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ABSTRACT

Recently, pre-trained language representation flourishes as the mainstay of the nat-
ural language understanding community, e.g., BERT. These pre-trained language
representations can create state-of-the-art results on a wide range of downstream
tasks. Along with continuous significant performance improvement, the size and
complexity of these pre-trained neural models continue to increase rapidly. Is
it possible to compress these large-scale language representation models? How
will the pruned language representation affect the downstream multi-task trans-
fer learning objectives? In this paper, we propose Reweighted Proximal Pruning
(RPP), a new pruning method specifically designed for a large-scale language rep-
resentation model. Through experiments on SQuAD and the GLUE benchmark
suite, we show that proximal pruned BERT keeps high accuracy for both the pre-
training task and the downstream multiple fine-tuning tasks at high prune ratio.
RPP provides a new perspective to help us analyze what large-scale language rep-
resentation might learn. Additionally, RPP makes it possible to deploy a large
state-of-the-art language representation model such as BERT on a series of dis-
tinct devices (e.g., online servers, mobile phones, and edge devices).

1 INTRODUCTION

Pre-trained language representations such as GPT (Radford et al., 2018), BERT (Devlin et al.,
2019) and XLNet (Yang et al., 2019), have shown substantial performance improvements using
self-supervised training on large-scale corpora (Dai & Le, 2015; Peters et al., 2018; Radford et al.,
2018; Liu et al., 2019a). More interestingly, the pre-trained BERT model can be fine-tuned with
just one additional output layer to create state-of-the-art models for a wide range of tasks, such as
question answering (Rajpurkar et al., 2016; 2018), and language inference (Bowman et al., 2015;
Williams et al., 2017), without substantial task-specific architecture modifications. BERT is concep-
tually simple and empirically powerful (Devlin et al., 2019).

However, along with the significant performance enhancement, the parameter volume and com-
plexity of these pre-trained language representations significantly increase. As a result, it becomes
difficult to deploy these large-scale language representations into real-life computation constrained
devices including mobile phones and edge devices. Throughout this paper, we attempt to answer the
following questions.

Question 1: Is it possible to compress large-scale language representations such as BERT via weight
pruning?

Question 2: How would the weight-pruned, pre-trained model affect the performance of the down-
stream multi-task transfer learning objectives?

The problem of weight pruning has been studied under many types of deep neural networks (DNNs)
(Goodfellow et al., 2016), such as AlexNet (Krizhevsky et al., 2012), VGG (Simonyan & Zisserman,
2014), ResNet (He et al., 2016), and MobileNet (Howard et al., 2017). It is shown that weight prun-
ing can result in a notable reduction in the model size. A suite of weight pruning techniques have
been developed, such as non-structured weight pruning (Han et al., 2015), structured weight pruning
(Wen et al., 2016), filter pruning (Li et al., 2016), channel pruning (He et al., 2017), ADMM-NN
(Ren et al., 2019) and PCONV (Ma et al., 2019) to name a few. Different from pruning CNN-
type models, BERT not only considers the metrics on the pre-training task, but also needs to make
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allowance for the downstream multi-task transfer learning objectives. Thus, the desired weight prun-
ing needs to preserve the capacity of transfer learning from a sparse pre-trained model to downstream
fine-tuning tasks.

In this work, we investigate irregular weight pruning techniques on the BERT model, including
the iterative pruning method (Han et al., 2015) and one shot pruning method (Liu et al., 2019b).
However, these methods fail to converge to a sparse pre-trained model without incurring significant
accuracy drop, or in many cases do not converge at all (see supporting results in Appendix). Note
that the aforementioned weight pruning techniques are built on different sparsity-promoting regu-
larization schemes (Han et al., 2015; Wen et al., 2016), e.g., lasso regression (`1 regularization) and
ridge regression (`2 regularization). We find that the failure of previous methods on weight prun-
ing of BERT is possibly due to the inaccurate sparse pattern learnt from the simple `1 or `2 based
sparsity-promoting regularizer. In fact, the difficulty of applying regularization to generate weight
sparsity coincides with the observation in (Loshchilov & Hutter, 2018) on the imcompatibility of
conventional weight decay (`2 regularization) for training super-deep DNNs as BERT. It is pointed
out that the main reason is that the direct addition of a regularization penalty term causes divergence
from the original loss function and has negative effect on the effectiveness of gradient-based update.
To mitigate this limitation, (Loshchilov & Hutter, 2018) have modified the regularization in Adam
by decoupling weight decay regularization from the gradient-based update, and have achieved state-
of-the-art results on downstream multi-task transfer learning objectives (Devlin et al., 2019).

