity between embedded facts and

relations, we employ dot product to calculate the distance of fact embeddings

et,f and relation embeddings rt of instance t. We define the cost function as

gFRr (t) = eTt,frt (16)

Then we define the optimization objective for a single instance t as a margin-

based problem:

Lt = max{0, c− [gFRr (t)− gFRr− (t−)]} (17)

where t− is a negative instance in which we replace r in t by an n-ary relation305

r− (r− 6= r).

We also assume that diagonal matrix Dr(ρ) to be similar to diagonal matrix

Mr(ρ) and define the distance by absolute difference of their normalized trace

(the trace of matrix characterizes its similarity invariance addreferencehere):

d(Mr(ρ), Dr(ρ)) = ‖tr(Mr(ρ)− tr(Dr(ρ)))‖ (18)

where function tr(·) denotes the normalized trace of a matrix. The optimization

objective for each relation r is then defined as

Lr(ρ) = max{0, c− [d(Mr(ρ), Dr(ρ)), d(Mr(ρ), Dr−(ρ−))]} (19)

where r− ∈ R is an n-ary relaton different from r, ρ− ∈M(Rr−).

We then define the total loss function as

LFR =
∑

r,r−∈R,r 6=r−
(
∑
t∈Tr

Lt +
∑

ρ∈M(Rr)

Lr(ρ)) (20)

4.5. Joint Optimization Problem

Our goal is to embed all the entities e ∈ Ne, facts u ∈ Nf and multi-fold

relations r ∈ Nr in knowledge base G into d-dimensional entity vector space

Ue, fact vector space Uf and relation vector space Ur. As the embedding

vectors of entities, facts and relations are shared across the proposed framework,

our solution is to collectively minimize the three optimization objectives LER,
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LEF , LFR. To achieve the goal, we formulate a joint optimization problem as

minimizing the weighted combination of the three objectives:

min L = λER ∗ LER + λEF ∗ LEF + λFR ∗ LFR (21)

The learning of entity, fact and relation embeddings can be mutually influ-

enced via joint optimizing the global objective L, which reduces the errors in310

each component and promotes more powerful representations.

5. Model Learning and Complexity Analysis

5.1. Learning Method Discussion

To solve the joint optimization problem in Eq.(21), an intuitive solution is

to minimize the three objectives sequentially, i.e. first learn the correlations315

of entities and multi-fold relations via optimizing LER on each instances, then

utilize the learned embedding of entities to minimize LEF and train a GCN

model on the whole knowledge base, finally, apply the acquired representations

of entities, facts and relations to optimize LFR. However, such a solution can

hardly converge (training process on LFR will update the embeddings of facts320

and relations which may destroy the convergence of LER and LEF ). Moreover,

the learning procedure does not fully exploit the correlation between facts and

relations expressed in LFR to provide mutual feedbacks when minimizing LER
and LEF .

Thus we follow CoType [28] and exploit a stochastic sub-gradient descent325

algorithm based on edge sampling strategy to efficiently solve Eq.(21), which

can be proved to converge to the local minimum. In detail, we iteratively sample

from each of the three objectives LER,LEF ,LFR a batch of positive instances

(e.g., (ei, fj , rk)) and generate V negative samples for each positive ones based

on the Closed World Assumption, i.e. replace any one of the entities(or fact330

node) involved in a multi-fold relation instance with other entities or fact nodes

to get a new instance that is not exist in the training set. We then update

each embedding vector based on the derivatives. The model learning process of

CoRelatE is summarized in Algorithm 1.
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5.2. Computational Complexity Analysis335

The objective function should be regarded as an optimization task and be

solved by proposing a new algorithm, which employs the proposed tricks to learn

the above three correlations simultaneously. The computation complexity can

be discussed at meanwhile.

Converting multi-fold relations to binary relations results in a heterogeneity

of the predicates, unfavorable for knowledge base embedding. M-TransH [11]

treats fact nodes the same as general entity nodes and ignores the relation level

information that certain facts belong to the same relation. Here, we propose an

optimizing method called Group-constrained Embedding which embeds entity

nodes and fact nodes from entity space into relation space, restricting the

embedded fact nodes related to the same relation to a specific group. The cost

function fr is defined by Eq.(7):

fr (t) =

∥∥∥∥∥∥
∑

ρ∈M(Rr)

arPnr (t(ρ)) + br

∥∥∥∥∥∥
2

2

+ β ∗ gr(t),

t ∈ NM(Rr)

(22)

Where gr(t) is a constraint term used to restrict the embedded fact vectors340

and relation vectors. β is a balance factor between 0 and 1.

