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ABSTRACT

A new variational autoencoder (VAE) model is proposed that learns a succinct
common representation of two correlated data variables for conditional and joint
generation tasks. The proposed Wyner VAE model is based on two information the-
oretic problems—distributed simulation and channel synthesis—in which Wyner’s
common information arises as the fundamental limit of the succinctness of the
common representation. The Wyner VAE decomposes a pair of correlated data
variables into their common representation (e.g., a shared concept) and local rep-
resentations that capture the remaining randomness (e.g., texture and style) in
respective data variables by imposing the mutual information between the data
variables and the common representation as a regularization term. The utility of the
proposed approach is demonstrated through experiments for joint and conditional
generation with and without style control using synthetic data and real images.
Experimental results show that learning a succinct common representation achieves
better generative performance and that the proposed model outperforms existing
VAE variants and the variational information bottleneck method.

1 INTRODUCTION

This paper aims to develop a new probabilistic framework for generation tasks (i.e., learning the
distribution of given data and sampling from the learned distributions) for two high-dimensional
random vectors. To motivate the main idea, consider the following cooperative game between Alice
and Bob. Suppose that given an image of a child’s photo, Alice sends its description Z to Bob who
draws a portrait of how the child will grow up based on it. The objective of this game is to draw a
nice portrait, and thus Alice needs to help Bob in the process by providing a good description of
the child’s photo — any redundant information in the description may confuse Bob in his guessing
process. What description does Alice need to generate and send from the child’s photo?

P. Cuff (2013) formulated this game of conditional generation as the channel synthesis problem in
network information theory depicted in Fig. 1. Given a joint distribution q(x,y) = q(x)q(y|x),
Alice and Bob want to generate Y according to q(y|x) based on a sample from q(x). In this problem,
Alice wishes to find the most succinct description Z of X (a child’s photo) such that Y (her adulthood
portrait) can be simulated by Bob according to the desired distribution using this description and
local randomness V (new features to draw a portrait of adults that are not contained in photos of
children). The minimum description rate for such conditional generation is characterized by Wyner’s
common information (Wyner, 1975; El Gamal and Kim, 2011) denoted by J(X;Y) and defined as
the optimal value of the optimization problem

minimize Iq(X,Y;Z)

subject to X− Z−Y

variables q(z|x,y),
(1)

where X− Z−Y denotes a Markov chain from X to Z to Y and Iq(X,Y;Z) denotes the mutual
information between (X,Y) and Z, where (X,Y,Z) ∼ q(x,y)q(z|x,y).
The same quantity J(X;Y) arises in the distributed simulation of correlated sources studied originally
by A. Wyner (1975) in which two distributed agents wish to simulate a target distribution q(x,y)
(i.e., joint generation of (X,Y)) based on the least possible amount of shared common randomness.
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(a) Channel synthesis (b) Single-letter characterization of (a)

(c) Distributed simulation (d) Single-letter characterization of (c)

Figure 1: Schematics for channel synthesis from X to Y (a,b), and distributed simulation of (X,Y)
(c,d). (a,c) and (b,d) correspond to the operational definition and the single-letter characterization of
each problem, respectively. The local randomness U and V make the decoders stochastic.

(See Fig. 1 (c,d).) In this sense, the joint distribution q(x,y) and the conditional distributions q(y|x),
q(x|y) have the same common information structure characterized by the optimization problem (1),
which involves learning the joint distribution in its nature. We call the joint encoder q(z|x,y) (or
equivalently, the corresponding random variable Z) as the common representation of (X,Y), and the
mutual information Iq(X,Y;Z) then can be viewed as a measure of the complexity of Z.

Based on these information theoretic observations, we apply the idea of learning succinct common
representation to design a new generative model for a pair of correlated variables: seeking a succinct
representation Z in learning the underlying distribution based on its sample may also help reduce the
burden on the decoder’s side and thereby achieve a better generative performance.

The rest of the paper gradually develops our framework as follows. We first define a probabilistic
model based on the motivating problems, which we aim to train and use for generation tasks
(Section 2.1), and then establish a general principle for learning the model based on the optimization
problem (1) (Section 2.2). We propose one instantiation of the principle with a standard variational
technique by introducing additional encoder distributions (Section 2.3). The proposed model with its
training method can be viewed as a variant of variational autoencoders (VAEs) (Kingma and Welling,
2014; Rezende et al., 2014), and is thus called Wyner VAE. (See Appendix A for a brief introduction
on VAEs.) The new encoder components introduced in Wyner VAE allow us to decompose a data
vector into the common representation and the local representation, which can be used for sampling
with style manipulation (Section 2.4). We carefully compare our model and show its advantages
over the existing VAE variants (Vedantam et al., 2018; Suzuki et al., 2016; Sohn et al., 2015; Wang
et al., 2016) and the information bottleneck (IB) principle (Tishby et al., 1999) (Section 3), which
is a well-known information theoretic principle in representation learning. In the experiments, we
empirically show the utility of our model in various sampling tasks and its superiority over existing
models and that learning a succinct common representation achieves better generative performance
in generation tasks (Section 4).

2 WYNER VARIATIONAL AUTOENCODER

2.1 PROBABILISTIC MODEL

We first define a probabilistic model for joint and conditional sampling tasks based on the single-letter
characterizations of the motivating problems (Fig. 1 (b,d)). We assume that all distributions to be
introduced below belong to some standard parametric families such as Gaussians, and use (q, φ) (or
(p, θ)) to denote the parameters and the distribution of encoders (or decoders and priors).

In both channel synthesis and distributed simulation, Z ∼ pθ(z) signifies the common randomness
fed into the deterministic decoders xθ(z,u) and yθ(z,v), while U ∼ pθ(u) and V ∼ pθ(v)
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signify the local randomnesses for each decoder. We take the sources of randomness (or priors)
pθ(z), pθ(u), pθ(v) as standard parametric distributions such as Gaussian from which a sample can
be easily drawn. U (or V) is interpreted as a local description of X (or Y) given the common
description Z. We can also view U (or V) as an intrinsic randomness of the stochastic decoder
p̃θ(x|z) (or p̃θ(y|z)), which is the induced distribution by the decoder xθ(z,u) (or yθ(z,v)) and the
prior pθ(u) (or pθ(v)). To perform joint sampling, we need the priors pθ(z), pθ(u), pθ(v) and the
decoders xθ(z,u) and yθ(z,v) (Fig. 1 (d)). For conditional sampling of Y given X = x, we need
the marginal encoder qφ(z|x) to be defined in addition to the prior pθ(v) and the decoder yθ(z,v)
(Fig. 1 (b)). We focus on how to learn qφ(z|x) in what follows, since qφ(z|y) can be dealt with in the
same way by the symmetry of the Markov chain X− Z−Y.

After Wyner, we name the entirety of all the components (the marginal encoders qφ(z|x), qφ(z|y),
the priors pθ(z), pθ(u), pθ(v), and the decoders pθ(x|z,u), pθ(y|z,v)) that is essential for joint and
conditional sampling tasks as the Wyner common representation model or the Wyner model in short.

2.2 OBJECTIVE FUNCTION

We now propose an objective function for learning each component in the Wyner model based on
the optimization problem (1). In practice, the data distribution q(x,y) is replaced by the empirical
distribution qemp(x,y) defined by the given samples. To train the components for joint sampling
in the Wyner model, we solve the optimization problem (1) by incorporating a new consistency
constraint

q(x,y)qφ(z|x,y) ≡ pθ(z)p̃θ(x|z)p̃θ(y|z), (2)

with the priors pθ(z), pθ(u), pθ(v) and the decoders xθ(z,u),yθ(z,v) as new optimization variables.
The Markovity condition X− Z−Y can be removed under the new constraint (2). We then relax
the constraint (2) with an inequality constraint

Lxy→xy := D(pθ(z)p̃θ(x|z)p̃θ(y|z), q(x,y)qφ(z|x,y)) ≤ ε,

for some ε > 0, and convert the problem (1) into an unconstrained form as in Zhao et al. (2018):

minimize Lxy→xy + λIq

variables qφ(z|x,y), pθ(z), pθ(u), pθ(v),xθ(z,u),yθ(z,v)
(3)

Here we use a shorthand notation Iq := Iq(X,Y;Z), and use λ > 0 to denote the reciprocal of the
Lagrange multiplier. We can choose D(p, q) as any proper distance or divergence measure between
distributions such as f -divergences, Jensen–Shannon divergence, Wasserstein distance, or maximum
mean discrepancy (Zhao et al., 2018).