In this work, we aim at more accurate sparse pattern search motivated by our experiments and the
conclusion from Loshchilov & Hutter (2018). We propose Reweighted Proximal Pruning (RPP),
which integrates reweighted `1 minimization (Candes et al., 2008) with proximal algorithm (Parikh
et al., 2014). RPP consists of two parts (see Appendix A for an overview of our approach): the
reweighted `1 minimization and the proximal operator. Reweighted `1 minimization serves as a bet-
ter method of generating sparsity in DNN models matching the nature of weight pruning, compared
with `1 regularization. Thanks to the closed-form solution of proximal operation on a weighted
`1 norm, in RPP the sparsity pattern search can be decoupled from computing the gradient of the
training loss. In this way the aforementioned pitfall in prior weight pruning technique on BERT
can be avoided. We show that RPP achieves effective weight pruning on BERT for the first time to
the best of our knowledge. Experimental results demonstrate that the proximal pruned BERT model
keeps high accuracy on a wide range of downstream tasks, including SQuAD (Rajpurkar et al., 2016;
2018) and GLUE (Wang et al., 2018).

We summarize our contributions as follows.

• We develop the pruning algorithm Reweighted Proximal Pruning (RPP), which acheives
the first effective weight pruning result on large pre-trained language representation model
- BERT. RPP achieves 59.3% weight sparsity without inducing the performance loss on
both pre-training and fine-tuning tasks.

• We spotlight the relationship between the pruning ratio of the pre-trained DNN model and
the performance on the downstream multi-task transfer learning objectives. We show that
many downstream tasks except for SQuAD allows at least 80% pruning ratio compared
with 59.3% under the more challenging task SQuAD.

• We show that different from weight pruning in image classification tasks, there exists a
sparsity pattern in pre-trained language representation. Our approach not only provides an
effective weight pruning algorithm but also offers a new perspective on analyzing large-
scale language representation.

2 RELATED WORK

BERT and prior work on model compression BERT (Devlin et al., 2019) is a self-supervised
approach for pre-training a deep transformer encoder (Vaswani et al., 2017), before fine-tuning it
for particular downstream tasks. Pretraining of BERT optimizes two training objectives − masked
language modeling (MLM) and next sentence prediction (NSP) − which require a large collection
of unlabeled text. We use BooksCorpus (800M words) (Zhu et al., 2015) and the English instance of
Wikipedia (2,500M words) as the pre-training corpus, the same as Devlin et al. (2019). For detailed
information about the BERT model, readers can refer to the original paper (Devlin et al., 2019).
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Michel et al. (2019) mask some heads in multi-head attention modules in BERT, and then evaluate
the performance on the machine translation task. Similarly, Hao et al. (2019) eliminates certain
heads in the multi-head attention module. First, the limited previous work do not consider the pre-
training metrics and the other downstream multi-mask transfer learning objectives. They only con-
sidered the specific machine translation task (out of over 10 transfer tasks), which is only a specific
fine-tuning and is limited for the universal pre-trained language representation (BERT). Second, the
multi-head attention module uses a weight sharing mechanism (Vaswani et al., 2017). So masking
some heads does not reduce the weight volume. Finally, multi-head attention allows the model to
jointly attend to information from different representation subspaces at different positions, while
single attention head inhibits this effect (Vaswani et al., 2017). As a result, masking some heads
in multi-head attention harms the weight sharing mechanism, without weight volume reduction. In
summary, the limited previous work in this area are not effective weight pruning method on BERT.
Shen et al. (2019) reports the quantization result of BERT model, which is orthogonal to our work
and can be combined for further compression/acceleration.

Reweighted `1 and proximal algorithm Candes et al. (2008) present reweighted `1 algorithm
and demonstrate the remarkable performance and broad applicability of this algorithm in the areas of
statistical estimation, error correction and image processing. Proximal algorithms can be viewed as
an analogous tool for non-smooth, constrained, large-scale, or distributed versions of these problems
(Parikh et al., 2014). To the best of our knowledge, we are the first to apply reweighted `1 and
proximal algorithm in the DNN weight pruning domain, and achieve effective weight pruning on
BERT.

3 REWEIGHTED PROXIMAL PRUNING FOR LARGE-SCALE LANGUAGE
REPRESENTATION DURING PRE-TRAINING

Pruning for pre-trained language representations should not only consider the performance of pre-
training objectives, but also make allowance for the downstream fine-tuning transfer learning tasks.
Let fi denote the loss function of network for downstream task Ti ∼ p(T ), where p(T ) denotes the
distribution of tasks. Let w denote the parameters of the pre-trained model (pre-training in BERT),
and zi denote the i-th task-specified model parameters (fine-tuning in BERT). The downstream
tasks have separate fine-tuned models, even though they are initialized with the same pre-trained
parameters (Devlin et al., 2019). Starting from the pre-trained parameters w, the parameters zi(w)
are obtained through fine-tuning

minimize
w∈Rd

fi(w) (1)

3.1 PRUNING FORMULATION IN TRANSFER LEARNING

Following the conventional weight pruning formulation, we first consider the problem of weight
pruning during pre-training:

minimize
w∈Rd

f0(w) + γ‖w‖p (2)

where f0 is the loss function of pruning, p ∈ {0, 1} denotes the type of regularization norm, and γ
is a regularization term. We note that the sparsity-promoting regularizer in the objective could also
be replaced with a hard `p constraint, |w‖p ≤ τ for some τ .