As to the constraint term gr(t), we exploit three different types of constraints

as below:

• Zero Constraint

Zero constraint adopts a rigorous constraint on the embedded fact vectors,

it requires the Euclidean distance between the embedded fact vector Pnr (efact)

and its corresponding relation vector r to be zero. Namely,

gr(t) = ‖r − Pnr (efact)‖2 , t ∈ N
M(Rr) (23)

• Radius Constraint345

Radius constraint adopts a relaxed constraint on the Euclidean distance

between Pnr (efact) and r. If the fact is an positive instance of the relation r, we
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need the distance to be smaller than ε, otherwise much bigger than ε. In this

way, we define gr(t) as Eq.(9),

gr(t) = max(0, ‖r − Pnr (efact)‖2 − ε), t ∈ N
M(Rr) (24)

• Cosine Constraint

Cosine constraint exploits the cosine distance as measurement, it renders the

distance of the embedded fact vector Pnr(efact) and its corresponding relation

vector r to be near zero. Namely,

gr(t) = cos 〈r,Pnr (efact)〉 , t ∈ NM(Rr) (25)

We present an illustration of Group-constrained Embedding methods in

Figure 1, which consists of 4 subgraphs, i.e. graph A, B, C and D. The first

graph A shows the structure of the entities and multi-fold relations in the origin

vector space. The other three graphs show the Group-constrained Embedding of350

multi-fold relations with Zero Constraint, Radius Constraint or Cosine Constraint

methods respectively.

In the origin vector space in graph A, we have a 3-ary relation “relation1”

(indicated by orange square) and two instances (indicated by green circle) with

FACT-ID “fact1” and “fact2”. Each of the two instances link with other three355

general entities (indicated by blue triangle) through different roles (i.e. role1,

role2 and role3). We present 4 general entities e1, e2, e3 and e4 in the origin

vector space. We can see that fact1 and fact2 share the same entities on “role1”

and “role2”, differentiating on “role3”.

In graph B, C, and D, we indicate the embedded vectors of instances and360

entities by adding a single quote to their names, e.g. the embedded vector of

fact node “fact1” is marked as “fact1′”. We indicate the embedded multi-fold

relation “relation1” the same as it in the origin vector space since they are the

same vector and without a mapping operation.

Graph B shows the result of Group-constrained Embedding with Zero Con-365

straint. As we force the Euclidean distance between the embedded fact vector

“fact1′”, “fact2′” and its corresponding relation vector “relation1” to be zero,
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these three vectors fall nearly into the same point in the embedded vector space.

When using the radius constraint, as is shown in graph C, “fact1′” and “fact2′”

fall into a hyper sphere, “relation1” acts as the center of the sphere and the370

radius ε is a decimal number between 0 and 1. We can see that Radius Constraint

degenerates to Zero Constraint when setting ε to 0. In graph C, we use the

cosine distance as measurement, thus the angles of embedded vector “fact1′”,

“fact2′” and “relation1” are the same, falling onto a straight line when projected

to a two-dimensional plane.375

5.3. Proposed Model

Using the Group-constrained Embedding method, we propose a new multi-

fold relation embedding model Gm-TransH as below, which consists of three

variations corresponding to the three different types of constraints.

• Group-constrained m-TransH (Gm-TransH)380

To solve the problem of m-TransH described above, we propose a new

model that extends m-TransH to make the embedded fact vectors close to their

corresponding relation vectors on the hyperplane.

In detail, we use the Radius Constraint for example, the embedded fact

vectors that belong to the same relation lie in one circle, the relation vector act

as the center of the circle, and the radius is a constant ε. Namely, if a fact is an

instance of a relation, the distance between the embedded fact vector and the

relation vector is smaller than ε on the hyperplane, otherwise much bigger than

ε. The cost function fr is defined as Eq.(11).

fr (t) =

∥∥∥∥∥∥
∑

ρ∈M(Rr)

arPnr (t(ρ)) + br

∥∥∥∥∥∥
2

2

+

β ∗max(0, ‖br − Pnr (efact)‖2 − ε),

t ∈ NM(Rr)

(26)

Where Pnr is defined by TransH, namely Eq.(5). Obviously, Eq.(11) is

converted from Eq.(7) by setting the constraint term gr(t) to Eq.(9).385
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We call the above Group-constrained m-TransH model with Radius Constraint

Gm-TransH:radius.