To find the marginal encoder qφ(z|x) that is consistent to q(y|x)qφ(z|x,y) for conditional gen-
eration, we aim to match a joint distribution induced by the Markov chain X → Z → Y, i.e.,
q(x)qφ(z|x)p̃θ(y|z), with the decoder distribution pθ(z)p̃θ(x|z)p̃θ(y|z) and the encoder distribu-
tions q(x,y)qφ(z|x,y) of the joint model. That is, we wish to find qφ(z|x) that minimizes

Lx→x := D(pθ(z)p̃θ(x|z), q(x)qφ(z|x)) (4)

and

Lx→y := D(q(x)qφ(z|x)p̃θ(y|z), q(x,y)qφ(z|x,y)). (5)

The objective functions Ly→y and Ly→x for qφ(z|y) can be defined in a symmetric manner. The
final objective function for training the Wyner model with succinct common representation learning
then becomes

L := Lxy→xy + λIq + αx→xLx→x + αx→yLx→y + αy→yLy→y + αy→xLy→x, (6)

where the weights α’s are nonnegative hyperparameters.

Yet, to minimize the objective function in practice, we need to choose which divergence/distance
metric D(p, q) to use, and also need to address computationally intractable terms—the induced
distributions p̃θ(x|z), p̃θ(y|z) and the mutual information term Iq—in (3), (4), and (5).
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2.3 VARIATIONAL RELAXATION

We propose an instantiation of the objective function with a specific choice of a divergence function
with a standard variational technique. We choose the metric D(p, q) as the reverse KL divergence
DKL(q‖p), which is a common choice in the variational inference literature (see, e.g., Blei et al.
(2017)). To remove the intractable induced distributions, we relax the objective function (3) by
introducing variational encoders qφ(u|z,x) and qφ(v|z,y):

Lxy→xy = DKL(q(x,y)qφ(z|x,y)‖pθ(z)p̃θ(x|z)p̃θ(y|z)) (7)
≤ DKL(q(x,y)qφ(z|x,y)qφ(u|z,x)qφ(v|z,y)‖pθ(z)p̃θ(x|z)p̃θ(y|z)p̃θ(u,v|x,y, z)) (8)
= DKL(q(x,y)qφ(z|x,y)qφ(u|z,x)qφ(v|z,y)‖pθ(z)pθ(u)pθ(v)pθ(x|z,u)pθ(y|z,v)) (9)

=: Lxy→xy, (10)

where (8) follows from the chain rule and nonnegativity of KL divergence (see, e.g.,
Cover and Thomas (2006)), p̃θ(u,v|x,y, z) denotes the induced conditional distribution by
pθ(u), pθ(v), pθ(x|z,u), pθ(y|z,v), and pθ(x|z,u) (or pθ(y|z,v)) denotes the distribution induced
by the decoder xθ(z,u) (or yθ(z,v)). Note that the intractable distributions p̃θ(x|z), p̃θ(y|z) no
longer appear in the upper bound (9).

For the mutual information term Iq = Iq(X,Y;Z) with (X,Y,Z) ∼ q(x,y)qφ(z|x,y), we use the
following standard upper bound (see, e.g., Zhao et al. (2018)):

Iq = Eq(x,y)[DKL(qφ(z|X,Y)‖q̃φ(z))] ≤ Eq(x,y)[DKL(qφ(z|X,Y)‖pθ(z))] =: Iq, (11)

where q̃φ(z) denotes the induced marginal distribution by q(x,y) and qφ(z|x,y). Note here that the
relaxation gap is DKL(q̃φ(z)‖pθ(z)), which is again upper bounded by the joint KL divergence (7).
Therefore, all relaxation steps in (8) and (11) become tight when the joint distributions induced by
data distribution, encoders, priors, and decoders are perfectly consistent with each other, i.e.,

q(x,y)qφ(z|x,y)qφ(u|z,x)qφ(v|z,y) ≡ pθ(z)pθ(u)pθ(v)pθ(x|z,u)pθ(y|z,v).

We note that these relaxation techniques are standard in the literature, the tightness of which deserves
a separate future study; for recent related work, refer to Cremer et al. (2018); Poole et al. (2019).

To sum up, the objective function for the joint model (3) is relaxed as

Lxy→xy + λIq. (12)

Note that the additional information regularization with λ > 0 is only on the common representation
Z, but not on U,V, which we call local representation. By increasing λ > 0 to a proper degree that
does not impedes fitting, we can “reroute” the information flow from (X,Y) through the common
representation qφ(z|x,y) to the local representations qφ(u|z,x), qφ(v|z,y).
Following similar steps in (7),(8),(9), the objective function in (4) can also be upper bounded as

Lx→x ≤Lx→x := DKL(q(x)qφ(z|x)qφ(u|z,x)‖pθ(z)pθ(u)pθ(x|z,u)). (13)

For (5), we choose Lx→y := DKL(q(x,y)qφ(z|x,y))‖q(x)qφ(z|x)p̃θ(y|z)), which can be viewed
as the expected conditional ELBO (Sohn et al., 2015). It can be also subsequently relaxed as

Lx→y ≤ Lx→y := DKL(q(x,y)qφ(z|x,y)qφ(v|z,y)‖q(x)qφ(z|x)pθ(v)pθ(y|z,v)). (14)

After all, the final relaxed objective function is given as follows:

L := Lxy→xy + λIq + αx→xLx→x + αy→yLy→y + αx→yLx→y + αy→xLy→x. (15)

See Figure 2 for an overview of each term in the objective function.

We call the overall framework which consists of all the components in the Wyner model and the
additional encoders qφ(z|x,y), qφ(u|z,x), qφ(v|z,y) together with its training objective (15) as
Wyner common representation VAE or Wyner VAE in short. After parameterizing each distribution
component in Wyner VAE as standard parametric distributions such as Gaussians, whose parameters
are again parameterized by deep neural networks, Wyner VAE can be trained efficiently by the stan-
dard reparameterization trick (Kingma and Welling, 2014) as in the standard VAE. (See Appendix B
for the Gaussian parameterization and the corresponding objective functions.)
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Figure 2: A summary of the training objective for the Wyner VAE (15).

In practice, we can either train the objective function (15) jointly with some positive α’s (joint
training), or train the joint model first letting α’s be 0 and then train the marginal encoder in a
retrospective manner by freezing the joint model (two-stage training) as in Vedantam et al. (2018).
The hyperparameter α’s may be chosen with cross-validation with validation sets. We elaborate the
training schemes used for each experiment in Appendix F.

We remark the role of the encoders qφ(z|x,y), qφ(u|z,x), qφ(v|z,y). The joint encoder qφ(z|x,y)
appears in the optimization problem (1) and plays as a reference distribution in learning the com-
ponents of the Wyner model. The variational encoders qφ(u|z,x) and qφ(v|z,y) are introduced
to remove the intractable induced distributions p̃θ(z|x) and p̃θ(z|y), satisfying the correct condi-
tional independence structure implied by the decoder model pθ(z)pθ(u)pθ(v)pθ(x|z,u)pθ(y|z,v),
that is, qφ(z,u,v|x,y) = qφ(z|x,y)qφ(u|z,x)qφ(v|z,y), or equivalently U |= (V,Y)|Z and
V |= (U,X)|Z. If we learn a succinct common representation qφ(z|x,y) (e.g., a shared concept)
from (X,Y), then qφ(u|z,x) would capture the remaining randomness U of X (e.g., texture and
style). We call this decomposition of the pair (X,Y) into the common representation Z and the local
representation U,V as common-local information decomposition of (X,Y). We refer to (Z,U,V)
as the joint representation of (X,Y), to distinguish it from the common representation Z. Provided
that Wyner VAE achieves a good information decomposition, the variational encoders then can be
used to explicitly in finding the local representations U and V from the data variables X and Y.

2.4 SAMPLING WITH STYLE CONTROL

As alluded to above, the variational encoders qφ(u|z,x), qφ(v|z,y) can be used in sampling tasks
with style control as a local representation (i.e., style) extractor. We illustrate how to perform
conditional sampling with style control (Fig. 3 (e)). Suppose that (X,Y) is a pair of correlated
images generated from the common concept but from different domains. Given an image y0, we can
extract the style information V0 from y0 by sampling (Z0,V0) from qφ(z|y)qφ(v|z,y) (Fig. 3 (d)).
We then generate Yj from an image xj similar to conditional sampling (Fig. 3 (c)), while replacing
the randomly drawn local representation V ∼ pθ(v) with the previously extracted style V0, thereby
the generated images Y0,j’s are of the same style as the reference image y0. In a similar manner,
we can also perform joint sampling with a fixed style given a style reference data pair (x0,y0), by
mixing a randomly drawn common representation Z from the prior pθ(z) with the extracted style
variables (u0,v0).

3 RELATED WORK

In this section, we compare the proposed Wyner VAE to the existing models, deferring a detailed
description of the encoder, decoder, prior components and objective functions of each model to
Appendix C. We provide a summary for capabilities of each model in Table 1.
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Applications (Wyner VAE)

(c) Conditional sampling (e) Conditional sampling 

with style control

(a) Joint sampling (b) Joint stochastic 

reconstruction
(d) Style extraction

Figure 3: Schematics for selected sampling tasks. Double arrows denote deterministic mapping.

Table 1: Summary of related work. (J: joint generation, C: conditional generation, S: style control.)