Let ŵ denote the solution to problem (2), and the corresponding sparse pattern Sŵ is given by

Sŵ = {i|ŵi = 0, ∀i ∈ [d]} (3)

For a specific transfer task i, we allow an additional retraining/fine-tuning step to train/fine-tune
weights starting from the pre-training results ŵ and subject to the determined, fixed sparse pattern
Sŵ, denoted as zi(ŵ;Sŵ). That is, we solve the modified problem equation 1

minimize
zi

fi
(
zi(ŵ;Sŵ)

)
(4)

Here, different from (1), the task-specific fine tuning weights variable zi(ŵ;Sŵ) is now defined
over Sŵ.
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Our goal is to seek a sparse (weight pruned) model during pre-training, with weight collection ŵ and
sparsity Sŵ, which can perform as well as the original pre-trained model over multiple new tasks
(indexed by i). These fine-tuned models zi(ŵ;Sŵ) (for different i) share the identical universal
sparsity Sŵ.

3.2 REWEIGHTED PROXIMAL PRUNING

In order to enhance the performance of pruning pre-trained language representation over multi-task
downstream transfer learning objectives, we propose Reweighted Proximal Pruning (RPP). RPP
consists of two parts: the reweighted `1 minimization and the proximal operator. Reweighted `1
minimization serves as a better method of generating sparsity in DNN models matching the natural
objective of weight pruning, compared with `1 regularization. The proximal algorithm then sep-
arates the computation of gradient with the proximal operation over a weighted `1 norm, without
adding any penalty loss to the original objective function of DNN models. This is necessary in the
weight pruning of super-deep language representation models

3.2.1 REWEIGHTED `1 MINIMIZATION

In the previous pruning methods (Han et al., 2015; Wen et al., 2016), `1 regularization is used to
generate sparsity. However, consider that two weights wi, wj (wi < wj) in the DNN model are
penalized through `1 regularization. The larger weight wj is penalized more heavily than smaller
weight wi in `1 regularization, which violates the original intention of weight pruning, “removing
the unimportant connections” (parameters close to zero) (Han et al., 2015). To address this imbal-
ance, we introduce reweighted `1 minimization (Candes et al., 2008) to the DNN pruning domain.
Our introduced reweighted `1 minimization operates in a systematic and iterative manner (detailed
process shown in Algorithm 1), and the first iteration of reweighted `1 minimization is `1 regular-
ization. This designed mechanism helps us to observe the performance difference between `1 and
reweighted `1 minimization. Meanwhile, this mechanism ensures the advancement of reweighted `1
minimization over `1 regularization, as the latter is the single, first step of the former.

Consider the regularized weight pruning problem (reweighted `1 minimization):

minimize
w

f0(w) + γ
∑
i

αi|wi| (5)

where αi (αi > 0) factor is a positive value. It is utilized for balancing the penalty, and is different
from weight wi in DNN model. αi factors will be updated in the iterative reweighted `1 minimiza-
tion procedure (Step 2 in Algorithm 1) in a systematic way (Candes et al., 2008). If we set T = 1
for reweighted `1, then it reduces to `1 sparse training.

Algorithm 1 RPP procedure for reweighted `1 minimization

1: Input: Initial pre-trained model w0, initial reweighted `1 minimization ratio γ, initial positive
value α0 = 1

2: for t = 1, 2, . . . , T do
3: w = w(t−1), α = α(t−1)

4: Step 1: Solve problem (5) to obtain a solution wt via iterative proximal algorithm (6)
5: Step 2: Update reweighted factors αti =

1
|wt

i |(t)+ε
(the inside wti denotes the weight wi in

iteration t, and the outside (t) denotes the exponent), ε is a small constant, e.g., ε = 0.001
6: end for

3.2.2 PROXIMAL METHOD

In the previous pruning methods (Han et al., 2015; Wen et al., 2016), `1 regularization loss is di-
rectly added on the original training objective loss function of DNN models, and the hard-threshold
is adopted to execute the pruning action in the final step of pruning (all weights below the hard-
threshold become zero). We cannot add this in our reweighted `1 regularization directly to avoid
negative effect on the gradient update as explained before. Then the remaining challenge is to de-
rive an effective solution to problem (5) for given {αi}, namely, Step 1 in Algorithm 2, in which
back-propagation based gradient update is only applied on f0(w) but not γ

∑
i αi|wi|.
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We adopt the proximal algorithm (Parikh et al., 2014) to satisfy this requirement through decoupling
methodology. In this way, the sparsity pattern search can be decoupled from computing the gradient
of the training loss. The proximal algorithm is shown in (Parikh et al., 2014) to be highly effective
(compared with the original solution) on a wide set of non-convex optimization problems. Addi-
tionally, our presented reweighted `1 minimization (5) has analytical solution through the proximal
operator.