We can also use the Zero Constraint method and the Cosine Constraint

method as substitute of the constraint term gr(t). Namely, with Zero Constraint

method, the model Gm-TransH sets gr(t) to Eq.(8), the cost function fr is

defined as Eq.(12)

fr (t) =

∥∥∥∥∥∥
∑

ρ∈M(Rr)

arPnr (t(ρ)) + br

∥∥∥∥∥∥
2

2

+

β ∗ ‖br − Pnr (efact)‖2 ,

t ∈ NM(Rr)

(27)

We call the Group-constrained m-TransH model with Zero Constraint Gm-

TransH:zero.

Similarly, with the Cosine Constraint method, the model Gm-TransH sets

gr(t) to Eq.(10), the cost function fr is defined as Eq.(13)

fr (t) =

∥∥∥∥∥∥
∑

ρ∈M(Rr)

arPnr (t(ρ)) + br

∥∥∥∥∥∥
2

2

+

β ∗ cos 〈r,Pnr (efact)〉 ,

t ∈ NM(Rr)

(28)

We call the Group-constrained m-TransH model with Cosine Constraint390

Gm-TransH:cosine.

5.4. Complexity Ayalysis

In Table 1, we compare the complexities of several models described in

Related Work and the Gm-TransH models. For binary relation embedding

models like SLM, NTN and Trans(E, H, R, D), we conduct a S2C conversion

[11] for each instance with multi-fold relation, resulting in several triples with

binary relations, which are appropriate for these models. After a S2C conversion,
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Table 1: Complexities (the number of parameters to train and the times of multiplication

operations in each epoch) of several embedding models. Ne denotes the number of real entities,

Nf denotes the number of fact nodes. Nr represents the number of multi-fold relations (i.e.

fold ≥ 2) and Nr2 represents the number of binary relations. Nt represents the number of

instances with multi-fold relations in the knowledge base. Nt2 represents the number of triples

with binary relations. Nρ denotes the sum of the folds of all instances with multi-fold relations.

m and n are the dimensions of the entity and relation vector space respectively. d denotes the

number of clusters of a relation. k is the number of hidden nodes of a neural network and s is

the number of slice of a tensor.

Model # Parameters # Operations

SLM [16] O(Nem+Nr2(2k + 2nk)) O((2mk + k)Nt2)

NTN [16] O(Nem+Nr2(n
2s+ 2ns+ 2s)) O(((m2 +m)s+ 2mk + k)Nt2)

TransE [6] O(Nem+Nr2n) O(Nt2)

TransH [7] O(Nem+ 2Nr2n) O(2mNt2)

TransR [8] O(Nem+Nr2(m+ 1)n) O(2mnNt2)

CTransR [8] O(Nem+Nr2(m+ d)n) O(2mnNt2)

TransD [20] O(2Nem+ 2Nr2n) O(2nNt2)

m-TransH [11] O((Ne +Nf )m+ 2Nrn+Nρ) O(mNρ)

Gm-TransH:zero O((Ne +Nf )m+ 2Nrn+Nρ) O(m(Nρ +Nt))

Gm-TransH:radius O((Ne +Nf )m+ 2Nrn+Nρ) O(m(Nρ +Nt))

Gm-TransH:cosine O((Ne +Nf )m+ 2Nrn+Nρ) O(m(Nρ + 3Nt))

the number of instances/triples and relations are changed as follows:

Nr2 =

Nr∑
i=1

nri ∗ (nri − 1)

2
, ri ∈ R (29)

Nt2 =

Nt⋃
i=1

nti ∗ (nti − 1)

2
, ti ∈ NM(Rr) (30)

Nρ =

Nr∑
i=1

nri, ri ∈ R (31)
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Where nri denotes the fold of the i-th relation ri, nti denotes the fold of the

i-th instance ti, Nr � Nr2 and Nt � Nt2.

As listed in Table 1, the number of parameters of Gm-TransH models are395

same as m-TransH and lower than the binary relation embedding models. The

time complexity (number of operations) of Gm-TransH models are higher than

m-TransH and close to the TransH model.

As a matter of fact, the training time of the three different Gm-TransH:(radius,

zero, cosine) models on the JF17K datasets with a dimension of 25 are about400

35,35 and 42 minutes respectively, which are close to transH and m-TransH(30

minutes) models, but outperform the existing methods on link prediction and

relation classification tasks significantly.

6. Experiments and Analysis

In this section, we empirically study and evaluate our approach on two tasks:405

link prediction and instance classification.

Table 2: Statistics of the extended JF17K dataset.

Dataset GX
s2c/G

?
s2c GX/G? GX

id/G
?
id GX

fact/G
?
fact

# Entities 17629/12282 17629/12282 17629/12282 17818/17818

# Relations 381/336 181/159 181/159 181/159

# Samples 118568/30912 89248/17842 93976/18318 36199/10560

Table 3: Statistics of the origin and extended FB15K dataset.