C J S

JVAE (Vedantam et al., 2018), JMVAE (Suzuki et al., 2016) O O X
CVAE (Sohn et al., 2015) O X O
VCCA-private (Wang et al., 2016) O O O
VIB (Alemi et al., 2017) O X X
Wyner VAE O O O

VAE models. Two existing joint VAE models — joint VAE (JVAE) (Vedantam et al., 2018) and joint
multimodal VAE (JMVAE) (Suzuki et al., 2016) — implement a similar idea of performing joint
and conditional generation tasks via a symmetric Markov chain X−W −Y, where W is the joint
representation of (X,Y), which corresponds to a collection of our latent variables (Z,U,V). In
other words, these models do not decompose the joint representation W into the common and local
representations, and thus a notion of succinct common representation is not defined.

The same decoder structure of Wyner VAE with the “shared” (Z) and the “private” (U,V) latent
variables has been also studied in the context of multi-view learning (Shon et al., 2006; Ek et al., 2008;
Salzmann et al., 2010; Damianou et al., 2012) mostly based on a linear analysis such as canonical cor-
relation analysis (CCA). More recently, variational CCA-private (VCCA-private) (Wang et al., 2016)
was proposed to learn the decoder model with variational encoders qφ(z|x), qφ(u|x), and qφ(v|y).
However, the conditional independence assumption qφ(z,u,v|x,y) = qφ(z|x)qφ(u|x)qφ(v|y) is
rather ad-hoc, which implies a limitation in its generative performance.

Conditional VAE (CVAE) (Sohn et al., 2015) directly models the conditional distribution q(y|x),
obtained by simply conditioning every component in the vanilla VAE for q(y) with the conditioning
variable X. If Y is an image and X is an attribute of the image, a latent representation V in
CVAE needs to capture the redundant information of Y, which is not contained in X, i.e., style
information of Y given X. Wyner VAE can be viewed as a combination of two CVAEs with Z as
a common conditioning variable, being capable of bidirectional sampling in its nature. Yet, if X
is high-dimensional, the conditional models like CVAE in general tend to overfit the input data of
X. To address this problem, a subsequent related work, bottleneck conditional density estimation
(BCDE) (Shu et al., 2017), proposed to learn joint and conditional VAE models simultaneously by
softly tying the parameters of the two models for regularization. We note that Wyner VAE naturally
addresses such problem by using a unified single probabilistic model for both joint and conditional
distribution learning, finding a succinct common representation Z for regularization.

Information bottleneck principle. The information bottleneck (IB) principle (or method) (Tishby
et al., 1999) is a widely known information theoretic approach in representation learning especially
for discriminative tasks, i.e., when the target variable Y is a function of X and/or even discrete.
Motivated by lossy compression, the IB principle proposes to find a compressed representation Z
from the input variable X (i.e., qφ(z|x)) while maximizing the relevance of Z in predicting the target
variable Y as the minimizer of the optimization problem minimize qφ(z|x) βIq(X;Z)− Iq(Y;Z),
where (X,Y,Z) ∼ q(x,y)qφ(z|x).
The foremost difference between the IB principle and our approach is in the underlying Markov
chains: our symmetric Markovity assumption X − Z − Y is more natural than Z − X − Y of
IB, when guessing Y based on Z as a representation of X. Further, our framework aims to find a
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Table 2: Wyner model vs. the IB principle (Tishby et al., 1999).

Wyner model IB principle

Motivating problem Channel synthesis, distributed simulation Lossy compression
Probabilistic model X− Z−Y Z−X−Y

Direction of inference Bidirectional Unidirectional
Measure of succinctness I(X,Y;Z) I(X;Z)
Measure of fit/relevance D(p, q) I(Y;Z)

Optimal quantity J(X;Y) N/A

certain common information structure characterized by Wyner’s common information with proper
analogies to generation tasks of our interest, whereas the compressed-from-X yet relevant-to-Y
representation Z in the IB principle lacks its operational meaning, relying on a rather weak analogy
to lossy compression. We summarize other differences in various aspects in Table 2. In particular, we
compare Wyner VAE with variational IB (VIB) (Alemi et al., 2017) in the experiments, which is an
instantiation of the IB principle based on a variational technique that can be implemented with neural
networks. As empirically shown below, VIB is not suitable for conditional generative tasks if the
target variable Y is high-dimensional.

4 EXPERIMENTS

We empirically demonstrate that Wyner VAE outperforms JVAE, CVAE, VCCA-private, and VIB,
for joint/conditional generation tasks and style manipulation on various datasets. We defer the
implementation details and training schemes used for each experiment to Appendix F.

Synthetic data. We first performed an experiment with a mixture of Gaussians (MoG) dataset
as a toy example. We considered a pair of 10-dim. MoG random vectors (X,Y) only correlated
through a label Z ∼ Unif([1, 2, 3, 4, 5]) (common information) and 5-dim. Gaussian random vectors
U,V ∼ N (0, I5) (local randomness in each variable). We used the Gaussian latent variables
(Z,U,V) of dimensions (10, 10, 10), trained each model for 500 epochs (separate 50 epochs for
each marginal encoder for JVAE and Wyner VAE) with a training data of size 50k, and summarized
the numerical results in Fig. 4 and Table 3, which were evaluated with a test data of size 10k.

Figure 4: Numerical evaluations for MoG experiment. For each point of the plots, we trained 10
different models and plotted average values with the shaded region that shows the standard deviation.
(Two largest and smallest outliers were dropped for each point.)

Fig. 4 (a) shows that λ can control the common mutual information Iq(X,Y;Z) in Wyner VAE
— in particular, λ ∈ {0.05, 0.1} kept the mutual information at a constant level. In Fig. 4 (b,c),
Wyner VAE with λ = 0 performed well for fitting joint distributions, but did not excel in conditional
log-likelihoods. We observe that the performance of Wyner VAE on the test data gets improved
throughout training by increasing λ: λ = 0.05 achieved a good conditional performance without
too much sacrifice in the joint performance, while a larger value of λ(= 0.1) interfered fitting to the
distribution, failing to capture the essential common information structure. Overall, Wyner VAE with
λ control outperformed the other models. CVAE tends to overfit quickly as noted earlier. JVAE and
VIB performed extremely worse in test conditional log-likelihoods compared to others as in Table 3.
JVAE failed to capture the common information structure as the training epochs increased, while VIB
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Table 3: Best negative log-likelihood (nll) values during 500 epochs of training for MoG dataset.

Joint nll Conditional nll

Wyner VAE (λ = 0) 32.54 ± 0.11 16.16 ± 0.14
Wyner VAE (λ = 0.05) 32.64 ± 0.18 16.03 ± 0.07
JVAE (Vedantam et al., 2018) 32.82 ± 0.14 32.80 ± 0.76
VCCA-private (Wang et al., 2016) 32.77 ± 0.04 15.96 ± 0.04
CVAE (Sohn et al., 2015) - 16.11 ± 0.06
VIB (Alemi et al., 2017) (β = 0.1) - 503.91 ± 2.79
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Figure 5: Numerical evaluations of Wyner VAE for conditional generation of MNIST–MNIST add-1
dataset. The plots were generated similarly as Fig. 4. See also Table 5 in the Appendix.

was only able to capture the average behaviors — we demonstrate how these models failed in this
toy dataset in Appendix E.1. Although VCCA-private achieved the best conditional likelihood with
a comparable joint likelihood performance, this model fails to learn more complex distributions as
illustrated in Fig. 6 and Appendix E.2, E.3.

MNIST and SVHN datasets. We performed experiments with image datasets MNIST (Le-
Cun, 1998) and SVHN (Netzer et al., 2011), by randomly pairing digit images only through
their labels. In particular, we constructed two dataset, MNIST–MNIST add-1 dataset, where
label(Yi) = label(Xi) + 1 (mod 10), and MNIST–SVHN dataset, where label(Yi) = label(Xi).

For MNIST–MNIST add-1 dataset, we trained Wyner VAE with different choices of λ ∈
{0.0, 0.1, . . . , 0.5} to show the effect of λ on the generative performance of Wyner VAE. Fig. 5 (a)
corroborates our main claim that λ > 0 helps learning succinct representation in terms of small
Iq(X,Y;Z) and there exists a sweet spot (λ = 0.1) that strikes the balance between the fitting and
the succinctness.

We also evaluated the label accuracy using the pre-trained Le-Net5 (LeCun et al., 1998) classification
network of accuracy 99.1%, and the per-pixel variance of samples from conditional generation. Note
that both high accuracy and high variance are desired for good generative models. Fig. 5 (b) shows
that by rerouting the information flow through Z to U,V, λ > 0 helps U,V capture the style of
images with a small sacrifice in label accuracy.

We present image samples to visualize the effect of λ in Wyner VAE and the superiority of Wyner VAE
over the existing models. We performed four sampling tasks—conditional generation, conditional
generation with style control, joint stochastic generation, and joint sampling with style control; see
Fig. 3—for both MNIST–MNIST add-1 and MNIST–SVHN datasets, but here we present only a few
samples for illustration. We refer the interested reader to Appendix E.2, E.3 for a full comparison.
We defer all the samples from VIB to the appendix, as it only generated same “average” images.