To solve problem (5) for a given α, the proximal algorithm operates in an iterative manner:

wk = proxλk,rw−`1 (wk−1 − λk∇wf0 (wk−1)) (6)

where the subscript k denotes the time step of the training process inside RPP, λk (λk > 0) is the
learning rate, and we set the initial w to be w(t−1) from the last iteration of reweighted `1. The
proximal operator proxλk,rw−`1(a) is the solution to the problem

minimize
w

γ
∑
i

αi |wi|+
1

2λk
‖w − a‖22 (7)

where a = wk−1 − λk∇wf (wk−1). The above problem has the following analytical solution (Liu
et al., 2014)

wi,k =

{ (
1− γλkαi

|ai|

)
ai |ai| > λkγαi

0 |ai| ≤ λkγαi.
(8)

We remark that the updating rule (6) can be interpreted as the proximal step (8) over the gradient
descent step wk−1−λk∇wf (wk−1). Such a descent can also be obtained through other optimizers
such as AdamW. We use the AdamW (Loshchilov & Hutter, 2018) as our optimizer, the same with
(Devlin et al., 2019). The concrete process of AdamW with proximal operator is shown in Algorithm
3 of Appendix.

Why chooses AdamW rather than Adam? Loshchilov & Hutter (2018) proposes AdamW to improve
the generalization ability of Adam (Kingma & Ba, 2014). Loshchilov & Hutter (2018) shows that `2
regularization (or the direct addition of a regularization penalty term) is inherently not effective in
Adam and has negative effect on the effectiveness of gradient-based update, which is the reason of
the difficulty to apply adaptive gradient algorithms to super-deep DNN training for NLU applications
(like BERT). Loshchilov & Hutter (2018) mitigates this limitation and improves regularization of
Adam, by decoupling weight decay regularization from the gradient-based update (Loshchilov &
Hutter, 2018). AdamW is widely adopted in pretraining large language representations, e.g., BERT
(Devlin et al., 2019), GPT (Radford et al., 2018) and XLNet (Yang et al., 2019). Our proposed
proximal pruning also benefits from the decoupling design ideology. The difference is that proximal
pruning is for the generation of sparsity, instead of avoiding over-fitting, like decoupled weight
decay in AdamW.

Our new and working baseline: New Iterative Pruning (NIP). To get the identical universal
sparsity Sw, we tried a series of pruning techniques, including the iterative pruning method (Han
et al., 2015) and one shot pruning method (Liu et al., 2019b). But these methods do not converge
to a viable solution. The possible reason for non-convergence of the iterative pruning method is
that the direct promotion of `p (p ∈ {1, 2}) sparsity on the original pre-training objective loss
function might be insufficient to prune BERT. To circumvent the convergence issue of conventional
iterative pruning methods, we propose a new iterative pruning (NIP) method. Different from iterative
pruning (Han et al., 2015), NIP reflects the naturally progressive pruning performance without any
externally introduced penalty. We hope that other pruning methods should not perform worse than
NIP, otherwise, the effect of the newly introduced sparsity-promoting regularization has negative
effects. We will show that NIP is able to successfully prun BERT to certain pruning ratios. We refer
readers to Appendix B for our full baseline algorithm.

4 EXPERIMENTS

In this section, we describe the experiments on pruning pre-trained BERT and demonstrate the per-
formance on 10 downstream transfer learning tasks.
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4.1 EXPERIMENT SETUP

We use the official BERT model from Google as the startpoint. Following the notation from Devlin
et al. (2019), we denote the number of layers (i.e., transformer blocks) asL, the hidden size asH , and
the number of self-attention heads as A. We prune two kinds of BERT model: BERTBASE (L =
12, H = 768, A = 12, total parameters = 110M) and BERTLARGE (L = 24, H = 1024, A =
16, total parameters = 340M). As the kernel weights take up most of the weights volume in each
layer (i.e. transformer block), the kernel weights are our pruning target.

