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ABSTRACT

Equivariance is a nice property to have as it produces much more parameter ef-
ficient neural architectures and preserves the structure of the input through the
feature mapping. Even though some combinations of transformations might never
appear (e.g. an upright face with a horizontal nose), current equivariant archi-
tectures consider the set of all possible transformations in a transformation group
when learning feature representations. Contrarily, the human visual system is able
to attend to the set of relevant transformations occurring in the environment and
utilizes this information to assist and improve object recognition. Based on this
observation, we modify conventional equivariant feature mappings such that they
are able to attend to the set of co-occurring transformations in data and general-
ize this notion to act on groups consisting of multiple symmetries. We show that
our proposed co-attentive equivariant neural networks consistently outperform
conventional rotation equivariant and rotation & reflection equivariant neural net-
works on rotated MNIST and CIFAR-10.

1 INTRODUCTION

Thorough experimentation in the fields of psychology and neuroscience has provided support to the
intuition that our visual perception and cognition systems are able to identify familiar objects despite
modifications in size, location, background, viewpoint and lighting (Bruce & Humphreys, 1994).
Interestingly, we are not just able to recognize such modified objects, but are able to characterize
which modifications have been applied to them as well. As an example, when we see a picture
of a cat, we are not just able to tell that there is a cat in it, but also its position, its size, facts
about the lighting conditions of the picture, and so forth. Such observations suggest that the human
visual system is equivariant to a large transformation group containing translation, rotation, scaling,
among others. In other words, the mental representation obtained by seeing a transformed version
of an object, is equivalent to that of seeing the original object and transforming it mentally next.

These fascinating abilities exhibited by biological visual systems have inspired a large field of re-
search towards the development of neural architectures able to replicate them. Among these, the
most popular and successful approach is the Convolutional Neural Network (CNN) (LeCun et al.,
1989), which incorporates equivariance to translation via convolution. Unfortunately, in counterpart
to the human visual system, CNNs do not exhibit equivariance to other transformations encountered
in visual data (e.g. rotations). Interestingly, however, if an ordinary CNN happens to learn rotated
copies of the same filter, the stack of feature maps becomes equivariant to rotations even though
individual feature maps are not (Cohen & Welling, 2016). Since ordinary CNNs must learn such
rotated copies independently, they effectively utilize an important number of network parameters
suboptimally to this end (see Fig. 3 in Krizhevsky et al. (2012)). Based on the idea that equivariance
in CNNs can be extended to larger transformation groups by stacking convolutional feature maps,
several approaches have emerged to extend equivariance to, e.g. planar rotations (Dieleman et al.,
2016; Marcos et al., 2017; Weiler et al., 2018; Li et al., 2018), spherical rotations (Cohen et al.,
2018; Worrall & Brostow, 2018), scaling (Marcos et al., 2018) and general transformation groups
(Cohen & Welling, 2016), such that transformed copies of a single entity are not required to be
learned independently.
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Figure 1: Our visual system infers object identities according to their size, location and orientation
in a scene. In this blurred picture, observers describe the scene as containing a car and a pedestrian
in the street. However, the pedestrian is in fact the same shape as the car, except for a 90◦ rotation.
The atypicality of this orientation for a car within the context defined by the street scene causes the
car to be recognized as a pedestrian. Extracted from Oliva & Torralba (2007).

Although incorporating equivariance to arbitrary transformation groups is conceptually and theo-
retically similar1, evidence from real-world experiences motivating their integration might strongly
differ. Several studies in neuroscience and psychology have shown that our visual system does not
react equally to all transformations we encounter in visual data. Take, for instance, translation and
rotation. Although we easily recognize objects independently of their position of appearance, a large
corpus of experimental research has shown that this is not always the case for in-plane rotations. Yin
(1969) showed that mono-oriented objects, i.e. complex objects such as faces which are customarily
seen in one orientation, are much more difficult to be accurately recognized when presented upside-
down. This behaviour has been reproduced, among others, for magazine covers (Dallett et al., 1968),
symbols (Henle, 1942) and even familiar faces (e.g. from classmates) (Brooks & Goldstein, 1963).
Intriguingly, Schwarzer (2000) found that this effect exacerbates with age (adults suffer from this
effect much more than children), but, adults are much faster and accurate in detecting mono-oriented
objects in usual orientations. Based on these studies, we draw the following conclusions:

• The human visual system does not perform (fully) equivariant feature transformations to visual
data. Consequently, it does not react equally to all possible input transformations encountered
in visual data, even if they belong to the same transformation group (e.g. in-plane rotations).