Fig. 6 presents samples of MNIST–MNIST pairs by conditional generation with and without style
control. Fig. 6 (a1-c1) and Fig. 6 (a2-c2) demonstrated how the variations in the generated images
and the style information captured in V are affected by varying λ, respectively. (We illustrate how we
performed conditional generation with style control for CVAE and VCCA-private in Appendix C.)
λ = 0.1 showed the best conditional generation results, consistent with Fig. 5 (a). JVAE generated
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(a1) Wyner VAE 
(𝜆 = 0)

(b1) Wyner VAE 
(𝜆 = 0.1)

(c1) Wyner VAE 
(𝜆 = 0.2)

(d1) JVAE (e1) CVAE (f1) VCCA-privateInput

(a2) Wyner VAE 
(𝜆 = 0)

(b2) Wyner VAE 
(𝜆 = 0.1)

(c2) Wyner VAE 
(𝜆 = 0.2)

(e2) CVAE (f2) VCCA-
private

Style ref.

N/A

Input
(label ref.)

(d2) JVAE

Figure 6: Samples from Wyner VAE and the other models for MNIST–MNIST add-1 dataset. (a1-f1)
Conditional sampling. (a2-f2) Conditional sampling with style control. For both tasks, the leftmost
column denotes the conditioning input to the models.

(c) Wyner VAE (𝜆 = 0)

(f) Wyner VAE (𝜆 = 0.1)

label ref.

style ref. (e) Wyner VAE (𝜆 = 0)

(d) Wyner VAE (𝜆 = 0.1)

(a) Wyner VAE 
(𝜆 = 0)

(b) Wyner VAE 
(𝜆 = 0.1)

Input
(label ref.)

Style ref.

Figure 7: Samples from Wyner VAE for MNIST–SVHN dataset. (a,b) Conditional generation with
style control. (c,d) Joint stochastic reconstruction. (e,f) Joint generation with style control. λ = 0.1
helps local latent variables capture style information, and the generated samples exhibit the effect
compared to λ = 0.

images without much variation. VCCA-private erred frequently in guessing the labels, which implies
that the shared representation Z in VCCA-private does not capture the “common information”.

Fig. 7 presents samples of MNIST–SVHN pair from conditional sampling with style control
(Fig. 7 (a,b)) and two variations of joint sampling tasks (Fig. 7 (c-f)). Fig. 7 (c,d) show joint
stochastic reconstruction: Z is inferred from the label reference data, and samples are generated
jointly by drawing local randomness (U,V) ∼ pθ(u)pθ(v); see Fig. 3 (b). Fig. 7 (e,f) show joint
sampling with style control: similarly to conditional sampling with style control, we generated joint
samples by drawing common randomness Z ∼ pθ(z) with a specified local information from the
style reference. In all cases, we observe that λ = 0.1 achieves better style manipulation over λ = 0,
indicating that λ > 0 helps separating style information from common information.

MNIST quadrant prediction dataset. We performed a quadrant prediction task (Sohn et al., 2015)
with a static, binary MNIST dataset (Larochelle and Murray, 2011), using the Bernoulli observation
model for decoders. Specifically, we split each digit image into two parts into left (X; conditioning)
and right (Y; target). In this case, the most succinct common representation Z is a nontrivial object
in contrast to a label (or its bijection) in the previous experiments. Table 4 summarizes negative
log-likelihoods for Wyner VAE, JVAE, and CVAE on the test dataset, and it shows that Wyner VAE
achieves the best conditional performance when λ = 0.15 among the models.

CelebA dataset. We performed an experiment with CelebA dataset (Liu et al., 2015), which is
a degenerate case in the sense that X is a function of Y. While any bijection of Y is common
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Table 4: Best nll values during 1000 epochs of training for MNIST left-right prediction task. The
conditional nll value for CVAE is taken from Sohn et al. (2015).

Joint nll Conditional nll

Wyner VAE (λ = 0) 87.74 ± 0.05 43.87 ± 0.03
Wyner VAE (λ = 0.15) 89.66 ± 0.03 43.85 ± 0.03
JVAE (Vedantam et al., 2018) 91.05 ± 0.03 45.22 ± 0.03
CVAE (Sohn et al., 2015) - 44.73

representation Z attaining J(X;Y) in this case, we show some merits of using Wyner VAE over
CVAE in terms of better common representation learning in Appendix E.4.

5 CONCLUDING REMARKS

Cuff’s channel synthesis and Wyner’s distributed simulation are another manifestation of Occam’s
razor by finding the simplest probabilistic structure that connects one random object to another. The
proposed Wyner VAE finds this succinct structure in a disciplined yet efficient manner, and provides
a theoretically sound alternative to the information bottleneck principle. The experimental results
demonstrated the potential of our approach as a new way of learning joint and conditional generation
tasks with optimal representation learning that can be further developed and refined for more complex
dataset such as auditory, text, or a pair of those.

There are many promising future directions. First, a different distance/divergence D(p, q) such as
symmetric KL divergence (Pu et al., 2017) in our general recipe may achieve a better generative
performance. Second, while the current framework can incorporate any unpaired data in the marginal
encoder training step, a new idea for improving the Wyner model’s performance with unpaired data
will make the developed framework applicable in a much richer context. It would be also interesting
to investigate an operational meaning of the mutual information I(X,Y;Z) in learning distributions.
For example, can generative performance or generalization error in learning distributions be related
with I(X,Y;Z) as in Xu and Raginsky (2017)? Provided with a proper theoretical justification, we
believe that our framework can be a new information theoretic principle in representation learning as
the information bottleneck principle (Tishby et al., 1999).
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A A QUICK OVERVIEW ON VARIATIONAL AUTOENCODERS

Variational autoencoder (VAE) (Kingma and Welling, 2014; Rezende et al., 2014) is a class of
deep generative models that aim to simulate the unknown distribution q(x) underlying the data
x1, . . . ,xN to generate new samples from this distribution efficiently. Let qemp(x) be the empirical
distribution defined by the sample. Assume a generative latent variable model pθ(z)pθ(x|z) to model
the underlying distribution q(x). One of the standard approach to learn each component in the model,
the prior pθ(z) and the decoder pθ(x|z), is the maximum likelihood approach that aims to solve

maximize
θ

N∑
i=1

log p̃θ(xi), (16)

or equivalently,

minimize
θ

DKL(qemp(x)‖p̃θ(x)), (17)

where p̃θ(x) is the induced distribution characterized by pθ(z)pθ(x|z), i.e., p̃θ(x) :=∫
pθ(z)pθ(x|z) dz. However, it is often computationally hard to solve the optimization problem

directly due to the induced distribution p̃θ(x) that involves an integration over a high-dimensional
space.

In variational Bayesian learning approach (see, e.g., (Blei et al., 2017)), an approximate posterior
qφ(z|x) (also called as an encoder) is introduced to relax the objective (16). Here we present a short
derivation of the well-known VAE objective function. Note that the objective in (16) can be upper
bounded as

DKL(qemp(x)‖p̃θ(x)) ≤ DKL(qemp(x)‖p̃θ(x)) + Eqemp(x)[DKL(qφ(z|X)‖p̃θ(z|X))] (18)

= DKL(qemp(x)qφ(x|z)‖p̃θ(x)p̃θ(z|x)) (19)
= DKL(qemp(x)qφ(x|z)‖pθ(z)pθ(x|z)), (20)

where p̃θ(z|x) is the induced posterior characterized by pθ(z)pθ(x|z). (18) follows from the non-
negativity of the KL divergence, and (19) follows from the chain rule of the KL divergence (see, e.g,
Cover and Thomas (2006)). Note that the final relaxed form (20) does not contain the intractable
term p̃θ(x). The variational relaxation is tight if and only if DKL(qφ(z|x)‖pθ(z|x)) = 0 for all x.

The upper bound (20) is the objective function for the standard VAE model (Kingma and Welling,
2014; Rezende et al., 2014). That is, the standard VAE model aims to solve the following optimization
problem:

minimize
θ,φ

DKL(qemp(x)qφ(z|x)‖pθ(z)pθ(x|z)). (21)

To express the objective function in a more standard form in the literature, we add a constant
h(qemp(x)), the differential entropy of qemp(x), and then derive

DKL(qemp(x)qφ(z|x)‖pθ(z)pθ(x|z)) + h(qemp(x)) (22)

=Eqemp(x)

[
DKL(qφ(z|X)‖pθ(z)) +

∫
qφ(z|X) log

1

pθ(X|z)
dz

]
=: Eqemp(x) [Lθ,φ(X)] . (23)

The loss function Lθ,φ(x) in (23) with negation is called the evidence lower bound (ELBO) in the
literature, since −Lθ,φ(x) lower bounds the evidence log pθ(x) for each x. The KL divergence term
and the expected log loss term are called as the regularization term and the reconstruction term,
respectively.