Data: In pre-training, we use the same pre-training corpora as Devlin et al. (2019): BookCorpus
(800M words) (Zhu et al., 2015) and English Wikipedia (2, 500M words). Based on the same cor-
pora, we use the same preprocessing script1 to create the pre-training data. In fine-tuning, we report
our results on the Stanford Question Answering Dataset (SQuAD) and the General Language Under-
standing Evaluation (GLUE) benchmark (Wang et al., 2018). We use two versions of SQuAD: V1.1
and V2.0 (Rajpurkar et al., 2016; 2018). The GLUE is a collection of datasets/tasks for evaluating
natural language understanding systems2.

Input/Output representations: We follow the input/output representation setting from Devlin et al.
(2019). We use the WordPiece (Wu et al., 2016) embeddings with a 30, 000 token vocabulary.
The first token of every sentence is always a special classification token ([CLS]). The sentences
are differentiated with a special token ([SEP]). Following (Devlin et al., 2019), we use the same
input/output representations for both pre-training and fine-tuning.

Evaluation: In pre-training, BERT considers two objectives: masked language modeling (MLM)
and next sentence prediction (NSP). For MLM, a random sample of the tokens in the input sequence
is selected and replaced with the special token ([MASK]). The MLM objective is a cross-entropy
loss on predicting the masked tokens. NSP is a binary classification loss for predicting whether two
segments follow each other in the original text. We use MLM and NSP to pre-train, retrain and
evaluate the pre-trained BERT model. In fine-tuning, F1 scores are reported for SQuAD, QQP and
MRPC. Accuracy scores are reported for the other tasks.

All the experiments execute on one Google Cloud TPU V3-512 cluster, three Google Cloud TPU
V2-512 clusters and 110 Google Cloud TPU V3-8/V2-8 instances.

Baseline: As there is no public effective BERT pruning method, we use the proposed NIP pruning
method on BERT as the baseline method. The detailed algorithm is shown Appendix B. The pro-
gressive pruning ratio is ∇p = 10% (prune 10% more weights in each iteration). Starting from the
official BERTBASE, we use 9 iterations. In each iteration t of NIP, we get the sparse BERTBASE

with specific sparsity, as (wt;Swt). Then we retrain the sparse BERTBASE wt over the sparsity
Swt . In the retraining process, the initial learning rate is 2 ·10−5, the batch size is 1024 and the
retraining lasts for 10, 000 steps (around 16 epochs). For the other hyperparameters, we follow the
original BERT paper Devlin et al. (2019). In each iteration, the well retrained sparse BERTBASE is
the starting point for the fine-tuning tasks and the next iteration.

4.2 REWEIGHED PROXIMAL PRUNING (RPP)

We apply the proposed Reweighted Proximal Pruning (RPP) method on both BERTBASE and
BERTLARGE, and demonstrate performance improvement. Detailed process of RPP is in Ap-
pendix C.

For BERTBASE, we use the hyperparameters exactly the same with our experiments using NIP. The
initial learning rate is λ=2 ·10−5 and the batch size is 1024. We iterate the RPP for six times (T=6),
and each iteration lasts for 100, 000 steps (around 16 epochs). The total number of epochs in RPP is
smaller than NIP when achieving 90% sparsity (96 < 144). There is no retraining process in RPP.

1https://github.com/google-research/bert
2The datasets/tasks are: CoLA (Warstadt et al., 2018), Stanford Sentiment Treebank (SST) (Socher et al.,

2013), Microsoft Research Paragraph Corpus (MRPC) (Dolan & Brockett, 2005), Semantic Texual Similarity
Benchmark (STS) (Agirre & Soroa, 2007), Quora Question Pairs (QQP), Multi-Genre NLI (MNLI) (Williams
et al., 2017), Question NLI (QNLI) (Rajpurkar et al., 2016), Recognizing Textual Entailment (RTE) and Wino-
grad NLI(WNLI) (Levesque et al., 2012).
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Figure 1: Evaluate the performance of pruned BERTBASE using NIP and RPP, respectively (MLM and NSP
accuracy on pre-training data and F1 score of fine-tuning on SQuAD 1.1 are reported).
We set γ ∈ {10−2, 10−3, 10−4, 10−5} and ε=10−9 in Algorithm 1. Recall that RPP reduces to `1
sparse training as t=1.

