
Under review as a conference paper at ICLR 2019

IMPLEMENTATION MATTERS IN DEEP POLICY
GRADIENTS: A CASE STUDY ON PPO AND TRPO

Anonymous authors
Paper under double-blind review

ABSTRACT

We study the roots of algorithmic progress in deep policy gradient algorithms
through a case study on two popular algorithms, Proximal Policy Optimization
and Trust Region Policy Optimization. We investigate the consequences of “code-
level optimizations:” algorithm augmentations found only in implementations or
described as auxiliary details to the core algorithm. Seemingly of secondary im-
portance, such optimizations have a major impact on agent behavior. Our results
show that they (a) are responsible for most of PPO’s gain in cumulative reward
over TRPO, and (b) fundamentally change how RL methods function. These in-
sights show the difficulty, and importance, of attributing performance gains in
deep reinforcement learning.

1 INTRODUCTION

Deep reinforcement learning (RL) algorithms have fueled many of the most publicized achieve-
ments in modern machine learning (Silver et al., 2017; OpenAI, 2018; Abbeel & Schulman, 2016;
Mnih et al., 2013). However, despite these accomplishments, deep RL methods still are not nearly
as reliable as their (deep) supervised counterparts. Indeed, recent research found the existing deep
RL methods to be brittle (Henderson et al., 2017; Zhang et al., 2018), hard to reproduce (Hender-
son et al., 2017; Tucker et al., 2018), unreliable across runs (Henderson et al., 2017; 2018), and
sometimes outperformed by simple baselines (Mania et al., 2018).

The prevalence of these issues points to a broader problem: we do not understand how the parts
comprising deep RL algorithms impact agent training, either separately or as a whole. This unsat-
isfactory understanding suggests that we should re-evaluate the inner workings of our algorithms.
Indeed, the overall question motivating our work is: how do the multitude of mechanisms used in
deep RL training algorithms impact agent behavior?

Our contributions. We will specifically analyze the underpinnings of agent behavior—both cu-
mulative reward, as well as more fine-grained algorithmic properties. As a first step towards tackling
this question, we conduct a case study of two of the most popular deep policy-gradient methods:
Trust Region Policy Optimization (TRPO) (Schulman et al., 2015a) and Proximal Policy Optimiza-
tion (PPO) (Schulman et al., 2017). These algorithms are closely related: PPO was originally devel-
oped as a refinement of TRPO.

We find that much of the method’s performance comes from various code-level or implementa-
tion optimizations not present in TRPO: seemingly small modifications to the core algorithm either
found only in a paper’s original implementation, or described as auxiliary details. We pinpoint
these optimizations, and run an ablation study demonstrating that they are instrumental to the PPO’s
performance.

This observations prompt us to study how such code-level optimizations change agent training dy-
namics, and whether we can truly think of them as merely auxiliary improvements. Our results
indicate that code-level optimizations fundamentally change algorithms’ operation, going beyond
improvements in agent reward. Concretely, we find that these optimizations are in fact essential
for satisfying a key motivating principle behind TRPO and PPO’s operations: trust region enforce-
ment. Additionally, we find that these optimizations are both necessary and sufficient to maintain a

1

Under review as a conference paper at ICLR 2019

trust region, regardless of whether or not the clipping algorithm—typically thought to be the central
algorithm of PPO—is employed.

Ultimately, we find that the PPO code-optimizations are significantly more important in terms of
final reward achieved than the choice of general training algorithm (TRPO vs. PPO). This result is
in stark contrast to the previous view that the central PPO clipping method drives the gains seen in
Schulman et al. (2017). In doing so, we demonstrate that the algorithmic changes imposed by such
optimizations make rigorous comparisons of algorithms difficult. Without a rigorous understanding
of the full impact of code-level optimizations, we cannot hope to gain any reliable insight from
comparing algorithms on benchmark tasks.

Our results emphasize the importance of building RL methods in a modular manner. To progress
towards more performant and reliable algorithms, we need to understand each component’s impact
on agent behavior and performance—both individually, and as part of a whole.