Assume that the observed variable X is continuous for simplicity. The most standard parameterization
of the components in the VAE model is the diagonal Gaussian parameterization

pθ(z) = N (z|0,diag(σ2
0,θ)), (24)

pθ(x|z) = N (x|xθ(z),diag(σ2
θ(z))), (25)

qφ(z|x) = N (z|zφ(x),diag(σ2
φ(x))), (26)

where each function may be parameterized by a neural network. Here, σ2 denotes a vector of a proper
dimension and diag(σ2) denotes a diagonal matrix with diagonal entries σ2. Often, the covariance
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of the prior is taken to be isotropic and constant such as σ2
0,θ = 1, but σ2

0,θ can also be set as an
independent trainable parameter as in this work. Note that the diagonal Gaussian parameterization
pθ(x|z) is a formal modeling assumption to have a tractable density, which is required to evaluate
the log loss log 1/pθ(x|z) in the reconstruction loss. This formal Gaussian noise also plays a role
in estimating likelihoods. However, after training, the decoder variance σ2

θ(z) is dropped and the
resulting decoder is used as deterministic: z 7→ xθ(z).

With this parameterization, the loss function Lθ,φ(x) in (23) can be estimate efficiently for each x
via a Monte Carlo approximation by sampling z ∼ qφ(z|x). The overall objective function then
can be minimized with a gradient based optimization algorithm like Adam (Kingma and Ba, 2014)
based on the reparameterization trick (Kingma and Welling, 2014; Rezende and Mohamed, 2015)
and backpropagation.

B STANDARD IMPLEMENTATION OF WYNER VAE

B.1 GAUSSIAN PARAMETERIZATION

As elaborated in Appendix A on VAEs, we use a standard Gaussian parameterization for Wyner VAE
in our experiments. Concretely, we let

pθ(z) = N (z|0,diag(σ2
0,θ)), (27)

pθ(u) = N (u|0,diag(σ2
1,θ)), (28)

pθ(v) = N (v|0,diag(σ2
2,θ)), (29)

pθ(x|z,u) = N (x|xθ(z,u),diag(σ2
θ(z,u))), (30)

pθ(y|z,v) = N (y|yθ(z,v),diag(σ2
θ(z,v))), (31)

qφ(z|x,y) = N (z|z012,φ(x,y),diag(σ2
012,φ(x,y))), (32)

qφ(u|z,x) = N (u|uφ(z,x),diag(σ2
1,φ(z,x)), (33)

qφ(v|z,y) = N (v|vφ(z,y),diag(σ2
2,φ(z,y)), (34)

qφ(z|x) = N (z|z01,φ(x),diag(σ2
01,φ(x)), (35)

qφ(z|y) = N (z|z02,φ(y),diag(σ2
01,φ(y)), (36)

where each function may be parameterized by a neural network.

B.2 OBJECTIVE FUNCTIONS

We can rewrite the objective function Lxy→xy in (12) in terms of the expectation of ELBO as in (23):

DKL(qφ(x,y, z,u,v)‖pθ(x,y, z,u,v)) + h(q(x,y)) = Eq(x,y)
[
Lrec
θ,φ(X,Y) + Lreg

θ,φ(X,Y)
]
,

where

Lrec
θ,φ(x,y) := Eqφ(z|x,y)

[∫
qφ(u|Z,x) log

1

pθ(x|Z,u)
du+

∫
qφ(v|Z,y) log

1

pθ(y|Z,v)
dv

]
,

Lreg
θ,φ(x,y) := DKL(qφ(z|x,y)qφ(u|z,x)qφ(v|z,y)‖pθ(z)pθ(u)pθ(v))

= DKL(qφ(z|x,y)‖pθ(z))

+ Eqφ(z|x,y)
[
DKL(qφ(u|Z,x))‖pθ(u)) +DKL(qφ(v|Z,y))‖pθ(v))

]
.

We remark that a β-VAE (Higgins et al., 2017) type regularization in our joint model corresponds
to imposing an additional weight β > 1 on Lreg

θ,φ(x,y) such that the objective function becomes
Eq(x,y)[Lrec

θ,φ(X,Y) + βLreg
θ,φ(X,Y)]. We note that

Iq(X,Y;Z,U,V) ≤ Iq(X,Y;Z,U,V) +DKL(q̃φ(z,u,v)‖pθ(z)pθ(u)pθ(v)) (37)
= Eq(x,y)[DKL(qφ(z|X,Y)qφ(u|z,X)qφ(v|z,Y)‖pθ(z)pθ(u)pθ(v))] (38)

= Eq(x,y)[Lreg
θ,φ(X,Y)]. (39)
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Therefore, applying β-VAE type regularization imposes an additional regularization on
Iq(X,Y;Z,U,V), which corresponds to the entire latent bottleneck (U,V,Z) for the information
flow from (X,Y).

B.3 ESTIMATION OF MUTUAL INFORMATION

With the typical Gaussian parameterization as presented above, we have an easy estimate for
Iq(X,Y;Z). After training, given a test dataset {xi,yi}Ni=1, the mutual information Iq(X,Y;Z)
can be estimated as

Iq(X,Y;Z) = hq(Z)− hq(Z|X,Y)

≈ h(pθ(z))−
∫
q(x,y)h(qφ(z|x,y)) dz

≈ h(pθ(z))−
1

N

N∑
i=1

h(qφ(z|xi,yi))

=
1

2

|Z|∑
j=1

logσ2
0,θ,j −

1

2N

N∑
i=1

|Z|∑
j=1

logσ2
012,φ,j(xi,yi). (40)

C A DEEPER LOOK ON RELATED WORK

For the standard VAE (Kingma and Welling, 2014; Rezende et al., 2014), we refer the interested
reader to Appendix A. In what follows, we revisit and decompose each VAE-type model into its
encoder/prior/decoder components, and express the objective function in the form of the reverse
KL divergence DKL(qφ‖pθ), where qφ is the joint distribution over the data variables and the latent
variables defined by the data distribution and the encoders, and pθ is defined by the priors and the
decoders.

JVAE/JMVAE JVAE (Vedantam et al., 2018) and JMVAE (Suzuki et al., 2016) consist of

• the joint encoder qφ(w|x,y), the marginal encoders qφ(w|x), qφ(w|y),
• the prior pθ(w),
• the decoders pθ(x|w), pθ(y|w).1

They share the same joint model objective

DKL(q(x,y)qφ(w|x,y)‖pθ(w)pθ(x|w)pθ(y|w)), (41)

but differ in training the marginal encoders. JMVAE trains the marginal encoder qφ(z|x) via
minimizing

Eq(x,y)[DKL(qφ(w|x,y)‖qφ(w|x))] (42)

together with the joint model objective (41) (by adding two objective functions with an additional
weight as a hyperparameter), while JVAE trains the marginal encoders separately from the joint
model by training the marginal VAE as we proposed, i.e.,

minimize
qφ(w|x)

DKL(q(x)qφ(w|x)‖pθ(w)pθ(x|w)). (43)

It is worthwhile to compare the regularization term Iq(X,Y;Z) in Wyner VAE with the idea of β-
VAE (Higgins et al., 2017), which empirically showed that an additional weight on the regularization
term finds a disentangled representation in a VAE model. If we apply a β-VAE type regularization in
our joint model, then it corresponds to an additional weight β > 1 on the mutual information on the
joint representation (Iq(X,Y;Z,U,V)), not only on the common representation (Iq(X,Y;Z)) as
in Wyner VAE. (See Appendix B.2.) In words, Wyner VAE provides a finer control on the information
flow from (X,Y), by manipulating the common path qφ(z|x,y), while β-VAE blocks the entire
latent bottleneck qφ(z|x,y)qφ(u|z,x)qφ(v|z,y).

1We remark that pθ(x|w) and pθ(y|w) are fully characterized by the deterministic decoders xθ(w) and
yθ(w).
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CVAE CVAE (Sohn et al., 2015) for modeling q(y|x) consists of

• the encoder qφ(v|y,x),
• the prior pθ(v|x),
• the decoder pθ(y|v,x).

The objective function is then given as

Eq(x)[DKL(q(y|x)qφ(v|y,x)‖pθ(v|x)pθ(y|v,x))]. (44)

Note that without the conditioning variable x, this model boils down to the vanilla VAE for modeling
q(y). If we assume a Markov chain X − V − Y, the decoder pθ(y|v,x) can be replaced with
pθ(y|v).
We performed conditional generation with style control with CVAE as follows: Given a style reference
y0 and its corresponding x0, we sample and keep v0 via the encoder qφ(v|y,x). Given a new x1,
we take y0,1 = yθ(v0,x1) as a new sample. Note that this scheme assumes that v0 ∼ qφ(v|y0,x0)
captures only the remaining information in y0 excluding the information on x0.