In Figure 1, we present the accuracy versus the pruning ratio for pre-training tasks MLM and NSP,
and fine-tuning task SQuAD 1.1. Here we compare RPP with NIP. Along with the RPP continuing to
iterate, the performance of RPP becomes notably higher than NIP for both the pre-training task and
the fine-tuning task. The gap further increases as the RPP iterates more times. In Figure 1, we find
that the NSP accuracy is very robust to pruning. Even when 90% of the attention weights are pruned,
the NSP accuracy keeps above 95% in RPP algorithm and around 90% in NIP algorithm. For MLM
accuracy and SQuAD F1 score, the performance drops quickly as the prune ratio increases. RPP
slows down the decline trend to a great extent. On SQuAD 1.1 dataset/task, RPP keeps the F1 score
of BERTBASE at 88.5 (0 degradation compared with original BERT) at 41.2% prune ratio, while
the F1 score of BERTBASE applied with NIP drops to 84.6 (3.9 degradation) at 40% prune ratio.
At 80% prune ratio, RPP keeps the F1 score of BERTBASE at 84.7 (3.8 degradation), while the F1
score of BERTBASE applied with NIP drops to 68.8 (19.7 degradation compared with the original
BERT). In addition to the fine-tuning task of SQuAD 1.1, the other transfer learning tasks show the
same trend (RPP consistently outperforms NIP) and the detailed results are reported in Appendix.

For BERTLARGE, we use the hyperparameters exactly the same with our experiments using NIP
except for the batch size. The initial learning rate is 2· 10−5 and the batch size is 512. We iterate the
RPP for four times (T=4), and each iteration lasts for 100,000 steps (around 8 epochs). There is no
retraining process either. We set γ∈{10−2, 10−3} and ε=10−9 in Algorithm 1. The experimental
results about pruning BERTLARGE and then fine-tuning are shown in Table 1.
Table 1: BERTLARGE pruning results on a set of transfer learning tasks. The degradation is contrasted with
the original BERT (without pruning) for transfer learning.

Method Prune Ratio(%) SQuAD 1.1 QQP MNLI MRPC CoLA

NIP 50.0 85.3 (-5.6) 85.1 (-6.1) 77.0 (-9.1) 83.5 (-5.5) 76.3 (-5.2)
80.0 75.1 (-15.8) 81.1 (-10.1) 73.81 (-12.29) 68.4 (-20.5) 69.13 (-12.37)

RPP 59.3 90.23 (-0.67) 91.2 (-0.0) 86.1 (-0.0) 88.1 (-1.2) 82.8 (+1.3)
88.4 81.69 (-9.21) 89.2 (-2.0) 81.4 (-4.7) 81.9 (-7.1) 79.3 (-2.2)

Method Prune Ratio(%) SQuAD 2.0 QNLI MNLIM SST-2 RTE

NIP 50.0 75.3 (-6.6) 90.2 (-1.1) 82.5 (-3.4) 91.3 (-1.9) 68.6 (-1.5)
80.0 70.1 (-11.8) 80.5 (-10.8) 78.4 (-7.5) 88.7 (-4.5) 62.8 (-7.3)

RPP 59.3 81.3 (-0.6) 92.3 (+1.0) 85.7 (-0.2) 92.4 (-0.8) 70.1 (-0.0)
88.4 80.7 (-1.2) 88.0 (-3.3) 81.8 (-4.1) 90.5 (-2.7) 67.5 (-2.6)

4.3 VISUALIZING ATTENTION PATTERN IN BERT

We visualize the sparse pattern of the kernel weights in sparse BERT model applied with RPP,
and present several examples in Figure 2. Because we directly visualize the value of identical
universal sparsity Sw without any auxiliary function instead of activation map, the attention pattern
is universal and data independent.
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Figure 2: Visualization of sparsity S in pruned BERT model w. (RPP at 99% prune ratio) The yellow tiny
spots are the remaining values, and the blue ground represents all the zero values after pruning.

BERT’s model architecture is a multi-layer, bidirectional transformer encoder based on the original
implementation (Vaswani et al., 2017). Following (Vaswani et al., 2017), the transformer archi-
tecture is based on “scaled dot-product attention.” The input consists of queries, keys and values,
denoted as matrices Q, K and V , respectively. The output of attention model is computed as

Attention (Q,K, V ) = softmax

(
QKT

√
dk

)
V (9)

where dk is the dimension. We visualize the sparse matrices Q, K and V successively in Figure 2.
The visualization of sparseQ demonstrates obvious vertical distribution. The visualization of sparse
K is mainly in vertical distribution, with some strong horizontal linking lines. The visualization in-
terpretation reveals that the query matrix Q mainly models the information inside each sequence,
while the key matrix K uses strong horizontal linking lines to build the relationship between differ-
ent sequences in the context. In summary, the sparse attention pattern exhibits obvious structured
distribution.

4.4 t-SNE VISUALIZATION

Figure 3: t-SNE visualization of BERTLARGE embedding applied with RPP. (From left to right: t-SNE
of original BERT embedding at viewpoint A, t-SNE of sparse BERT embedding at view point A, t-SNE of
original BERT embedding at view point B, t-SNE of sparse BERT embedding at view point B)

t-Distributed Stochastic Neighbor Embedding (t-SNE) is a technique for dimensionality reduction
that is particularly well suited for the visualization of high-dimensional datasets (Maaten & Hinton,
2008). Pre-trained word embeddings are an integral part of modern NLP systems (Devlin et al.,
2019) and one contribution of BERT is pre-trained contextual embedding. Hence, we visualize
word embedding in the original BERT model and the BERT model applied with RPP in Figure 3
using t-SNE. The similarity of visualized word embeddings (in BERT and BERT applied with RPP)
illustrates the advancement and effectiveness of RPP.