Dataset # Rel # Ent # Train # Valid # Test

FB15K(Raw) 1,345 14,951 483,142 50,000 59,071

FB15K(Ext) 1,345 19,966 483,142 50,000 59,071
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6.1. Datasets

JF17K. We use a cleaned and extended JF17K datasets [11] in our exper-

iments. The original JF17K datasets were transformed from the full RDF

formatted Freebase data. Denote the fact representation by F . Two instance410

representations T (F ) (denoted by G), Tid(F ) (denoted by Gid) and a triple

representation S2C(G) (denoted by Gs2c) were constructed, resulting in three

consistent datasets, i.e. G, Gid and Gs2c.

However, as the provided JF17K datasets contain many redundant samples,

which may affect the results, we first cleaned up the repetitive data. In addition,415

the fact nodes (or CVT nodes) of a great quantity of instances were missing in

the Gid dataset. We found the fact nodes indicated by role FACT-ID did not

follow a 1-to-1 relationship to the multi-fold relations, which were not applicable

for our proposed models. So we extended the Gid dataset and generated a fact

node for each of these instances. Two instances which share the same relation420

and the same entities except one role were assigned a same fact node. We call

the extended set Gfact and divide it into training set GX
fact and testing set G?

fact.

The statistics of these datasets are shown in Table 2.

FB15K. We also use FB15K dataset [6] on instance classification task. Since

FB15K dataset contains only triples with binary relations and has no fact nodes425

in the triples, we extend the FB15K dataset by adding an unique fact node

to each triple. Thus, we can use the extended FB15K to train the proposed

Gm-TransH model and test its performance. We use the origin FB15K dataset

to train the NTN, TransE, TransH and TransR models, for convenience, we use

“Raw” to denote the origin FB15K dataset and use “Ext” to denote the extended430

FB15K dataset. Table 3 lists the statistics of the origin and extended FB15K

datasets.

6.2. Link Prediction

Link prediction aims to complete the missing entities for instances or triples,

i.e., predict one entity given other entities and the relation. For example, for435
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Table 4: The models and datasets used for link prediction.

Experiment Model
Training

Dataset

Testing

Dataset

TransE:triple TransE(bern) GX
s2c G?

s2c

TransH:triple TransH(bern) GX
s2c G?

s2c

TransR:triple TransR(bern) GX
s2c G?

s2c

m-TransH:inst m-TransH GX G?

m-TransH:ID m-TransH GX
id G?

id

Gm-TransH:zero Gm-TransH GX
fact G?

fact

Gm-TransH:radius Gm-TransH GX
fact G?

fact

Gm-TransH:cosine Gm-TransH GX
fact G?

fact

triple (h, r, t), predict t given (h, r) or predict h given (r, t). As for instances with

multi-fold relations, the missing entity can be any one of the entities associated

with the relation r. Link prediction ranks a set of candidate entities from

the knowledge graph. We use the extended JF17K datasets in this task and

compare with some of the canonical models including TransE, TransH, TransR440

and m-TransH.

Evaluation protocol. In this task, for every instance in test set, we remove each

of the entities and then replace it with the entities in the real entity set in

turn. For fairness, we replace only the real entities appeared in the instances

and exclude the fact nodes. Dissimilarities of the corrupted instances are first445

computed using the proposed models and then sorted by ascending order. Then

we use Hit@10(HIT) and Mean Rank (RANK) [6] of the correct entities ranked

as the performance metrics to evaluate the proposed models. The two metrics

are commonly used to evaluate the performance of knowledge base embeddings.

Hit@10 computes the probability of the positive entities that rank the top 10%450

for all the entities. Mean Rank means the average position of the positive entities
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ranked.

Implementation. We conduct eight kinds of experiments in this task, the training

and testing datasets for each of the experiments as well as the model they train

are shown in the Table 4.455

Stochastic Gradient Descent is used for training, as is standard. We take L2

as dissimilarity and traverse all the training samples for 1000 rounds. Several

choices of the dimension d of entities and relations are studied in our experiments:

25, 50, 100, 150, 200, 250. We select learning rate λ for SGD among 0.0015,

0.005, 0.01, 0.1, the balance factor β for Gm-TransH among 0.001, 0.01, 0.05 0.1,460

the margin γ among 0.5, 1.0, 2.0, and the radius ε in Gm-TransH:radius among

0.01, 0.05, 0.1, 0.5, 1, the batch size B among 120, 480, 960, 1920. The optimal

configurations of the three Gm-TransH models are Gm-TransH:zero: λ=0.0015,

β=0.01, γ=0.5, d=150, B=960. Gm-TransH:radius: λ=0.0015, β=0.05, γ=1.0,

ε=0.05, d=250, B=480. Gm-TransH:cosine: λ=0.0015, β=0.01, γ=1.0, d=200,465

B=1920.