SSVAE/ADGM Semi-supervised VAE (SSVAE) (Kingma et al., 2014) proposed a similar con-
ditional VAE model for modeling q(y|x) especially when the conditioning variable x is discrete.
SSVAE consists of

• the encoders qφ(v|y, x), qφ(x|y) (classifier),
• the priors pθ(v), pθ(x),
• the decoder pθ(y|v, x).

Note that it has an additional encoder qφ(x|y) (classifier) on top of qφ(v|y,x) from CVAE, and as-
sume the priors pθ(v) and pθ(x), which replace the conditional prior pθ(v|x) and the data distribution
q(x) in CVAE, respectively. With a paired (i.e., labelled) data, SSVAE minimizes

DKL(q(x,y)qφ(v|y, x)‖pθ(x)pθ(v)pθ(y|v, x)). (45)

With an unlabeled data, SSVAE minimizes

DKL(q(y)qφ(x|y)qφ(v|y, x)‖pθ(x)pθ(v)pθ(y|v, x)). (46)

Note that the label information q(x) in (45) is replaced with qφ(x|y) in (46) as the label information
is missing in the unlabeled data.

Formally, in this degenerate case, identifying the conditioning variable X as the common latent
variable Z in Wyner VAE recovers SSVAE. Yet, SSVAE was proposed in the context of (semi-
supervised) classification problem which aims to learn a classifier qφ(x|y), and for a high-dimensional
X, it is not feasible to directly model the conditional distribution qφ(x|y).
Auxiliary deep generative model (ADGM) (Maaløe et al., 2016) adds an auxiliary latent variable Z to
SSVAE to improve the performance. ADGM consists of

• the encoders qφ(z|y), qφ(v|z,y, x), qφ(x|z,y) (classifier),
• the priors pθ(v), pθ(x),
• the decoders pθ(y|v, x), pθ(z|v, x,y).

Note the new components qφ(z|y) and pθ(z|v, x,y) on top of the SSVAE, and the original en-
coder/decoder components have additional condition on the auxiliary variable Z. However, as ADGM
does not impose any additional conditional independence with Z, it is not directly comparable to
Wyner VAE.

VCCA-private As noted earlier, VCCA-private (Wang et al., 2016) consists of

• the encoders qφ(z|x), (and/or qφ(z|y)), qφ(u|x), qφ(v|y),
• the priors pθ(z), pθ(u), pθ(v),
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• the decoders pθ(x|z,u), pθ(y|z,v).

Note that the prior and the decoder components are same with Wyner VAE. Hence, the objective for
VCCA-private for the marginal encoder qφ(z|x) can be expressed as

DKL(qφ(z|x)qφ(u|x)qφ(v|y)‖pθ(u)pθ(v)pθ(z)pθ(x|z,u)pθ(y|z,v)). (47)

To model the other direction of the marginal encoder qφ(y|z), they minimize

DKL(qφ(z|y)qφ(u|x)qφ(v|y)‖pθ(u)pθ(v)pθ(z)pθ(x|z,u)pθ(y|z,v)). (48)

To learn qφ(z|x), qφ(z|y) simultaneously, BiVCCA-private minimizes a convex combination of the
two KL divergence terms.

We performed conditional generation with style control with VCCA-private as follows: Given a style
reference y0, we sample and keep v0 via the encoder qφ(v|y). Given a new attribute x1, we take
y0,1 = yθ(v0,x1) as a new sample.

VIB VIB (Alemi et al., 2017) proposed a variational relaxation of the following minimization
problem posed by the information bottleneck principle (Tishby et al., 1999):

minimize
qφ(z|x)

βIq(X;Z)− Iq(Y;Z), (49)

where (X,Y,Z) ∼ q(x,y)qφ(z|x). VIB introduces two variational distributions pθ(z) and pθ(y|z)
that approximate q̃φ(z) and q̃φ(y|z). Then, based on standard variational bounds on the mutual
information terms (see, e.g., Zhao et al. (2018)), we obtain a variational upper bound on βIq(X;Z)−
Iq(Y;Z) as

βEq(x)[D(qφ(z|X)‖pθ(z))]− Eq(x,y)qφ(z|x)
[
log

1

pθ(Y|Z)

]
+ h(q(y)), (50)

which is the objective function for VIB. Note that the relaxation gap is given by

βD(q̃φ(z)‖pθ(z)) + Eq̃φ(z)[D(q̃φ(y|Z)‖pθ(y|Z))]. (51)

D LIKELIHOOD ESTIMATION

For each likelihood of our interest, we derive a naive Monte Carlo (MC) estimator and an MC
estimator with importance sampling (see, e.g., Rubinstein and Kroese (2016)). Here we only present
the estimators for Wyner VAE, but the estimators for other models can be derived in the same manner.

D.1 JOINT LIKELIHOOD

We wish to estimate the joint log-likelihood of the model with respect to given test data
{(x(i),y(i))}Ni=1, i.e.,

∑N
i=1 log pθ(x

(i),y(i)), where

pθ(x,y) =

∫
pθ(z)pθ(u)pθ(v)pθ(x|z,u)pθ(y|z,v) dzdudv. (52)

(1) Monte Carlo estimator: Let (z(s),u(s),v(s)) ∼ pθ(z)pθ(u)pθ(v) for s = 1, . . . , S.

p̂θ(x,y) =
1

S

S∑
s=1

pθ(x|z(s),u(s))pθ(y|z(s),v(s)). (53)

(2) Importance sampling: For each (x,y), let (z(s),u(s),v(s)) ∼ qφ(z|x,y)qφ(u|z,x)qφ(v|z,y)
for s = 1, . . . , S.

p̂θ(x,y) =
1

S

S∑
s=1

pθ(z
(s))pθ(u

(s))pθ(v
(s))pθ(x|z(s),u(s))pθ(y|z(s),v(s))

qφ(z(s)|x,y)qφ(u(s)|z(s),x)qφ(v(s)|z(s),y)
. (54)
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D.2 CONDITIONAL LIKELIHOOD

We wish to estimate the conditional log-likelihood of the conditional path of Wyner VAE from x to
y, i.e., qφ(z|x)pθ(v)pθ(y|z,v), with respect to given test data {(x(i),y(i))}Ni=1, i.e.,

N∑
i=1

log rθ,φ(y
(i) |x(i)), (55)

where

rθ,φ(y|x) =
∫
qφ(z|x)pθ(v)pθ(y|z,v) dv dz. (56)

(1) Monte Carlo estimation: Given x, let (z(s),v(s)) ∼ qφ(z|x)pθ(v) for s = 1, . . . , S.

r̂θ,φ(y|x) =
1

S

S∑
s=1

pθ(y|z(s),v(s)). (57)

(2) Importance sampling: For each (x,y), let (z(s),v(s)) ∼ qφ(z|x,y)qφ(v|z,y) for s = 1, . . . , S.

r̂θ,φ(y|x) =
1

S

S∑
s=1

qφ(z
(s)|x)pθ(v(s))pθ(y|z(s),v(s))

qφ(z(s)|x,y)qφ(v(s)|z(s),y)
. (58)

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 MIXTURE OF GAUSSIANS

Here we present the failure cases of JVAE and VIB in conditional generation tasks of the mixture of
Gaussians (MoG) dataset; recall Fig. 4. Both JVAE and VIB performed worse as the training epochs
increased, that is, they overfit to the training data (Fig. 8). We visually illustrate how they failed in
Fig. 9. Each axis of the scatter plots corresponds to the first coordinate of Xi and Yi, respectively.2
The X data points were from the test data, and the Y data points were generated from the conditional
models based on the test data (one generated sample for each data point). Fig. 9(a) shows the outlook
of the MoG dataset in our experiment. Fig. 9(b,c) show that JVAE captured all the components at the
beginning, but then collapsed to a few components afterwards. On the other hand, Fig. 9(d,e) show
that VIB only captured the average behaviors, although gradually adapting to the underlying data.

2All the scatter plots were generated based on the Gaussian kernel density estimation.
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Figure 8: Conditional nll values of JVAE and VIB for MoG dataset. For each point of the plots, we
trained 10 different models and plotted average values with the shaded region that shows the standard
deviation. (Two largest and smallest outliers were dropped for each point.)

(a) Training data (b) JVAE
after 50 epochs

(c) JVAE
after 500 epochs

(d) VIB (𝛽 = 0.1)
after 50 epochs

(e) VIB (𝛽 = 0.1)
after 500 epochs

Figure 9: Visualization of conditionally generated samples from JVAE and VIB for MoG dataset.

E.2 MNIST–MNIST ADD-1

Table 5: Accompanying table for Fig. 5: Summary of numerical evaluations of MNIST–MNIST
experiments. For each row, we trained 10 different models and dropped two outliers for each average
and standard deviation.