5 CONCLUSIONS AND FUTURE WORK

This paper presents the pruning algorithm RPP, which achieves the first effective weight pruning
result on large pre-trained language representation model - BERT. RPP achieves 59.3% weight spar-
sity without inducing the performance loss on both pre-training and fine-tuning tasks. We spotlight
the relationship between the pruning ratio of the pre-trained DNN model and the performance on the
downstream multi-task transfer learning objectives. We show that many downstream tasks except
SQuAD allows at least 80% pruning ratio compared with 59.3% under task SQuAD. Our proposed
Reweighted Proximal Pruning provides a new perspective to analyze what does a large language
representation (BERT) learn. After visualizing the weights of BERT model with RPP.
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APPENDIX

A OVERVIEW OF PROPOSED BERT PRUNING
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Figure A1: Overview of pruning BERT using Reweighted Proximal Pruning algorithm.

Figure A1 shows the overview of pruning BERT using RPP and then fine-tuning on a wide range
of downstream transfer learning tasks. Through RPP, we find the identical universal sparsity, which
could be fine-tuned over the downstream transfer learning tasks.

B ALGORITHM OF NEW ITERATIVE PRUNING

Algorithm 2 shows the detail process of our proposed NIP algorithm.
Algorithm 2 New Iterative Pruning (NIP) algorithm

1: Input: Initial model weights w, initial prune ratio p = 0%, progressive prune ratio∇p
2: for t = 1, 2, . . . , T do
3: w = w(t−1)

4: Sample batch of data from the pre-training data
5: Obtain sparsity Sw through hard threshold pruning, prune ratio pt = t · ∇p
6: Retrain w over sparsity constraint Sw
7: for all tasks in {Ti} do
8: Fine-tune zi(w;Sw) over sparsity Sw (if the desired prune ratio pt has been reached for

downstream task i)
9: end for

10: end for

C ALGORITHM OF REWEIGHTED PROXIMAL PRUNING (RPP)

Algorithm 3 shows the detail process of our enhanced AdamW (Loshchilov & Hutter, 2018) with
proximal operator.
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Algorithm 3 Our enhanced AdamW (Loshchilov & Hutter, 2018) with proximal operator

1: Given α = 0.001, β1 = 0.9, β2 = 0.999, ε = 10−6, λ ∈ R
2: Initialize time step k ← 0, parameters of pre-trained model w, first moment vector mt=0 ← 0,

second moment vector vt=0 ← 0, schedule multiplier ηk=0 ∈ R
3: repeat
4: k ← k + 1
5: ∇fk (wk−1)← SelectBatch (wk−1)
6: gk ← ∇fk (wk−1)
7: mk ← β1mk−1 + (1− β1) gk
8: vk ← β2vk−1 + (1− β2) g2k
9: m̂k ←mk/

(
1− βk1

)
10: v̂k ← vk/

(
1− βk2

)
11: ηk ← SetScheduleMultiplier(k)
12: a← wk−1 − ηk

(
αm̂k/(

√
v̂k + ε) + λwk−1

)
13: wk ← proxλk,rw−`1(a)
14: until stopping criterion is met
15: return optimized sparse model w in pre-training

D DOWNSTREAM TRANSFER LEARNING TASKS

As we mentioned in our main paper, we prune the pre-trained BERT model (using NIP and RPP)
and then fine-tune the sparse pre-trained model to different down-stream transfer learning tasks. In
this section, we exhibit the performance of pruned BERT using NIP and RPP on a wide range of
downstream transfer learning tasks to demonstrate our conclusions in the main paper.

D.1 QQP

Quora Question Pairs is a binary classification task where the goal is to determine if two questions
asked on Quora are semantically equivalent.
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Figure A2: Evaluate the performance of pruned BERTBASE using NIP and RPP, respectively (MLM and NSP
accuracy on pre-training data and F1 score of fine-tuning on QQP are reported).

D.2 MRPC

Microsoft Research Paraphrase Corpus consists of sentence pairs automatically extracted from on-
line news sources, with human annotations for whether the sentences in the pair are semantically
equivalent. Dolan & Brockett (2005)
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Figure A3: Evaluate the performance of pruned BERTBASE using NIP and RPP, respectively (MLM and NSP
accuracy on pre-training data and F1 score of fine-tuning on MRPC are reported).