2 ATTRIBUTING SUCCESS IN PROXIMAL POLICY OPTIMIZATION

Our overarching goal is to better understand the underpinnings of the behavior of deep policy gra-
dient methods. We thus perform a careful study of two tightly linked algorithms: TRPO and PPO
(recall that PPO is motivated as TRPO with a different trust region enforcement mechanism). To
better understand these methods, we start by thoroughly investigating their implementations in prac-
tice. We find that in comparison to TRPO, the PPO implementation contains many non-trivial op-
timizations that are not (or only barely) described in its corresponding paper. Indeed, the standard
implementation of PPO 1 contains the following additional optimizations (among many others; we
provide a full list in Appendix A.2):

1. Value function clipping: Schulman et al. (2017) originally suggest fitting the value net-
work via regression to target values:

LV = (Vθt − Vtarg)2,

but in the standard implementation the value network is instead fit with a PPO-like objec-
tive:

LV = min
[
(Vθt − Vtarg)

2
,
(
clip

(
Vθt , Vθt−1

− ε, Vθt−1
+ ε
)
− Vtarg

)2]
,

where Vθ is clipped around the previous value estimates (and ε is fixed to the same value
as the value used in (2) to clip the probability ratios).

2. Reward scaling: Rather than feeding the rewards directly from the environment into the
objective, the PPO implementation performs a certain discount-based scaling scheme. In
this scheme, the rewards are divided through by the standard deviation of a rolling dis-
counted sum of the rewards (without subtracting and re-adding the mean)—see Algorithm 1
in Appendix A.2.

3. Orthogonal initialization and layer scaling: Instead of using the default weight initial-
ization scheme for the policy and value networks, the implementation uses an orthogonal
initialization scheme with scaling that varies from layer to layer.

4. Adam learning rate annealing: Depending on the task, the implementation sometimes
anneals the learning rate of Adam (Kingma & Ba, 2014) (an already adaptive method) for
optimization.

These optimizations may appear as merely surface-level or insignificant algorithmic changes to the
core policy gradient method at hand. However, we find that they dramatically affect the performance
of PPO. To demonstrate this, we start by performing a full ablation study on the four optimizations
mentioned above2. Figure 1 shows a histogram of the final rewards of agents trained with every
possible configuration of the above optimizations. Our findings suggest that these optimizations are
necessary for PPO to attain its claimed performance.

1From the OpenAI baselines GitHub repository: https://github.com/openai/baselines
2Due to restrictions on computational resources, it was not possible to perform a full study on all of the

optimization including those from Appendix A.2

2

Under review as a conference paper at ICLR 2019

400 600 800 1000
Reward

0.0

0.2

0.4

0.6

0.8

1.0

1
- C

DF
(R

ew
ar

d)

value_clipping
True
False

400 600 800 1000
Reward

0.0

0.2

0.4

0.6

0.8

1.0

1
- C

DF
(R

ew
ar

d)

norm_rewards
returns
none

400 600 800 1000
Reward

0.0

0.2

0.4

0.6

0.8

1.0

1
- C

DF
(R

ew
ar

d)

anneal_lr
True
False

400 600 800 1000
Reward

0.0

0.2

0.4

0.6

0.8

1.0

1
- C

DF
(R

ew
ar

d)

initialization
orthogonal
xavier

0 1000 2000 3000 4000
Reward

0.0

0.2

0.4

0.6

0.8

1.0

1
- C

DF
(R

ew
ar

d)

value_clip
True
False

0 1000 2000 3000 4000
Reward

0.0

0.2

0.4

0.6

0.8

1.0

1
- C

DF
(R

ew
ar

d)

norm_rewards
returns
none

0 1000 2000 3000 4000
Reward

0.0

0.2

0.4

0.6

0.8

1.0

1
- C

DF
(R

ew
ar

d)

anneal_lr
True
False

0 1000 2000 3000 4000
Reward

0.0

0.2

0.4

0.6

0.8

1.0

1
- C

DF
(R

ew
ar

d)

initialization
orthogonal
xavier

Figure 1: An ablation study on the four optimizations described in Section 2 (value clipping, reward
scaling, network initialization, and learning rate annealing). For each of the 24 possible configura-
tions of optimizations, we train a Humanoid-v2 (top) and Walker2d-v2 (bottom) agent using PPO
with three random seeds and multiple learning rates, and choose the learning rate which gives the
best average reward (over the three random seeds). We then consider all rewards from the “best
learning rate” runs (a total of 3 × 24 agents), and plot histograms in which agents are partitioned
based on whether each optimization is on or off. Our results show that reward normalization, Adam
annealing, and network initialization are crucial to obtaining the best average reward with PPO. We
detail our experimental setup in Appendix A.1.