Results. Experimental results of link prediction on the cleaned and extended

JF17K datasets are shown in Figure 2 and 3, which show the Hit@10 results and

Mean Rank results of different embedding models with dimension 25, 50, 100, 150,

200, 250 respectively. The three Gm-TransH models outperform the Trans(E, H,470

R) models by a large margin on both Hit@10 and Mean Rank metrics. Compared

to the m-TransH models, our models achieve an improvement on the probability

of Hit@10 and get an approximate mean rank with m-TransH:inst. The results

show that our approach is effective on improving the accuracy of multi-fold

relation embeddings. Furthermore, Gm-TransH:zero obtains better performance475

than Gm-TransH:radius and Gm-TransH:cosine in most cases, showing that Zero

Constraint outperforms Radius Constraint and Cosine Constraint.

6.3. Instance Classification

Instance classification aims to judge whether a given instance is correct or

not. This is a binary classification task, which has been explored in [16, 7]480
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Figure 3: The probability of ranking the top 10% for different embedding dimensions.

Figure 4: The mean rank for different embedding dimensions.
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for evaluation. In this task, we use the extended JF17K and FB15K datasets

to evaluate our models. For comparison, we select the NTN, TransE, TransH,

TransR and m-TransH as baseline models.

Evaluation protocol. For instance classification task, we follow the same protocol

in NTN and TransH. Since the evaluation of classification needs negative labels,485

the JF17K and FB15K datasets both contain only positive instances, we construct

negative instances following the same procedure used for FB13 in [16]. For each

golden instance, one negative instance is created.

We set a threshold δr for each relation r by maximizing the classification

accuracies on the training set. For a given instance in the testing set, if the490

dissimilarity score is lower than δr, it will be classified as positive, otherwise

negative.

Implementation. For binary relation embeddings of triples, we train and eval-

uate the NTN, Trans(E, H, R) models on the origin FB15K dataset (denoted

as Raw) and the Gs2c dataset of JF17K. We use the NTN code released by495

Socher [16] and the Trans(E, H, R) code released by [8] directly. For multi-fold

relation embeddings of instances, we use the m-TransH code released by [11]

and implement the Gm-TransH models to evaluate on extended FB15K(Ext)

dataset and the G, Gid, Gfact datasets of JF17K respectively. We select the

same hyperparameters as used in link prediction and get the average accuracy500

of 20 repeated trials.

Results. Table 5 lists the evaluation results of instance classification in detail. We

can observe that on both FB15K and JF17K datasets, the Gm-TransH models

outperforms the baseline models including NTN, Trans(E, H, R) and m-TransH

significantly. The accuracy can reach more than 90% on Gm-TransH:zero and505

Gm-TransH:cosine, achieving a new state-of-the-art performance. Moreover,

from the results on the FB15K(Raw) and the FB15K(Ext) datasets, we see

that even for binary relations (i.e. multi-fold relations whose fold equals 2), the

Group-constrained Embedding method is practicable and reliable.
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Table 5: Evaluation accuracy(%) of instance classification.

Datasets FB15K(Raw) FB15K(Ext) FB17K

NTN 68.2 — 51.3

TransE(unif/bern) 77.3/79.8 — 54.4/58.5

TransH(unif/bern) 74.2/79.9 — 55.6/59.1

TransR(unif/bern) 81.1/82.1 — 60.7/63.4

m-TransH:inst — 83.2 72.5

m-TransH:ID — 84.7 76.7

Gm-TransH:zero — 90.4 89.2

Gm-TransH:radius — 89.3 88.9

Gm-TransH:cosine — 90.1 91.3

7. Conclusions and Future Work510

We presented a Group-constrained Embedding method for multi-fold rela-

tions and proposed a new representation learning framework Gm-TransH using

the optimizing method. We evaluate the effectiveness and performance of the

proposed methods and models on extended FB15K and JF17K datasets. Ex-

perimental results show that the Gm-TransH models outperforms all baseline515

models on link prediction task and instance classification task. In the future, we

will explore more representation and embedding frameworks for the increasingly

complicated data in knowledge bases, e.g. events and procedures, as well as

incorporating the most recent advances in the learning of binary relations for

multi-fold relation embedding.520
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