• The human visual system does not just encode familiarity to objects but seems to learn through
experience the poses in which these objects customarily appear in the environment to assist and
improve object recognition (Freire et al., 2000; Riesenhuber et al., 2004; Sinha et al., 2006).

Complementary studies (Tarr & Pinker, 1989; Oliva & Torralba, 2007) suggest that our visual system
encodes orientation atypicality relative to the context rather than on an absolute manner (Fig. 1).
Motivated by the aforementioned observations we state the co-occurrence envelope hypothesis:

The Co-occurrence Envelope Hypothesis. By allowing equivariant feature mappings to detect
transformations that co-occur in the data and focus learning on the set formed by these co-occurrent
transformations (i.e. the co-occurrence envelope of the data), one is able to induce learning of more
representative feature representations of the data, and, resultantly, enhance the descriptive power of
neural networks utilizing them. We refer to one such feature mapping as co-attentive equivariant.

Identifying the co-occurrence envelope. Consider a rotation equivariant network receiving two
copies of the same face (Fig. 2a). A conventional rotation equivariant network is required to per-
form inference and learning on the set of all possible orientations of the visual patterns constituting
a face regardless of the input orientation (Fig. 2b). However, by virtue of its rotation equivariance,
it is able to recognize rotated faces even if it is trained on upright faces only. A possible strategy to
simplify the task at hand could be to restrict the network to react exclusively to upright faces (Fig.
2c). In this case, the set of relevant visual pattern orientations becomes much smaller, at the expense
of disrupting equivariance to the rotation group. Resultantly, the network would risk becoming un-
able to detect faces in any other orientation than those it is trained on. A better strategy results
from restricting the set of relevant pattern orientations by defining them relative to one another (e.g.

1It is achieved by developing feature mappings that utilize the transformation group in the feature mapping
itself (e.g. translating a filter in the course of a feature transformation is used to obtain translation equivariance).
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(a) (b) (c) (d)

Figure 2: Effect of multiple attention strategies for the prioritization of relevant pattern orientations
in rotation equivariant networks for the task of face recognition. Given that all attention strategies
are learned exclusively from upright faces, we show the set of relevant directions for the recognition
of faces in two orientations (Fig. 2a) obtained by: no attention (Fig. 2b), attending to the pattern
orientations of appearance independently (Fig. 2c) and, attending to the pattern orientations of
appearance relative to one another (Fig. 2d). Built upon Figure 1 from Schwarzer (2000).

mouth orientation w.r.t. the eyes) as opposed to absolutely (e.g. upright mouth) (Fig. 2d). In such
a way, we are able to exploit information about orientation co-occurrences in the data without dis-
rupting equivariance. The set of co-ocurrent orientations in Fig. 2d corresponds to the co-ocurrence
envelope of the samples in Fig. 2a for the transformation group defined by rotations.

In this work, we introduce co-attentive equivariant feature mappings and apply them on existing
equivariant neural architectures. To this end, we leverage the concept of attention (Bahdanau et al.,
2014) and modify existing mathematical frameworks for equivariance, such that co-occurrent trans-
formations can be detected. It is critical not to disrupt equivariance in the attention procedure as to
preserve it across the entire network. To this end, we introduce cyclic equivariant self-attention, a
novel attention mechanism able to preserve equivariance to a large set of transformation groups.

Experiments and results. We explore the effects of co-attentive equivariant feature mappings for
single and multiple symmetry groups. Specifically, we replace conventional rotation equivariant
mappings in p4-CNNs (Cohen & Welling, 2016) and DRENs (Li et al., 2018) with co-attentive
ones. We show that co-attentive rotation equivariant neural networks consistently outperform their
conventional counterparts in fully (rotated MNIST) and partially (CIFAR-10) rotational settings.
Subsequently, we generalize cyclic equivariant self-attention to multiple similarity groups and apply
it on p4m-CNNs (Cohen & Welling, 2016) (equivariant to rotation and mirror reflections). Our
results are in line with those obtained for single symmetry groups and support our stated hypothesis.