The above findings show that our ability to understand PPO from an algorithmic perspective hinges
on the ability to distill out its fundamental principles from such algorithm-independent (in the sense
that these optimizations can be implemented for any policy gradient method) optimizations. We
thus consider a variant of PPO called PPO-MINIMAL (PPO-M) which implements only the core of
the algorithm. PPO-M uses the standard value network loss, no reward scaling, the default network
initialization, and Adam with a fixed learning rate (PPO-M ignores a host of other code-level op-
timizations as well; see Appendix A.2). We then explore PPO-M alongside PPO and TRPO as a
“vanilla” version of PPO.

Overall, our results on the importance of these optimizations both corroborate results demonstrating
the brittleness of deep policy gradient methods, and demonstrate that even beyond environmental
brittleness, the algorithms themselves exhibit high sensitivity to implementation choices3.

3 CODE-LEVEL OPTIMIZATIONS HAVE ALGORITHMIC EFFECTS

In the previous section, we found that canonical implementations of PPO contain many code-level
optimizations: implementation choices that are not motivated as core to a method but profoundly
impact performance.

This mismatch leads us to ask: how do these seemingly superficial code-level optimizations impact
underlying agent behavior? In this section, we demonstrate that the code-level optimizations fun-
damentally alter agent behavior. Rather than merely improving ultimate cumulative award, such
optimizations directly impact the principles motivating the core algorithms.

Trust Region Optimization. A key property of policy gradient algorithms is that update steps
computed at any specific policy πθt are only guaranteed predictiveness in a neighborhood around
θt. Thus, to ensure that the update steps we derive remain predictive many policy gradient algo-
rithms ensure that these steps stay in the vicinity of the current policy. The resulting “trust region”

3This might also explain the difference between different codebases observed in Henderson et al. (2017)

3

Under review as a conference paper at ICLR 2019

methods (Kakade, 2001; Schulman et al., 2015a; 2017) try to constrain the local variation of the
parameters in policy-space by restricting the distributional distance between successive policies.

A popular method in this class is trust region policy optimization (TRPO) Schulman et al. (2015a).
TRPO constrains the KL divergence between successive policies on the optimization trajectory,
leading to the following problem:

max
θ

E(st,at)∼π

[
πθ(at|st)
π(at|st)

Âπ(st, at)

]
s.t. DKL(πθ(· | s)||π(· | s)) ≤ δ, ∀s . (1)

In practice, we maximize this objective with a second-order approximation of the KL divergence
and natural gradient descent, and replace the worst-case KL constraints over all possible states with
an approximation of the mean KL based on the states observed in the current trajectory.

One disadvantage of the TRPO algorithm is that it can be computationally costly—the step direction
is estimated with nonlinear conjugate gradients, which requires the computation of multiple Hessian-
vector products. To address this issue, Schulman et al. (2017) propose proximal policy optimization
(PPO), which tries to enforce a trust region with a different objective that does not require computing
a projection. Concretely, PPO proposes replacing the KL-constrained objective (1) of TRPO by
clipping the objective function directly as:

max
θ

E(st,at)∼π

[
min

(
clip (ρt, 1− ε, 1 + ε) Âπ(st, at), ρtÂπ(st, at)

)]
(2)

where

ρt =
πθ(at|st)
π(at|st)

(3)

In addition to its simplicity, PPO is intended to be faster and more sample-efficient than
TRPO (Schulman et al., 2017).

Trust regions in TRPO and PPO. Enforcing a trust region is a core algorithmic property of
different policy gradient methods. However, whether or not a trust region is enforced is not directly
observable from the final rewards. So, how does this algorithmic property vary across state-of-the-art
policy gradient methods?

In Figure 2 we measure the mean KL divergence between successive policies in a training run of
both TRPO and PPO-M (PPO without code-level optimizations). Recall that TRPO is designed
specifically to constrain this KL-based trust region, while the clipping mechanism of PPO attempts
to approximate it. Indeed, while TRPO precisely enforcing this trust region, the successive KL
divergence between policies in PPO-M grows exponentially as training progresses.