Joint nll Conditional nll Iq(X,Y;Z) Accuracy (%) Variance

Wyner VAE (λ = 0) 1198.95 ± 5.20 172.90 ± 45.18 41.35 ± 0.78 98.01 ± 0.15 0.0254 ± 0.0036
Wyner VAE (λ = 0.05) 1195.09 ± 10.35 58.86 ± 21.78 33.57 ± 0.84 97.46 ± 0.86 0.0353 ± 0.0027
Wyner VAE (λ = 0.10) 1212.66 ± 10.61 -0.51 ± 6.94 24.52 ± 0.89 91.33 ± 1.31 0.0454 ± 0.0009
Wyner VAE (λ = 0.15) 1220.64 ± 10.71 3.35 ± 6.04 19.73 ± 0.78 84.90 ± 2.68 0.0480 ± 0.0006
Wyner VAE (λ = 0.20) 1230.32 ± 9.30 16.37 ± 7.06 16.04 ± 0.50 79.94 ± 2.83 0.0494 ± 0.0006
JVAE (Vedantam et al., 2018) 1173.40 ± 13.98 514.26 ± 12.03 65.89 ± 0.51 98.84 ± 0.11 0.0032 ± 0.0005
VCCA-private (Wang et al., 2016) 1254.89 ± 7.17 90.64 ± 5.50 - 59.63 ± 1.25 0.0548 ± 0.0003
CVAE (Sohn et al., 2015) - 15.39 ± 6.41 - 97.69 ± 0.28 0.0404 ± 0.0004
VIB (Alemi et al., 2017) (β = 0.001) - 733.86 ± 13.88 - 96.54 ± 0.24 0.0000 ± 0.0000
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Input Wyner VAE 

(𝝀 = 𝟎.𝟎) 
Wyner VAE 
(𝝀 = 𝟎.𝟏) 

Wyner VAE 
(𝝀 = 𝟎.𝟐) 

CVAE VCCA-private JVAE VIB 

 

Figure 10: Conditional generation.
 

Style ref. 
     

  

      

N/A N/A 

Input 
(label ref.) 

Wyner VAE 
(𝝀 = 𝟎.𝟎) 

Wyner VAE 
(𝝀 = 𝟎.𝟏) 

Wyner VAE 
(𝝀 = 𝟎.𝟐) 

CVAE VCCA-private JVAE VIB 

Figure 11: Conditional generation with style control.

 Label ref. Joint stochastic reconstruction Style ref. Joint generation with style control 

Wyner VAE 
(𝝀 = 𝟎.𝟎) 

    

Wyner VAE 
(𝝀 = 𝟎.𝟏) 

    

Wyner VAE 
(𝝀 = 𝟎.𝟐) 

    

VCCA-private 

    

JVAE 

  

 

N/A 

 

Figure 12: Joint generation.
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E.3 MNIST–SVHN

        
Input Wyner VAE 

(𝝀 = 𝟎.𝟎) 
Wyner VAE 
(𝝀 = 𝟎.𝟎𝟓) 

Wyner VAE 
(𝝀 = 𝟎.𝟏) 

CVAE VCCA-private JVAE VIB 

 

Figure 13: Conditional generation.
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(𝝀 = 𝟎.𝟎𝟓) 

Wyner VAE 
(𝝀 = 𝟎.𝟏) 

CVAE VCCA-private JVAE VIB 

Figure 14: Conditional generation with style control.

 Label ref. Joint stochastic reconstruction Style ref. Joint generation with style control 

Wyner VAE 
(𝝀 = 𝟎.𝟎) 

    

Wyner VAE 
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N/A 

 

Figure 15: Joint generation.
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E.4 (FACE, ATTRIBUTE) PAIRS FROM CELEBA DATASET

CelebA dataset (Liu et al., 2015) consists of pairs of a face image and a 40-dim. binary vector that
contains attributes information of the face. We performed conditional generation of face images (Y)
given an attribute vector (X). Since an attribute X is a function of a given face image Y, we let the
dimension of the local variable U be 0 in this case. Fig. 16 presents samples of CelebA faces from
Wyner VAE, JVAE, and CVAE — Wyner VAE with λ = 0.1 generated a variety of faces with the
correct attributes, while JVAE generated images with little variations as previously observed and
CVAE generated diverse images but often with wrong attributes. See also Appendix E.4.2 for the
results with style control and a numerical evaluation of the performance of Wyner VAE on CelebA
dataset.

(a) Wyner VAE 
(𝜆 = 0)

(b) Wyner VAE
(𝜆 = 0.1)

(c) JVAE

(d) CVAE

Input attributes
Arched eyebrows
Attractive
Big lips
Brown hair
Bushy eyebrows
Heavy makeup
Mouth slightly open
No beard
Wavy hair
Wearing lipstick
Young

Sample image 
from dataset

Figure 16: Samples from Wyner VAE, JVAE, and CVAE for CelebA dataset. Multiple face image
samples were conditionally sampled given an attribute vector listed at the leftmost column.

Note that this is a special case where the target variable Y is a function of a conditioning variable
X, which is a degenerate case in the sense that any random variable Z that is bijective with X can
serve as an optimal common representation that achieves J(X;Y), and Wyner VAE and CVAE may
have comparable conditional generation performance. In practice, however, Wyner VAE outperforms
CVAE since Wyner VAE learns a good representation Z of X that is helpful in generating Y
conditionally, while CVAE directly uses the raw X for conditioning.

For a qualitative evidence, we present a few Attribute→Face samples in Fig. 17 from models trained
with more data as in the paper, from a truly unseen attribute (likely-female-features + bald)—Wyner
VAE can produce plausible images as it finds a good representation Z of an unseen attribute, while
CVAE fails.

Figure 17: Attribute→Face (CelebA) samples from Wyner VAE and CVAE. (Not cherry-picked.)

E.4.1 NUMERICAL EVALUATION

We present an additional numerical evaluation of Wyner VAE to corroborate the effect of λ >
0. With CelebA models, we evaluated both conditional paths, i.e., face to attribute classification
(face2attribute) and attribute to face generation (attribute2face). For the attribute classification, we
counted the number of corrected classified binary attributes out of 40. The image variance is evaluated
with per pixel, while all pixel values were normalized between 0 and 1. Table 6 summarizes the
results. We can observe that both the accuracy and the variance for conditional generation from a
given attribute were maximized the around λ ∼ 0.2. Note that JVAE performs worse in classification
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Table 6: Numerical evaluation of Wyner VAE and JVAE for CelebA dataset.

Face2attribute accuracy (%) Attribute2face variance

Wyner VAE (λ = 0) 89.26 0.0482
Wyner VAE (λ = 0.05) 89.21 0.0493
Wyner VAE (λ = 0.1) 89.29 0.0516
Wyner VAE (λ = 0.15) 89.32 0.0527
Wyner VAE (λ = 0.2) 89.28 0.0544
JVAE (Vedantam et al., 2018) 88.11 0.0073

accuracy with a comparably very small per-pixel variance implying much less variations in the
generated samples.

E.4.2 ADDITIONAL ATTRIBUTE2FACE GENERATION RESULTS

Here we present additional conditional generated samples (with and without style control) from
CelebA models. We used the sample images and attributes shown in Fig. 18 for these experiments.

For conditional generation in Fig. 19, samples were generated only based on the sample attributes.

For conditional generation with style control in Fig. 20, Wyner VAE and CVAE first extracted style
information from sample images in the leftmost column, and then generated new samples from the
original attribute added with a new binary attribute specified in the topmost row for each column.
Hence, the second column corresponds to the reconstruction of the style reference images from the
faces and the corresponding attributes. We remark that JVAE is not capable of style manipulation,
and the results from conditional generation with JVAE are given as a reference.

Sample image 
from dataset Attributes 

 

Arched_Eyebrows, Attractive, Big_Lips, Big_Nose, High_Cheekbones, No_Beard, Pale_Skin, Smiling, Wavy_Hair, 
Wearing_Lipstick, Wearing_Necklace 

Big_Lips, Blond_Hair, Blurry, Narrow_Eyes, No_Beard, Smiling, Wearing_Lipstick 

Bags_Under_Eyes, Eyeglasses, Male, Receding_Hairline, Sideburns, Wearing_Necktie, Young 
 

Arched_Eyebrows, Attractive, Big_Lips, Brown_Hair, Heavy_Makeup, Mouth_Slightly_Open, No_Beard, Smiling, Wavy_Hair, 
Wearing_Lipstick, Wearing_Necklace, Young 

5_o_Clock_Shadow, Attractive, Bags_Under_Eyes, Big_Nose, Male, Pointy_Nose, Wearing_Necktie 

 

Figure 18: Sample images and their attribute vectors from CelebA dataset.
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  Sample image 

from dataset 
Conditional generation of CelebA faces 

from the attribute vector of the sample image 

Wyner VAE 
(𝛌 = 𝟎.𝟎) 

  

Wyner VAE 
(𝛌 = 𝟎.𝟏) 

  

Wyner VAE 
(𝛌 = 𝟎.𝟐) 

  

CVAE 

  

JVAE 

  
 

Figure 19: Conditional generation (attribute2face).
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  Conditional generation of CelebA faces with style tranfer and attribute addition 
 

Style ref.  