Contributions.

• We propose the co-occurrence envelope hypothesis and demonstrate that conventional equiv-
ariant mappings are consistently outperformed by our proposed co-attentive equivariant ones.

• We generalize co-attentive equivariant mappings to multiple symmetry groups and provide, to
the best of our knowledge, the first attention mechanism acting generally on symmetry groups.

2 PRELIMINARIES

Equivariance. We say that a feature mapping f : X → Y is equivariant to a (transformation) group
G (orG-equivariant) if it commutes with actions of the groupG acting on its domain and codomain:

f(TXg (x)) = TYg (f(x)) ∀g ∈ G, x ∈ X (1)

where T (·)
g denotes a group action in the corresponding space. In other words, the ordering in

which we apply a group action Tg and the feature mapping f is inconsequential. There are multiple
reasons as of why equivariant feature representations are advantageous for learning systems. Since
group actions TXg produce predictable and interpretable transformations TYg in the feature space,
the hypothesis space of the model is reduced (Weiler et al., 2018) and the learning process simplified
(Worrall et al., 2017). Moreover, equivariance allows the construction of L-layered networks by
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stacking several equivariant feature mappings {f (1), ..., f (l), ..., f (L)} such that the input structure
as regarded by the group G is preserved (e.g. CNNs and input translations). As a result, any
intermediate network representation (f (l) ◦ ... ◦ f (1))(x) is able to take advantage of the structure of
x. Invariance is an special case of equivariance in which TYg = IdY , and thus all group actions in
the input space are mapped to the same feature representation.

Equivariant neural networks. In neural networks, the integration of equivariance to arbitrary
groups G has been achieved by developing feature mappings f that utilize the actions of the group
G in the feature mapping itself. Interestingly, equivariant feature mappings encode equivariance as
parameter sharing with respect to G, i.e. the same weights are reused for all g ∈ G. This makes the
inclusion of larger groups extremely appealing in the context of parameter efficient networks.

Conventionally, the l-th layer of a neural network receives a signal x(l)(u, λ) (where u ∈ Z2 is the
spatial position and λ ∈ Λl is the unstructured channel index, e.g. RGB channels in a color image),
and applies a feature mapping f (l) : Z2 × Λl → Z2 × Λl+1 to generate the feature representation
x(l+1)(u, λ). In CNNs, the feature mapping f (l) := f

(l)
T is defined by a convolution2 (?R2 ) between

the input signal x(l) and a learnable convolutional filter W (l)
λ′,λ, λ′ ∈ Λl, λ ∈ Λl+1:

x(l+1)(u, λ) = [x(l) ?R2 W
(l)
λ′,λ](u, λ) =

∑
λ′,u′

x(l)(u+ u′, λ′)W
(l)
λ′,λ(u′) (2)

By sliding W (l)
λ′,λ across u, CNNs are able to preserve the spatial structure of the input x through the

feature mapping f lT and successfully provide equivariance to the translation group T = (Z2,+).

The underlying idea for the extension of equivariance to larger groups in CNNs is conceptually
equivalent to the strategy utilized by LeCun et al. (1989) for translation equivariance. Consider, for
instance, the inclusion of equivariance to the set of rotations by θr degrees: Θ = {θr = r 2π

rmax
}rmax
r=1.

To this end, we modify the feature mapping f (l) := f
(l)
R to include the rotations defined by Θ. Let

x(l)(u, r, λ) and W (l)
λ′,λ(u, r) be the input and the convolutional filter of the l-th layer with an affixed

index r for rotation. The roto-translational convolution (?R2×Θ) f (l)
R is defined as:

x(l+1)(u, r, λ) = [x(l) ?R2×Θ W
(l)
λ′,λ](u, r, λ) =

∑
λ′,r′,u′

x(l)(u+ u′, r′, λ′)W
(l)
λ′,λ(θru

′, r′ − r) (3)

Since f (l)
R produces (dim(Θ) = rmax) times more output feature maps than f (l)

T , we need to learn
much smaller convolutional filters W (l)

λ′,λ to produce the same number of output feature channels.