While this may seem surprising at first, we find that the unbounded nature of the trust region actually
follows naturally from the clipping mechanism of PPO. In particular, the contribution of a single
state-action pair to the gradient of the PPO objective is given by:

∇θLPPO =

{
∇θLθ πθ(a|s)

π(a|s) ∈ [1− ε, 1 + ε] or LCθ < Lθ

0 otherwise
,

where Lθ := E(s,a)∈τ∼π

[
πθ(a|s)
π(a|s)

Aπ(s, a)

]
,

and LCθ := E(s,a)∈τ∼π

[
clip

(
πθ(a|s)
π(a|s)

, 1− ε, 1 + ε

)
Aπ(s, a)

]
are respectively the standard and clipped versions of the surrogate reward. As a result, since we
initialize πθ as π (and thus the ratios start all equal to one) the first step we take is identical to a
maximization step over the unclipped surrogate reward. Therefore, the size of step we take is deter-
mined solely be the steepness of the surrogate landscape (i.e. Lipschitz constant of the optimization
problem we solve), and we can end up moving arbitrarily far from the trust region. In fact, observe
in Figure 2 that PPO-M fails at even maintaining a trust region based on the maximum ratio (i.e., the
exact quantity that PPO tries to control via clipping).

4

Under review as a conference paper at ICLR 2019

Figure 2: Per step mean reward, maximum ratio (c.f. (2)), mean KL, and maximum versus mean KL
for agents trained to solve the MuJoCo Humanoid task. The quantities are measured over the state-
action pairs collected in the training step. Each line represents a training curve from a separate agent.
The black dotted line represents the 1 + ε ratio constraint in the PPO algorithm, and we measure
each quantity every twenty five steps. From the plots we can see that the PPO variants’ maximum
ratios consistently violates the ratio “trust region.” We additionally see that while PPO constrains the
mean KL well, PPO-M does not, suggesting that the core PPO algorithm is not sufficient to maintain
a ratio “trust region.” We additionally measure the quantities over a heldout set of state-action pairs
and find little qualitative difference in the results (seen in Figure 5 in the appendix), suggesting
that TRPO does indeed enforce a mean KL trust region. We show plots for additional tasks in the
Appendix in Figure 4. We detail our experimental setup in Appendix A.1.

Remarkably, despite that the core mechanism of PPO (which is captured in PPO-M) fails to maintain
a trust region, we find that PPO with optimizations actually does seem to maintain a KL-based trust
region. This demonstrates that perhaps the key to PPO’s success even from an algorithmic viewpoint
comes from auxiliary optimizations, rather than the core methodology.

Enforcing a trust region without projecting or clipping. It turns out that code-level optimiza-
tions alone enforce a trust region without clipping the objective function or explicitly bounding the
distance between successive policies. Indeed, Figure 3 demonstrates that PPO-NOCLIP (PPO with-
out clipping) can actually maintain reasonable trust regions on benchmark tasks when operating in
conjunction with the right optimizations. The trust region for PPO-NOCLIP bounds KL to a lesser
degree than the KL bound seen in TRPO (represented by the horizontal, black dotted line in the
mean KL plot), and we do not observe the same exponentially increasing trend we found in PPO-M
in Figure 2.

Overall, our results indicate that so-called code-level optimizations do not merely increase perfor-
mance: they fundamentally change algorithms’ operation in unexpected ways.

4 IDENTIFYING ROOTS OF ALGORITHMIC PROGRESS

State-of-the-art deep policy gradient methods are comprised of many interacting components. At
what is generally described as their core, these methods incorporate mechanisms like trust region-
enforcing steps, time-dependent value predictors, and advantage estimation methods for controlling
the exploitation/exploration trade-off (Schulman et al., 2015b). However, these algorithms also
incorporate many less oft-discussed optimizations (cf. Section 2) that ultimately dictate much of
agent behavior (cf. Section 3). Given the need to improve on these algorithms, the fact that such
optimizations are so important begs the question: how do we identify the true roots of algorithmic
progress in deep policy gradient methods?

