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ABSTRACT

Autonomous agents that must exhibit flexible and broad capabilities will need to
be equipped with large repertoires of skills. Defining each skill with a manually-
designed reward function limits this repertoire and imposes a manual engineering
burden. Self-supervised agents that set their own goals can automate this process,
but designing appropriate goal setting objectives can be difficult, and often involves
heuristic design decisions. In this paper, we propose a formal exploration objec-
tive for goal-reaching policies that maximizes state coverage. We show that this
objective is equivalent to maximizing the entropy of the goal distribution together
with goal reaching performance, where goals correspond to full state observations.
To instantiate this principle, we present an algorithm called Skew-Fit for learning
a maximum-entropy goal distributions. Skew-Fit enables self-supervised agents
to autonomously choose and practice reaching diverse goals. We show that, un-
der certain regularity conditions, our method converges to a uniform distribution
over the set of valid states, even when we do not know this set beforehand. Our
experiments show that it can learn a variety of manipulation tasks from images,
including opening a door with a real robot, entirely from scratch and without any
manually-designed reward function.

1 INTRODUCTION

Figure 1: Left: Robot learning to open a door
with Skew-Fit, without any task reward. Right:
Samples from a goal distribution when using (a)
Skew-Fit and (b) unweighted (ie. uniform) sam-
pling. When used as goals, the diverse samples
from Skew-Fit encourage the robot to practice
opening the door more frequently.

Reinforcement learning (RL) provides an appealing
formalism for automated learning of behavioral skills,
but separately learning every potentially useful skill
becomes prohibitively time consuming, both in terms
of the experience required for the agent and the effort
required for the user to design reward functions for
each behavior. What if we could instead design an
unsupervised RL algorithm that automatically explores
the environment and iteratively distills this experience
into general-purpose policies that can accomplish new
user-specified tasks at test time?

For an agent to learn autonomously, it needs an explo-
ration objective. In the absence of any prior knowledge about which states are more useful, an
effective exploration scheme is one that visits as many states as possible, allowing a policy to au-
tonomously prepare for user-specified task that it might see at test time. We can formalize this
objective as maximizing the entropy of the learned policy’s visited state distributionH(S), since a
policy that maximizes this objective should approach a uniform distribution over valid states. How-
ever, a short-coming of this objective is that the resulting policy cannot be used to solve new tasks: it
only knows how to maximize state entropy. In other words, to develop principled unsupervised RL
algorithms that result in useful policies, maximizingH(S) is not enough. We need a mechanism that
allows us to control the resulting policy to achieve new tasks at test-time.

We argue that this can be accomplished by performing goal-directed exploration. In addition to
maximizing the state entropy, we should be able to control where the policy goes by giving it a goal
G that corresponds to a state that it must reach. Mathematically, a goal-conditioned policy should
minimize the conditional entropy over the states given a goal,H(S | G). This objective provides us
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with a principled way for training a policy to explore all states, by maximizingH(S), such that the
state that is reached can be controlled by commanding goals, which means minimizingH(S | G).

Directly using this objective is often intractable, since it requires optimizing the entropy of the
marginal state distribution of the policy,H(S). However, we can sidestep this issue by noting that the
objective is the mutual information between the state and the goal, I(S;G), which can be written as:

H(S)−H(S|G) = I(S;G) = H(G)−H(G|S). (1)

Equation 1 thus gives an equivalent objective for an unsupervised RL algorithm: the agent should set
diverse goals, maximizingH(G), and learn how to reach them, minimizingH(G | S).
While the second term is the typical objective studied in goal-conditioned RL (Kaelbling, 1993;
Andrychowicz et al., 2017), maximizing the diversity of goals is crucial for effectively learning to
reach all possible states. In a new environment, acquiring such a maximum-entropy goal distribution
is challenging: how can an agent set diverse goals when it does not even know what states exist?

In this paper, we address this question via a new algorithm, Skew-Fit, which learns to model
the uniform distribution over states, given only access to data collected by an autonomous goal-
conditioned policy. Our paper makes the following contributions. First, we propose a principled
objective for unsupervised RL, based on Equation 1. While a number of prior works ignore theH(G)
term, we argue that jointly optimizing the entire quantity is needed to develop effective and useful
exploration. Second, we propose a method called Skew-Fit and prove that, under some regularity
conditions, it learns a generative model that converges to a uniform distribution over the goal space,
even when the set of valid states is unknown (e.g., as in the case of images). Third, we empirically
demonstrate that, when combined with goal-conditioned RL, Skew-Fit allows us to autonomously
train goal-conditioned policies that reach diverse states. We test this method on a variety of simulated
vision-based robot tasks without any task-specific reward function. In these experiments, Skew-Fit
reaches substantially better final performance than prior methods, and learns much more quickly. We
also demonstrate that our approach solves a real-world manipulation task, which requires a robot
to learn to open a door from scratch in about five hours, directly from images, and without any
manually-designed reward function.

2 PROBLEM FORMULATION

To ensure that an unsupervised reinforcement learning agent learns to reach all possible states
in a controllable way, we maximize the mutual information between the state S and the goal G,
I(S;G), as stated in Equation 1. This section discusses how to optimize Equation 1 by splitting the
optimization into two parts: minimizingH(G | S) and maximizingH(G).