Learning equivariant neural networks. Consider the change of variables g = u, G = Z2, g ∈ G
and g = (u, r), G = Z2×Θ, g ∈ G in Eq. 2 and Eq. 3, respectively. In general, neural networks are
learned via backpropagation (LeCun et al., 1989) by iteratively applying the chain rule of derivation
to update the network parameters. Intuitively, the networks outlined in Eq. 2 and Eq. 3 obtain
feedback from all g ∈ G and, resultantly, are inclined to learn feature representations that perform
optimally on the entire group G. However, as outlined in Fig. 2 and Section 1, several of those
feature combinations are not likely to appear simultaneously and thus the hypothesis space of the
model might be further reduced. This reasoning can explain the large success of (visual) attention
in deep learning (Xu et al., 2015; Woo et al., 2018; Zhang et al., 2018).

3 CO-ATTENTIVE EQUIVARIANT NEURAL NETWORKS

In this section we define co-attentive feature mappings and apply them in the context of equivariant
neural networks. To this end, we introduce cyclic equivariant self-attention and utilize it to construct
co-attentive rotation equivariant neural networks. Subsequently, we show that cyclic equivariant
self-attention is extendable to larger symmetry groups and make use of this fact to construct co-
attentive neural networks equivariant to rotations and mirror reflections.

2Formally it is as a correlation. However, we hold on to the standard deep learning terminology.
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3.1 CO-ATTENTIVE ROTATION EQUIVARIANT NEURAL NETWORKS

To allow rotation equivariant networks to utilize and learn co-attentive equivariant representations,
we introduce an attention operator A(l) on top of the roto-translational convolution f (l)

R with which
discernment along the rotation axis r of the generated feature responses x(l)(u, r, λ) is possible.
Formally, our co-attentive rotation equivariant feature mapping f (l)

R is defined as follows:

x(l+1) = f
(l)
R (x(l)) = A(l)(f

(l)
R (x(l))) = A(l)

(
[x(l) ?R2×Θ W

(l)
λ′,λ]) (4)

Theoretically, A(l) could be defined globally over f (l)
R (x(l)) (i.e. simultaneously along u, r, λ) as

depicted in Eq. 4. However, we apply attention locally to: (1) grant the algorithm enough flexibility
to attend locally to the co-occurrence envelope of feature representations and, (2) utilize attention
exclusively along the rotation axis r, such that our contributions are clearly separated from those
possibly emerging from spatial attention (Xu et al., 2015). To this end, we apply attention pixel-
wise on top of f (l)

R (x(l)) (Eq. 5). Furthermore, we assign a single attention instance A(l)
λ to each

learned feature representation and utilize it across the spatial dimension of the output feature maps:

x(l+1)(u, r, λ) = A(l)
λ ({x(l+1)(u, r̂, λ)}rmax

r̂=1)(r) (5)

Attention and self-attention. Consider a source vector x = (x1, ..., xn) and a target vector y =
(y1, ..., ym). In general, an attention operator A leverages information from the source vector x (or
multiple feature mappings thereof) to estimate an attention matrix A ∈ [0, 1]n×m, such that: (1) the
elementAi,j provides an importance assessment of the source element xi with reference to the target
element yj and (2) the sum of importance over all xi is equal to one:

∑
iAi,j = 1. Subsequently,

the matrix A is utilized to modulate the original source vector x as to attend to a subset of relevant
source positions with regard to yj : x̃j = (A:,j)

T �x (where � is the Hadamard product). A special
case of attention is that of self-attention (Cheng et al., 2016), in which the target and the source
vectors are equal (y := x). In other words, the attention mechanism estimates the influence of the
sequence x on the element xj for its weighting.

In general, the attention matrix A ∈ [0, 1]n×m is constructed via nonlinear space transformations
fÃ : Rn → Rn×m of the source vector x, on top of which the softmax function is applied:
A:,j = softmax(fÃ(x):,j). This ensures that the properties previously mentioned hold. Typically,
the mappings fÃ found in literature take feature transformation pairs of x as input (e.g. {s,H} in
RNNs (Luong et al., 2015), {Q,K} in self-attention networks (Vaswani et al., 2017)), and perform
(non)-linear mappings on top of it, ranging from multiple feed-forward layers (Bahdanau et al.,
2014) to several operations between the transformed pairs (Luong et al., 2015; Vaswani et al., 2017;
Mishra et al., 2017; Zhang et al., 2018). Due to the computational complexity of these approaches
and the fact that we do extensive pixel-wise usage of fÃ on every network layer, their direct integra-
tion in our framework is computationally prohibitive. To circumvent this problem, we modify the
usual self-attention formulation as to enhance its descriptive power in a much more compact setting.