Unfortunately, we find that answering this question is not easy. Going back to our study of PPO
and TRPO, it is widely believed (and claimed) that the key innovation of PPO responsible for its
improved performance over the baseline of TRPO is the ratio clipping mechanism (cf. Section 3).
However, we have already shown that this clipping mechanism does not enforce the KL region it is
supposed to. Where is PPO’s improved performance coming from, then?

5

Under review as a conference paper at ICLR 2019

0 50 100 150 200 250 300 350 400 450
Iterations

100

200

300

400

500

600

700

800

900

M
ea

n
Re

wa
rd

PPO-NoClip
PPO

0 50 100 150 200 250 300 350 400 450
Iterations

1

2

3

4

5

6

7

8

9

m
ax

(π
θ
/π

0
)

PPO-NoClip
PPO

0 50 100 150 200 250 300 350 400 450
Iterations

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

K
L

PPO-NoClip
PPO
TRPO trust region

0 50 100 150 200 250 300 350 400 450
Iterations

0

500

1000

1500

2000

2500

3000

3500

M
ea

n
Re

wa
rd

PPO-NoClip
PPO

0 50 100 150 200 250 300 350 400 450
Iterations

1

2

3

4

5

6

m
ax

(π
θ
/
π

0
)

PPO-NoClip
PPO

0 50 100 150 200 250 300 350 400 450
Iterations

0.00

0.02

0.04

0.06

0.08

0.10

0.12

K
L

PPO-NoClip
PPO
TRPO trust region

Figure 3: Per step mean reward, maximum ratio (c.f. (2)), mean KL, and mean KL for PPO and
PPO-NOCLIP agents trained to solve the MuJoCo Humanoid-v2 (top) and Hopper-v2 (bottom) task.
The quantities are measured over the state-action pairs collected in heldout steps: i.e., these state-
action pairs were sampled independently of those used to construct the steps. Each line represents
a training curve from a separate agent. PPO-NOCLIP represents the PPO algorithm, with code-
level optimizations, but without any clipping. From the plots we can see that the agents maintain a
bounded trust region (indeed, more bounded than the trust region of the best TRPO agent, shown as
the black line on the right), and achieve high reward, despite not using the PPO clipping step at all.
We give the same plots corresponding to other benchmark tasks in Appendix 6—in the same way,
the clipping-free agents often succeed at maintaining a very reasonable trust region without using
the core clipping mechanism. As previously, we detail our experimental setup in Appendix A.1.

To address this question, we set out to disentangle the impact of PPO’s core clipping mechanism
from its code-level optimizations. Specifically, we examine how employing the core PPO and TRPO
steps changes model performance while controlling for the effect of code-level optimizations iden-
tified in standard implementations of PPO (cf. Section 2). (Note that these code-level optimizations
are algorithm independent: they can be straightforwardly applied to any policy gradient method.)
To account for the effects of these optimizations, we study an additional algorithm which we denote
as TRPO+, consisting of the core algorithmic contribution of TRPO in combination with PPO’s
code-level optimizations as identified in Section 2. We note that the four algorithms we study (PPO,
PPO-M, TRPO, and TRPO+) now capture all combinations of core algorithms and code-level opti-
mizations, allowing us to study the impact of each in a more fine-grained manner.

As our results show in Table 1, it turns out that code-level optimizations contribute to algorithms’
increased performance often significantly more than the choice of algorithm (i.e., using PPO vs.
TRPO). For example, on Walker2d-v2, PPO and TRPO see 28% and 39% improvements (respec-
tively) when equipped with code-level optimizations. At the same time, after fixing the choice to use
or not use optimizations, employing the core TRPO algorithm yields improvements of 20% and 10%
(for the cases of with and without-optimizations respectively). In fact, our results suggest that much
of PPO’s improved performance (over TRPO) actually stems from code-level optimizations—on
three of the four tasks, TRPO+ actually outperforms PPO.

Given the relative insignificance of the step mechanism compared to the use of code-level optimiza-
tions, we are prompted to ask: to what extent is the clipping mechanism of PPO even necessary? In
Table 2, we assess this by considering a PPO-NOCLIP algorithm which uses code-level optimiza-

6

Under review as a conference paper at ICLR 2019

tions but no clipping mechanism (this is the same algorithm we studied in Section 3 in the context
of trust region enforcement). It turns out that the clipping mechanism is not at all necessary to
achieve high performance— we find that PPO-NOCLIP achieves similar results to PPO in terms of
benchmark performance without any clipping at all.