D.3 MNLI

Multi-Genre Natural Language Inference is a large-scale, crowdsourced entailment classification
task Williams et al. (2017). Given a pair of sentences, the goal is to predict whether the second
sentence is an entailment, contradiction, or neutral with respect to the first one.
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Figure A4: Evaluate the performance of pruned BERTBASE using NIP and RPP, respectively (MLM and NSP
accuracy on pre-training data and accuracy of fine-tuning on MNLI are reported).

D.4 MNLIM

Multi-Genre Natural Language Inference has a separated evaluation MNLIM. Following (Devlin
et al., 2019), the fine-tuning process on MNLIM is separated from MNLI. So we present our results
on MNLIM in this subsection.
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Figure A5: Evaluate the performance of pruned BERTBASE using NIP and RPP, respectively (MLM and NSP
accuracy on pre-training data and accuracy of fine-tuning on MNLIM are reported).

D.5 QNLI

Question Natural Language Inference is a version of the Stanford Question Answering Dataset (Ra-
jpurkar et al., 2016) which has been converted to a binary classification task Wanget al., 2018a). The
positive examples are (question, sentence) pairs which do contain the correct answer, and the nega-
tive examples are (question, sentence) from the same paragraph which do not contain the answer.
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Figure A6: Evaluate the performance of pruned BERTBASE using NIP and RPP, respectively (MLM and NSP
accuracy on pre-training data and accuracy of fine-tuning on QNLI are reported).

D.6 SST-2

The Stanford Sentiment Treebank is a binary single-sentence classification task consisting of sen-
tences extracted from movie reviews with human annotations of their sentiment(Socher et al., 2013).
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Figure A7: Evaluate the performance of pruned BERTBASE using NIP and RPP, respectively (MLM and NSP
accuracy on pre-training data and accuracy of fine-tuning on SST-2 are reported).

D.7 COLA

The Corpus of Linguistic Acceptability is a binary single-sentence classification task, where the goal
is to predict whether an English sentence is linguistically acceptable or not (Warstadt et al., 2018).
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Figure A8: Evaluate the performance of pruned BERTBASE using NIP and RPP, respectively (MLM and NSP
accuracy on pre-training data and accuracy of fine-tuning on CoLA are reported).
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E NON CONVERGENCE OF PRUNING BERT USING PREVIOUS METHODS

Training time steps (1k =1000 step)

(a) training loss curve 1

Training time steps (1k =1000 steps)

(b) training loss curve 2

Figure A9: Training loss curve of directly adding `1 loss on the original objective loss function of BERT

As we mentioned in our main paper, we investigate a series of pruning techniques to prune BERT,
include the iterative pruning method (Han et al., 2015) and the one shot pruning (Liu et al., 2019b).
However, most of the previous pruning techniques requires to directly add the `1/`2 regularization
loss on the original training objection loss function of DNN model. We execute a school of experi-
ments and find that, this kind of regularization method is not compatible with BERT. The theoretical
analysis of this incompatibility is in our main paper. We show the experiment results about this
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Training time steps (1k =1000 steps)

(a) training loss curve 1

Training time steps (1k = 1000 steps)

(b) training loss curve 2

Figure A10: Training loss curve of directly adding `2 loss on the original objective loss function of BERT.

incompatibility in this section. For the sake of fair comparison, we not only adopt the same hyper-
parameters (in our experiments about NIP and RPP) on iterative pruning and one shot pruning, we
execute a wide set of hyperparamters to make the iterative pruning and one shot pruning work. We
set the learning λ ∈ {2 ·10−4, 10−4, 5 ·10−5, 3 ·10−5, 2 ·10−5, 1 ·10−5, 1 ·10−6, 1 ·10−7, 1 ·10−8},
batch size B ∈ {256, 512, 1024, 2048}. The number of training epochs reaches the maximum of
128 in Figure 10(b). The maximum number of retraining epochs exceeds the number (40) of epochs
used in pre-training BERT from scratch Devlin et al. (2019). We execute the same hyperparame-
ters (with NIP and RPP) and attempt more hyperparameters on the iterative pruning and one shot
pruning, but iterative and one shot pruning could not converge to a valid solution.
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In Figure A9, we directly add the `1 regularization loss on the original loss function of BERT,
to generate the sparsity in BERT model. We find that this kind of regularization leads to non-
convergence easily (in Figure A9) and often leads to the gradient exception.

In Figure A10, we directly add the `2 regularization loss on the original loss function of BERT,
to generate the sparsity in BERT model. There are gradient exceptions (in Figure 10(a)) when
directly add the `2 regularization loss to the original training objectives of BERT. After we add the
protecting bound to `2 in avoid of gradient exception, the training process could last longer (128
epochs in Figure 10(b)). However, the training loss curve shows that it could not converge to a valid
solution (in Figure 10(b)).
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