Compact local self-attention. Initially, we relax the range of values of A from [0, 1]n×n to Rn×n.
This allows us to encode much richer relationships between element pairs (xi, xj) at the cost of
less interpretability. Subsequently, we define A = xT � Ã, where Ã ∈ Rn×n is a matrix of
learnable parameters. Furthermore, instead of directly applying softmax on the columns of A, we
first sum over the contributions of each element xi to obtain a vector a = {

∑
iAi,j}nj=1, which

is then passed to the softmax function. Following Vaswani et al. (2017), we prevent the softmax
function from reaching regions of low gradient by scaling its argument by (

√
dim(A))−1 = (1/n):

ã = softmax((1 / n) a). Lastly, we counteract the contractive behaviour of the softmax function by
normalizing ã before weighting x as to preserve the magnitude range of its argument. This allows
us to use A in deep architectures. Our compact self-attention mechanism is summarized as follows:

a = {
∑
iAi,j}

n
j=1 =

∑
i(x

T � Ã)i,j = xÃ (6)

ã = softmax((1 / n) a) (7)
x̂ = A(x) = (ã /max(ã))� x (8)
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The cyclic equivariant self-attention operator AC . Consider {x(u, r, λ)}rmax
r=1, the vector of re-

sponses generated by a roto-translational convolution fR stacked along the rotation axis r. By
applying self-attention along r, we are able to generate an importance matrix A ∈ Rrmax×rmax relat-
ing all pairs of (θi, θj)-rotated responses in the rotational group Θ at a certain position. We refer to
this attention mechanism as full self-attention (AF ). Although AF is able to encode arbitrary linear
source-target relationships for each target position, it is not restricted to conserve equivariance to
Θ. Resultantly, we risk incurring into the behavior outlined in Fig. 2c. Before we further elaborate
on this issue, we introduce the cyclic permutation operator Pi, which induces a cyclic shift of i
positions on its argument: σP

i

(xj) = x(j+i)mod(dim(x)) ∀xj ∈ x.

Consider a full self-attention operator AF acting on top of a roto-translational convolution fR. Let
p be an input pattern to which fR only produces a strong activation in the feature map x(r̂) =
fR(p)(r̂), r̂ ∈ {r}rmax

r=1. Intuitively, during learning, only the corresponding attention coefficients
Ã;,r̂ in AF would be significantly increased. Now, consider the presence of the input pattern θip, a
θi-rotated variant of p. By virtue of the rotational equivariance property of the feature mapping fR,
we obtain (locally) an exactly equal response to that of p up to a cyclic permutation of i positions on
r, and thus, we obtain a strong activation in the feature map Pi(x(r̂)) = x(σP

i

(r̂)). We encounter
two problems in this setting: AF is not be able to detect that p and θip correspond to the exact same
input pattern and, as each but the attention coefficients Ã:,j is small, the network might considerably
damp the response generated by θip. As a result, the network might (1) squander important feedback
information during learning and (2) induce learning of repeated versions of the same pattern for
different orientations. In other words, AF does not behave predictively as a function of θi.

Interestingly, we are able to introduce prior-knowledge into the attention model by restricting the
structure of Ã. By leveraging the idea of equivariance to the cyclic group Cn, we are able to solve the
problems exhibited byAF and simultaneously reduce the number of additional parameters required
by the self-attention mechanism (from r2

max to rmax). Consider again the input patterns p and θip. We
incorporate the intuition that p and θip are one and the same entity, and thus, fR (locally) generates
the same output feature map up to a cyclic permutation Pi: fR(θip) = Pi(fR(p)). Consequently,
the attention mechanism should produce the exact same output for both p and θip up to the same
cyclic permutation Pi. In other words,A (and thus Ã) should be equivariant to cyclic permutations.
We leverage the concept of circulant matrices to impose cyclic equivariance to the structure of
Ã. Formally, a circulant matrix C ∈ Rn×n is composed of n cyclic permutations of its defining
vector c = {ci}ni=1, such that its j-th column is a cyclic permutation of j − 1 positions of c:
C:,j = Pj−1(c)T . We construct our cyclic equivariant self-attention operator AC by defining Ã as
a circulant matrix specified by a learnable attention vector aC = {aCi }

rmax
i=1:

Ã = {Pj−1(aC)T }nj=1 (9)

and subsequently applying Eqs. 6 - 8. Resultantly, AC is able to assign the responses generated by
fR for rotated versions of an input pattern p to a unique entity: fR(θip) = Pi(fR(p)), and dynami-
cally adjust its output to the angle of appearance θi, such that the attention operation does not disrupt
its propagation downstream the network: AC(fR(θip)) = Pi(AC(fR(p))). Consequently, the at-
tention weights aC are updated equally regardless of specific values of θi. Due to these properties,
AC does not incur in any of the problems outlined earlier in this section.

Conclusively, our co-attentive rotation equivariant feature mapping f (l)
R is defined as follows:

x(l+1)(u, r, λ) = f
(l)
R (x(l))(u, r, λ) = AC(l)λ

(
[x(l) ?R2×Θ W

(l)
λ′,λ])(u, r, λ) (10)

Note that a co-attentive equivariant feature mapping fR is approximately equal (up to a normalized
softmax operation (Eq. 8)) to a conventional equivariant one fR, if Ã = αI for any α ∈ R.

3.2 EXTENDING AC TO MULTIPLE SYMMETRY GROUPS

The self-attention mechanisms outlined in the previous section are easily extendable to larger groups
consisting of multiple symmetries. Consider, for instance, the group θrm of rotations by θr degrees
and mirror reflections m defined analogously to the group p4m in Cohen & Welling (2016). Let
x(u, r,m, λ) be an input signal with an affixed index m ∈ {m0,m1} for mirror reflections (m1
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indicates mirrored) and fθrm be a group convolution (Cohen & Welling, 2016) on the θrm group.
The group convolution fθrm produces two times as many output channels (2rmax : m0rmax+m1rmax)
as those generated by the roto-translational convolution fR (Eq. 3). Full self-attention AF can
be integrated directly by modulating the output of fθrm(x) as depicted in Section 3.1 with Ã ∈
R2rmax×2rmax . In this case, AF relates the group convolution responses with one another. However,
just as for fR, AF disrupts the equivariance property of fθrm to the θrm group.

Similarly, the cyclic equivariant self-attention operator AC can be extended to multiple symmetry
groups as well. Before we continue, we introduce the cyclic permutation operator Pi,t, which
induces a cyclic shift of i positions on its argument along the transformation axis t. Consider
the input patterns p and θip outlined in the previous section and mp, a mirrored instance of
p. Let x(u, r,m, λ) = fθrm(p)(u, r,m, λ) be the response of the group convolution fθrm for
the input pattern p. By virtue of the rotation equivariance property of fθrm, the generated re-
sponse for θip is equivalent to that of p up to a cyclic permutation of i positions along the ro-
tation axis r: fθrm(θip)(u, r,m, λ) = Pi,r(fθrm(p))(u, r,m, λ) = x(u, σP

i

(r),m, λ). Sim-
ilarly, by virtue of the mirror equivariance property of fθrm, the response generated by mp is
equivalent to that of p up to a cyclic permutation of one position along the mirroring axis m:
fθrm(mp)(u, r,m, λ) = P1,m(fθrm(p))(u, r,m, λ) = x(u, r, σP

1

(m), λ). Note that if we take
two elements from a group g, h, their composition (gh) is also an element of the group. Resultantly,
fθrm((mθi)p)(u, r,m, λ) = (P1,m ◦ Pi,r)(fθrm(p))(u, r,m, λ) = P1,m(Pi,r(x))(u, r,m, λ) =

P1,m(x)(u, σP
i

(r),m, λ) = x(u, σP
i

(r), σP
1

(m), λ).

In other words, in order to extend AC to the θrm group, it is necessary to restrict the structure of Ã
such that it respects the permutation laws imposed by the equivariant mapping fθrm. Let us rewrite
x(u, r,m, λ) as x(u, g, λ), g = (mr) ∈ {m0,m1} × {r̂}rmax

r̂=1. In this case, we must impose a block
matrix structure on Ã such that: (1) the composing blocks permute internally as defined by Pi,r and
(2) the blocks themselves permute with one another as defined by P1,m. Formally, Ã is defined as:

Ã =

[
Ã1 Ã2

Ã2 Ã1

]
(11)

where {Ãi ∈ Rrmax×rmax}, i ∈ {1, 2} are circulant matrices (Eq. 9). Importantly, the ordering of the
permutation laws in Ã is interchangeable if the input vector is modified accordingly, i.e. g = (rm).