Table 1: Full ablation of step choices (PPO or TRPO) and presence of code-level optimizations
measuring agent performance on benchmark tasks. TRPO+ is a variant of TRPO that uses PPO
inspired code-level optimizations, and PPO-M is a variant of PPO that does not use PPO’s code-level
optimizations (cf. Section 2). Surprisingly, we find that varying the use of code-level optimizations
impacts performance significantly more than varying whether the PPO or TRPO step is used. We
detail our experimental setup in Appendix A.1.

TASK PPO PPO-M TRPO TRPO+

SWIMMER-V2 58 ± 6 58 ± 7 31 ± 15 94 ± 10
HOPPER-V2 2175 ± 431 1816 ± 248 2009 ± 332 2245 ± 243
WALKER2D-V2 2769 ± 250 2160 ± 435 2381 ± 458 3309 ± 286
HUMANOID-V2 939 ± 109 558 ± 26 564 ± 25 638 ± 27

Table 2: Comparison of PPO performance to PPO without clipping. We find that there is little
difference between the awards attained between the two algorithms on the benchmark tasks. Note
that both algorithms use code-level optimizations; our results indicate that the clipping mechanism
is not very important compared to the use of code-level optimizations. We detail our experimental
setup in Appendix A.1.

TASK PPO PPO-M PPO-NOCLIP

SWIMMER-V2 58 ± 6 58 ± 7 56 ± 15
HOPPER-V2 2175 ± 431 1816 ± 248 2467 ± 275
WALKER2D-V2 2769 ± 250 2160 ± 435 2692 ± 446
HUMANOID-V2 939 ± 109 558 ± 26 913 ± 164

Our results suggest that it is difficult to attribute success to different aspects of policy gradient
algorithms without careful analysis.

5 RELATED WORK

The idea of using gradient estimates to update neural network–based RL agents dates back at least
to the work of Williams (1992), who proposed the REINFORCE algorithm. Later, Sutton et al.
(1999) established a unifying framework that casts the previous algorithms as instances of the policy
gradient method.

Our work focuses on proximal policy optimization (PPO) (Schulman et al., 2017) and trust region
policy optimization (TRPO) (Schulman et al., 2015a), which are two of the most prominent policy
gradient algorithms used in deep RL. Much of the original inspiration for the usage of the trust
regions stems from the conservative policy update of Kakade (2001). This policy update, similarly
to TRPO, uses a natural gradient descent-based greedy policy update. TRPO also bears similarity
to the relative policy entropy search method of Peters et al. (2010), which constrains the distance
between marginal action distributions (whereas TRPO constrains the conditionals of such action
distributions).

Notably, Henderson et al. (2017) points out a number of brittleness, reproducibility, and experi-
mental practice issues in deep RL algorithms. Rajeswaran et al. (2017) and Mania et al. (2018)
also demonstrate that on many of the benchmark tasks, the performance of PPO and TRPO can
be matched by fairly elementary randomized search approaches. Additionally, Tucker et al. (2018)
showed that one of the recently proposed extensions of the policy gradient framework, i.e., the usage

7

Under review as a conference paper at ICLR 2019

of baseline functions that are also action-dependent (in addition to being state-dependent), might not
lead to better policies after all.

6 CONCLUSION

In this work, we take a first step in examining how the mechanisms powering deep policy gradi-
ent methods impact agents both in terms of achieved reward and underlying algorithmic behavior.
Wanting to understand agent operation from the ground up, we take a deep dive into the operation of
two of the most popular deep policy gradient methods: TRPO and PPO. In doing so, we identify a
number of “code-level optimizations”—algorithm augmentations found only in algorithms’ imple-
mentations or described as auxiliary details in their presentation—and find that these optimizations
have a drastic effect on agent performance.