Wyner VAE 
(𝝀 = 𝟎.𝟎) 

  

Wyner VAE 
(𝝀 = 𝟎.𝟏) 

  

Wyner VAE 
(𝝀 = 𝟎.𝟐) 

  

CVAE 

  

JVAE 

  
 

Added attribute  

Figure 20: Conditional generation with style control (attribute2face). Note that JVAE is not capable
of style manipulation, and the results were simply generated from attribute2face generation and are
given as a reference. Hence, the leftmost column is the sample image as in the conditional generation
experiment for JVAE.
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F EXPERIMENT DETAILS

We used the same parameterization, same latent dimensions, and the same network architecture
across the different models to be a fair comparison. For simplicity, we used the standard Gaussian
parameterization of each component for all the implemented models as in the standrad VAE. (See
Appendix A and Appendx B.) For the prior distributions pθ(z), pθ(u), pθ(v), we let the isotropic
variances σ2

0,θ,σ
2
1,θ,σ

2
2,θ be trainable. With this degree of freedom, the neural networks select

necessary dimensions in the latent spaces over Z,U,V by assigning small variances to unused
dimensions. For the MoG experiment, we used a constant 1/2 for the decoder variance, so that the
log-loss corresponds to the l2-squared loss. For the rest of the experiments, we allowed the diagonal
variances to be trainable: we allocated one trainable decoder variance per channel, independent from
the latent inputs. We found that this trick results in sharper images across the models.

We set the dimension of the latent variable W in JVAE as the sum of the dimensions of Z,U,V as
W corresponds the joint representation. Similarly, since the latent variable of CVAE corresponds to
the local randomness in Wyner VAE, we let the dimension of V in CVAE be equal to the dimension
of V in Wyner VAE. We used (10,10,10), (32,32,32), (128,128,128), and (128,0,128) as the latent
dimensions of (Z,U,V) for MoG, MNIST–MNIST add-1, MNIST-SVHN, and CelebA, respectively.

All log-likelihood values in the experiments were estimated by importance sampling; see Appendix D.
We used S = 100 importance samples for each data point. The mutual information Iq(X,Y;Z) was
estimated in a straightforward manner with the test dataset under the Gaussian parameterization; see
Appendix B.

Computing infrastructure We used NVIDIA TITAN X (Pascal) for our experiments.

Implementation We implemented all models using Keras3 with tensorflow backend.

Datasets For the mixture of Gaussians dataset, we generate the paired dataset (Xi,Yi) ∈ R10×R10

as follows. Let µ : {1, 2, 3, 4, 5} → R× R be a function defined as

µ(1) = (0, 0), µ(2) = (4, 4), µ(3) = (−4, 4), µ(4) = (−4,−4), µ(5) = (4,−4).

Then, we let

Xi = 2

[
µ1(Zi)15 +Ui

µ1(Zi)15 −Ui

]
, Yi = 2

[
µ2(Zi)15 +Vi

µ2(Zi)15 −Vi

]
, (59)

where Zi ∼ Unif({1, 2, 3, 4, 5}), Ui,Vi ∼ N (0, I5) are drawn independently. Here, 15 ∈ R5

denotes the all-1 vector.

For MNIST–MNIST add-1, we constructed 50k add-1 pairs from the MNIST training dataset. For
MNIST–SVHN domain adapation, we constructed 50k MNIST-SVHN pairs from MNIST and SVHN
training datasets. For testing, we similarly constructed 1k paired images from MNIST and SVHN
test datasets in each case. For CelebA experiments, we set aside 5k samples for test dataset, and used
the rest in training.

Network architectures Let c5s1-k-{activation} denote a 5 × 5 Convolution–
BatchNorm–activation with k filters and stride 1 × 1. Let d3s2-k-{activation} /
u3s2-k-{activation} denote 3× 3 Convolution / Deconvolution–BatchNorm–activation with
k filters and stride 2 × 2, respectively. Let res-k be a residual block that contains two 3 × 3
convolutional layers with k filters in each (i.e., c3s1-k-LReLU, c3s1-k) and a skip connection
from the input to the output. Let fc-k-{activation} be a fully-connected layer with k units
and a non-linear activation.

For MNIST–MNIST add-1, MNIST-SVHN, and CelebA, each Wyner VAE consisted of an outer
encoder/decoder pair and a core joint Wyner model. The outer encoder/decoder pair was introduced
to pre-process raw input data. We summarized the network architectures for the Wyner models in
Table 7, Table 8, and Table 10. Note that we padded zeros around the 28 × 28 MNIST images to
make them of size 32× 32.

3https://keras.io
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Table 7: Network architecture for MoG experiments.

Core Wyner VAE

qφ’s pθ(x|z,u), pθ(y|z,v)

fc-256-ReLU fc-256-ReLU
fc-256-ReLU fc-256-ReLU
fc-256-ReLU fc-256-ReLU
(fc-10,fc-10) fc-10

Table 8: Network architecture for MNIST–MNIST and MNIST–SVHN experiments.

x,y Core Wyner VAE

Outer encoder Outer decoder qφ’s pθ(x|z,u), pθ(y|z,v)

c5s1-32-LReLU u3s2-128-LReLU fc-512-LReLU fc-512-LReLU
d3s2-64-LReLU res-128 (fc-32, fc-32) / (fc-128, fc-128) fc-4096
d3s2-128-LReLU res-128

res-128 res-128
res-128 res-128
res-128 u3s2-64-LReLU
res-128 u3s2-32-LReLU
d3s2-256 c5s1-1-Sigmoid / c5s1-3-Sigmoid

Table 9: Network architecture for MNIST quadrant prediction experiments.

Core Wyner VAE

qφ’s pθ(x|z,u), pθ(y|z,v)

fc-50-LReLU fc-50-LReLU
fc-50-LReLU fc-50-LReLU

(fc-392,fc-392) fc-392

Table 10: Network architecture for CelebA experiments.

x (attribute) y (image) Core Wyner VAE

Outer encoder Outer decoder Outer encoder Outer decoder qφ’s pθ(x|z,u), pθ(y|z,v)

fc-512-LReLU fc-512-LReLU c5s1-32-LReLU u3s2-128-LReLU fc-1024-LReLU fc-1024-LReLU
fc-512 fc-40-Sigmoid d3s2-64-LReLU res-128 fc-1024-LReLU fc-1024-LReLU

d3s2-128-LReLU res-128 fc-1024-LReLU fc-1024-LReLU
res-128 res-128 (fc-256, fc-256) fc-512 / fc-16384
res-128 res-128
res-128 u3s2-64-LReLU
res-128 u3s2-32-LReLU
d3s2-256 c5s1-3-Sigmoid

Training We used the Adam optimizer (Kingma and Ba, 2014) with learning rate 10−4 in training
MoG, MNIST–MNIST, MNIST–SVHN and CelebaA models. We used learning rate 5 · 10−4 in
training MNIST quadrant prediction experiment.

For MoG dataset, we trained each model for 500 epochs with batch size 100 and trained each marginal
encoder for separate 50 epochs for JVAE and Wyner VAE. For MNIST–MNIST, MNIST–SVHN,
and CelebA experiment, each model was trained for 100 epochs with batch size 128. For MNIST
quadrant prediction experiment, each model was trained for 1000 epochs with batch size 20.

For the marginal encoder qφ(z|x) in JVAE or Wyner VAE, we trained the joint models by setting
αx→x = αx→y = αy→x = αy→y = 0 and trained only the marginal encoder for every 50 epochs
by minimizing Lx→x with freezing all the components in the joint model for 20 epochs. For MNIST–
MNIST, MNIST–SVHN, and CelebA experiments, we trained qφ(z|x) for 1 epoch after every 1 epoch
of the joint model training as suggested in Vedantam et al. (2018). Note that the outer encoder/decoder
pairs in Tables 8 and 10 were trained with the core joint Wyner model, and they were fixed in the
marginal encoder training. For MNIST quadrant prediction experiment, we trained the joint model
and the marginal encoders qφ(z|x) and qφ(z|y) by minimizing the final objective (15) by setting all
α’s to be 1 for simplicity without fine-tuning.

We empirically observed that for some experiments the two-stage training with αx→y = αy→x = 0
is still effective. Note that we applied the joint training scheme and used αx→y, αy→x > 0 only for
MNIST quadrant prediction experiment to achieve a better conditional log-likelihood performance.

27


	Introduction
	Wyner variational autoencoder
	Probabilistic model
	Objective function
	Variational relaxation
	Sampling with style control

	Related Work
	Experiments
	Concluding Remarks
	A Quick Overview on Variational Autoencoders
	Standard implementation of Wyner VAE
	Gaussian parameterization
	Objective functions
	Estimation of mutual information

	A Deeper Look on Related Work
	Likelihood Estimation
	Joint likelihood
	Conditional likelihood

	Additional Experimental Results
	Mixture of Gaussians
	MNIST–MNIST add-1
	MNIST–SVHN
	(Face, attribute) pairs from CelebA dataset
	Numerical evaluation
	Additional attribute2face generation results


	Experiment Details