Conclusively, cyclic equivariant self-attention AC is directly extendable to act on any G-equivariant
feature mapping fG, and for any symmetry group G, if the group actions TYg produce cyclic permu-
tations on the codomain of fG. To this end, one must restrict the structure of Ã to that of a block
matrix, such that all the permutation laws of TYg hold: TYg (AC(fG)) = AC(TYg (fG)).

4 EXPERIMENTS

Experimental Setup. We validate our approach by extending the equivariant architectures provided
by Cohen & Welling (2016) (G-CNNs) and Li et al. (2018) (DRENs). We evaluate both strategies
for classification in fully rotational (rotated MNIST) and partially rotational settings (CIFAR-10).
To this end, we modify all of the G-CNNs and the DRENs proposed in the corresponding works by
replacing rotation equivariant layers with co-attentive rotation equivariant layers3. Unless otherwise
specified, we utilize the same data processing, initialization strategies, hyperparameter values and
evaluation strategies utilized by the baselines in our experiments. Note that the goal of this paper is
to study and evaluate the relative effects obtained by co-attentive equivariant networks with regard to
their conventional counterparts. Accordingly, we do not perform any additional tuning relative to the
baselines. We believe that improvements on our reported results are feasible by performing further
parameter tuning (e.g. on structure or hyperparameters) of the co-attentive equivariant networks.

The additional learnable parameters, i.e. those associated to the cyclic self-attention operator (Ã)
are initialized identically to the rest of the layer. Subsequently, we replace the values of Ã along
the diagonal by 1 (i.e. diag(Ãinit) = 1) such that Ãinit approximately resembles the identity I and,
hence, co-attentive equivariant layers are initially approximately equal to equivariant ones.

3Our proposed architectures are signalized with the prefix a, e.g. a-p4m-All-CNN
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Table 1: Comparison of conventional equivariant and co-attentive equivariant neural networks.
Values between parenthesis correspond to relevant results obtained from our own experiments.

Rotated MNIST CIFAR-10
Network Test Error (%) Param. Network Test Error (%) Param.
Z2CNN 5.03 ± 0.002 21.75k All-CNN 8.84 1.372M
P4CNN 2.28 ± 0.0004 19.88k p4-All-CNN 9.44 1.371M

a-P4CNN 2.06 ± 0.0429 20.76k a-p4-All-CNN 7.68 1.373M
DREN 1.78 (1.99) 19.88k p4m-All-CNN 7.59 1.219M

a-DREN 1.674 20.76k a-p4m-All-CNN 6.42 1.223M
DRENMaxPool. 1.56 (1.60) 24.68k ResNet441 9.45 (9.85) 2.639M

a-DRENMaxPool. 1.34 25.68k p4m-ResNet441 6.46 (9.47) 2.623M
a-p4m-ResNet441 9.12 2.632M

NIN 10.41 (15.92) 0.967M
r-NINx4 14.96 0.958M

a-r-NINx4 13.67 0.968M
ResNet20 9.00 (12.32) 0.335M

r-ResNet20x4 12.31 0.333M
a-r-ResNet20x4 11.32 0.339M

1 We were not able to replicate the results reported in Cohen & Welling (2016) for any of the ResNet44
architectures based on the online implementation.

Rotated MNIST. The rotated MNIST dataset (Larochelle et al., 2007) contains 62000 gray-scale
28x28 handwritten digits uniformly rotated on the entire circle [0, 2π). The dataset is split into
training, validation and tests sets of 10000, 2000 and 50000 samples, respectively. We replace
rotation equivariant layers in P4CNN (Cohen & Welling, 2016), DREN and DRENMaxPooling
(Li et al., 2018) with co-attentive ones. Our results show that co-attentive equivariant networks
consistently outperform conventional ones without any additional parameter tuning (see Table 1).