In fact, these seemingly unimportant optimizations fundamentally change algorithm operation in
ways unpredicted by the conceptual policy gradient framework. Indeed, the optimizations prove
necessary for enforcing trust regions regardless of whether we optimize with the PPO step or just
unconstrained stochastic gradient descent. We go on to test the importance of these code-level
optimizations in agent performance, and find that PPO’s marked improvement over TRPO (and
even stochastic gradient descent) is largely due to these optimizations.

Overall, our results highlight the necessity of designing deep RL methods in a modular manner.
When building algorithms, we should understand precisely how each component impacts agent
training—both in terms of overall performance and underlying algorithmic behavior. It is impos-
sible to properly attribute successes and failures in the complicated systems that make up deep RL
methods without such diligence. More broadly, our findings suggest that developing an RL toolkit
will require moving beyond the current benchmark-driven evaluation model to a more fine-grained
understanding of deep RL methods.

8

Under review as a conference paper at ICLR 2019

REFERENCES

Pieter Abbeel and John Schulman. Deep reinforcement learning through policy optimization. Tuto-
rial at Neural Information Processing Systems, 2016.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.
Deep reinforcement learning that matters. arXiv preprint arXiv:1709.06560, 2017.

Peter Henderson, Joshua Romoff, and Joelle Pineau. Where did my optimum go?: An empirical
analysis of gradient descent optimization in policy gradient methods, 2018.

Sham M. Kakade. A natural policy gradient. In NIPS, 2001.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014.

Horia Mania, Aurelia Guy, and Benjamin Recht. Simple random search provides a competitive
approach to reinforcement learning. CoRR, abs/1803.07055, 2018.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. In NeurIPS Deep
Learning Workshop, 2013.

OpenAI. Openai five. https://blog.openai.com/openai-five/, 2018.

Jan Peters, Katharina Mülling, and Yasemin Altun. Relative entropy policy search. In AAAI, 2010.

Aravind Rajeswaran, Kendall Lowrey, Emanuel Todorov, and Sham M. Kakade. Towards general-
ization and simplicity in continuous control. In NIPS, 2017.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International Conference on Machine Learning, pp. 1889–1897, 2015a.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015b.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. Nature, 550(7676):354, 2017.

Richard S. Sutton, David A. McAllester, Satinder P. Singh, and Yishay Mansour. Policy gradient
methods for reinforcement learning with function approximation. In NIPS, 1999.

George Tucker, Surya Bhupatiraju, Shixiang Gu, Richard E. Turner, Zoubin Ghahramani, and
Sergey Levine. The mirage of action-dependent baselines in reinforcement learning. In ICML,
2018.

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 8:229–256, 1992.

Amy Zhang, Yuxin Wu, and Joelle Pineau. Natural environment benchmarks for reinforcement
learning, 2018.

9

Under review as a conference paper at ICLR 2019

A APPENDIX

A.1 EXPERIMENTAL SETUP

We use the following parameters for PPO, PPO-M, and TRPO based on a hyperparameter grid
search:

Table 3: Hyperparameters for PPO and TRPO algorithms.

Hyperparameter Value
TRPO PPO

Timesteps per iteration 2000
Discount factor (γ) 0.99
GAE discount (λ) 0.95
Value network LR 0.0001

Value network num. epochs 10
Policy network hidden layers [64, 64]
Value network hidden layers [64, 64]

Number of minibatches N/A 32
Policy LR N/A 0.0001

Policy epochs N/A 10
Entropy coefficient N/A 0.0
Clipping coefficient N/A 0.2

KL constraint (δ) 0.01 N/A
Fisher estimation fraction 10% N/A
Conjugate gradient steps 10 N/A

Conjugate gradient damping 0.1 N/A
Backtracking steps 10 N/A

All error bars we plot are 95% confidence intervals, obtained via bootstrapped sampling.

10

Under review as a conference paper at ICLR 2019

A.2 PPO CODE-LEVEL OPTIMIZATIONS

Algorithm 1 PPO scaling optimization.

1: procedure INITIALIZE-SCALING()
2: R0 ← 0
3: RS = RUNNINGSTATISTICS() . New running stats class that tracks mean, standard

deviation
4: procedure SCALE-OBSERVATION(rt) . Input: a reward rt
5: Rt ← γRt−1 + rt . γ is the reward discount
6: ADD(RS,Rt)
7: return rt/STANDARD-DEVIATION(RS) . Returns scaled reward

A.2.1 ADDITIONAL OPTIMIZATIONS

In addition to the optimizations listed in Section 2, PPO also uses the following optimizations:

1. Reward Clipping: The implementation also clips the rewards within a preset range (usu-
ally [−5, 5] or [−10, 10]).

2. Observation Normalization: In a similar manner to the rewards, the raw states are also not
fed into the optimizer. Instead, the states are first normalized to mean-zero, variance-one
vectors.

3. Observation Clipping: Analagously to rewards, the observations are also clipped within a
range, usually [−10, 10].

4. Hyperbolic tan activations: As also observed by Henderson et al. (2017), implementa-
tions of policy gradient algorithms also also use hyperbolic tangent function activations
between layers in the policy and value networks.

5. Global Gradient Clipping: After computing the gradient with respect to the policy and
the value networks, the implementation clips the gradients such the “global `2 norm” (i.e.
the norm of the concatenated gradients of all parameters) does not exceed 0.5.

11

Under review as a conference paper at ICLR 2019

A.3 TRUST REGION OPTIMIZATION

(a) Walker2d-v2 (train)

(b) Hopper-v2 (train)

(c) Swimmer-v2 (train)

Figure 4: Per step mean reward, maximum ratio (c.f. (2)), mean KL, and maximum versus mean
KL for agents trained to solve the MuJoCo Humanoid task. The quantities are measured over the
state-action pairs collected in the training step. Each line represents a training curve from a separate
agent. The black dotted line represents the 1 + ε ratio constraint in the PPO algorithm, and we
measure each quantity every twenty five steps. Compare the results here with Figure 5; they are
qualitatively nearly identical.

12

Under review as a conference paper at ICLR 2019

(a) Humanoid-v2 (heldout)

(b) Walker2d-v2 (heldout)

(c) Hopper-v2 (heldout)

(d) Swimmer-v2 (heldout)

Figure 5: Per step mean reward, maximum ratio (c.f. (2)), mean KL, and maximum versus mean
KL for agents trained to solve the MuJoCo Humanoid task. The quantities are measured over state-
action pairs collected from heldout trajectories. Each line represents a curve from a separate agent.
The black dotted line represents the 1 + ε ratio constraint in the PPO algorithm, and we measure
each quantity every twenty five steps. See that the mean KL for TRPO nearly always stays within
the desired mean KL trust region (at 0.06).

13

Under review as a conference paper at ICLR 2019

0 50 100 150 200 250 300 350 400 450
Iterations

500

0

500

1000

1500

2000

2500

3000

3500

M
ea

n
Re

wa
rd

PPO-NoClip
PPO

0 50 100 150 200 250 300 350 400 450
Iterations

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

m
ax

(π
θ
/π

0
)

PPO-NoClip
PPO

0 50 100 150 200 250 300 350 400 450
Iterations

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

K
L

PPO-NoClip
PPO
TRPO trust region

(a) Walker2d-v2 (heldout)

0 50 100 150 200 250 300 350 400 450
Iterations

500

0

500

1000

1500

2000

2500

3000

3500

M
ea

n
Re

wa
rd

PPO-NoClip
PPO

0 50 100 150 200 250 300 350 400 450
Iterations

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

m
ax

(π
θ
/
π

0
)

PPO-NoClip
PPO

0 50 100 150 200 250 300 350 400 450
Iterations

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

K
L

PPO-NoClip
PPO
TRPO trust region

(b) Hopper-v2 (heldout)

Figure 6: Per step mean reward, maximum ratio (c.f. (2)), mean KL, and mean KL for PPO and
PPO-NOCLIP agents trained to solve the MuJoCo Swimmer-v2 (top) and Walker2d-v2 (bottom)
task. The quantities are measured over the state-action pairs collected in heldout steps: i.e., these
state-action pairs were sampled independently of those used to construct the steps. Each line rep-
resents a training curve from a separate agent. PPO-NOCLIP represents the PPO algorithm, with
code-level optimizations, but without any clipping. From the plots we can see that the agents main-
tain a bounded trust region (indeed, more bounded than the trust region of the best TRPO agent,
shown as the black line on the right), and achieve high reward, despite not using the PPO clipping
step at all.

14