CIFAR-10. The CIFAR-10 dataset (Krizhevsky et al., 2009) consists of 60000 real-world 32x32
RGB images uniformly drawn from 10 classes. Contrarily to the rotated MNIST dataset, this dataset
does not exhibit rotation symmetry. The dataset is split into training, validation and tests sets of
40000, 10000 and 10000 samples, respectively. We replace equivariant layers in the p4 and p4m
variations of the All-CNN (Springenberg et al., 2014) and the ResNet44 (He et al., 2016) proposed
by Cohen & Welling (2016) with co-attentive ones. Likewise, we modify the r x4-variations of
the NIN (Lin et al., 2013) and ResNet20 (He et al., 2016) models proposed by Li et al. (2018) in
the same manner. Our results show that co-attentive equivariant networks consistently outperform
conventional ones in this setting as well (see Table 1).

Training convergence of equivariant networks. Li et al. (2018) reported that adding too many
rotational equivariant (isotonic) layers decreased the performance of their models on CIFAR-10. As
a consequence, they did not report results of fully rotational equivariant networks for this setting
and attributed this behaviour to the non-symmetricity of the data. We noticed that with equal initial-
ization strategies rotational equivariant CNNs were much more prone to divergence than ordinary
CNNs. This behaviour can be traced back to the additional feedback resulting from roto-translational
convolutions (Eq. 3) compared to ordinary ones (Eq. 2). After further analysis, we noticed that the
data preprocessing strategy utilized by Li et al. (2018) leaves some very large outlier values in the
data (|x| >100), which strongly contributes to the behaviour outlined before.

In order to evaluate the relative contribution of co-attentive equivariant neural networks we con-
structed fully DREN equivariant architectures based on their implementation. Although the obtained
results were much worse than those originally reported in Li et al. (2018), we were able to stabilize
training such that the same hyperparameters could be kept equal across network types by clipping
input values outside of the 99 percentile of the data (|x| ≤2.3) and reducing the learning rate to
0.01. The obtained results (see Table 1) signalize that DREN networks are comparatively better
than CNNs both in fully and partially rotational settings, contradictorily to the conclusions drawn
in Li et al. (2018). This behaviour elucidates the fact that although the inclusion of equivariance
to larger transformation groups is beneficial for neural architectures both in terms of accuracy and
parameter efficiency, one must be aware that such benefits are directly associated to an increase of
the susceptibility of the network to divergence during training. This is caused due to an increase of
the information flow relative to the number of parameters in the network.
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5 DISCUSSION AND FUTURE WORK

Our results show that co-attentive equivariant feature mappings can be used to improve results ob-
tained by conventional equivariant ones. Interestingly, attending to the co-occurrence envelope of
the data is beneficial for fully rotational settings as well. We attribute this to the fact that a set of
co-occurring orientations between patterns can be easily defined (and exploited) in both settings.

In future work, we want to utilize and extend more complex attention strategies (e.g. Bahdanau
et al. (2014); Luong et al. (2015); Vaswani et al. (2017); Mishra et al. (2017)) such that they can be
applied to large transformation groups without disrupting equivariance and possibly capture richer
relationships than that of co-occurrence. This becomes very challenging from the computational
perspective as well, as it requires extensive usage of the corresponding attention mechanism. Fur-
thermore, we want to extend co-attentive equivariant feature mappings to continuous (e.g. Worrall
et al. (2017)) and 3D space (e.g. Cohen et al. (2018); Worrall & Brostow (2018)) groups, and for
applications other than visual data (e.g. speech recognition). Finally, we believe that our approach
could be refined and extended to a first step towards dealing with the problem of enumeration of
transformations in large groups (Gens & Domingos, 2014) by dynamically attending (and possibly
restricting) transformation groups to the set of co-occurring transformations in data.

6 CONCLUSION

We have introduced the concept of co-attentive equivariant feature mapping and applied it in the
context of equivariant neural networks. By attending to the co-occurrence envelope of the data, we
are able to improve the performance of conventional equivariant ones on fully (rotated MNIST) and
partially (CIFAR-10) rotational settings. We developed cyclic equivariant self-attention, an attention
mechanism able to attend to the co-occurrence envelope of the data without disrupting equivariance
to a large set of transformation groups (i.e. all the transformation groups that produce cyclic permu-
tations on their responses). Based on our results, we validate the co-occurrence envelope hypothesis.
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