2.1 MINIMIZING H(G | S): GOAL-CONDITIONED REINFORCEMENT LEARNING

Standard RL considers a Markov decision process (MDP), which has a state space S, action space
A, and unknown dynamics ρ(st+1 | st,at) : S × S × A 7→ [0,+∞). Goal-conditioned RL also
includes a goal space G. For simplicity, we will assume in our derivation that the goal space matches
the state space, such that G = S , though we will show in our experiments that the approach extends
trivially to the case where G is a hand-specified subset of S, such as the global x-y position of a
robot. A goal-conditioned policy π(a | s,g) maps a state s ∈ S and goal g ∈ S to a distribution over
actions a ∈ A, and its objective is to reach the goal, i.e., to make the current state equal to the goal.

Goal-reaching can be formulated as minimizing H(G | S), and many practical goal-reaching
algorithms (Kaelbling, 1993; Lillicrap et al., 2016; Schaul et al., 2015; Andrychowicz et al., 2017;
Nair et al., 2018; Pong et al., 2018; Florensa et al., 2018a) can be viewed as approximations to this
objective by observing that the optimal goal-conditioned policy will deterministically reach the goal,
resulting in a conditional entropy of zero: H(G | S) = 0. See Appendix E for more details. Our
method may thus be used in conjunction with any of these prior goal-conditioned RL methods in
order to jointly minimizeH(G | S) and maximizeH(G).
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2.2 MAXIMIZING H(G): SETTING DIVERSE GOALS

We now turn to the problem of setting diverse goals or, mathematically, maximizing the entropy of
the goal distributionH(G). Let US be the uniform distribution over S , where we assume S has finite
volume so that the uniform distribution is well-defined. Let pφ be the goal distribution from which
goals G are sampled. Our goal is to maximize the entropy of pφ, which we write asH(G). Since the
maximum entropy distribution over S is the uniform distribution US , maximizingH(G) may seem
as simple as choosing the uniform distribution to be our goal distribution: pφ = US . However, this
requires knowing the uniform distribution over valid states, which may be difficult to obtain when
S is a subset of Rn, for some n. For example, if the states correspond to images viewed through
a robot’s camera, S corresponds to the (unknown) set of valid images of the robot’s environment,
while Rn corresponds to all possible arrays of pixel values of a particular size. In such environments,
sampling from the uniform distribution Rn is unlikely to correspond to a valid image of the real
world. Sampling uniformly from S would require knowing the set of all possible valid images, which
we assume the agent does not know when starting to explore the environment.

While we cannot sample arbitrary states from S, we can sample states by performing goal-directed
exploration. To derive and analyze our method, we introduce a simple model of this process: a goal
G ∼ pφ is sampled from the goal distribution pφ, and then the agent attempts to achieve this goal,
which results in a distribution of states S ∈ S seen along the trajectory. We abstract this entire process
by writing the resulting marginal distribution over S as p(S | pφ). We assume that p(S | pφ) has full
support, which can be accomplished with an epsilon-greedy goal reaching policy in a communicating
MDP. We also assume that the entropy of the resulting state distribution H(p(S | pφ)) is no less
than the entropy of the goal distributionH(pφ(S)). Without this assumption, a policy could ignore
the goal and stay in a single state, no matter how diverse and realistic the goals are. Note that this
assumption does not require that the entropy of p(S | pφ) is strictly larger than the entropy of the
goal distribution, pφ. This simplified model allows us to analyze the behavior of our goal-setting
scheme separately from any specific goal-reaching algorithm. We will however show in Section 6
that we can instantiate this approach into a practical algorithm that jointly learns the goal-reaching
policy. In summary, our goal is to acquire a maximum-entropy goal distribution pφ over valid states
S, while only having access to state samples from p(S | pφ).

3 SKEW-FIT: LEARNING A MAXIMUM ENTROPY GOAL DISTRIBUTION

Our method, Skew-Fit, learns a maximum entropy goal distribution pφ using samples collected from
a goal-conditioned policy. We analyze the algorithm and show that Skew-Fit maximizes the entropy
of the goal distribution, and present a practical instantiation for unsupervised deep RL.

3.1 SKEW-FIT ALGORITHM

To learn a uniform distribution over valid goal states, we present a method that iteratively increases
the entropy of a generative model pφ. In particular, given a generative model pφt at iteration t, we
would like to train a new generative model pφt+1

such that pφt+1
has higher entropy than pφt over

the set of valid states. While we do not know the set of valid states S, we can sample states from
p(S | pφt), resulting in an empirical distribution pempt over the states

pempt(s) ,
1

N

N∑
n=1

1{s = Sn}, Sn ∼ p(S | pφt), (2)

and use this empirical distribution to train the next generative model pφt+1
. However, if we simply

train pφt+1
to model this empirical distribution, it may not necessarily have higher entropy than pφt .

The intuition behind our method is quite simple: rather than fitting a generative model to our empirical
distribution, we skew the empirical distribution so that rarely visited states are given more weight.
See Figure 2 for a visualization of this process. How should we skew the empirical distribution if
we want to maximize the entropy of pφt+1

? If we had access to the density of each state, pempt(S),
then we could simply weight each state by 1/pempt(S). We could then perform maximum likelihood
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Figure 2: Our method, Skew-Fit, samples goals for goal-conditioned RL in order to induce a uniform state
visitation distribution. We start by sampling from our replay buffer, and weighting the states such that rare states
are given more weight. We then train a generative model pφt+1 with the weighted samples. By sampling new
states with goals proposed from this new generative model, we obtain a higher entropy distribution of states in
our replay buffer at the next iteration.

estimation (MLE) for the uniform distribution by using the following loss to train φt+1:

L(φ) = ES∼US [log pφ(S)] = ES∼pempt

[
US(S)

pempt(S)
log pφ(S)

]
∝ ES∼pempt

[
1

pempt(S)
log pφ(S)

]
where we use the fact that the uniform distribution US(S) has constant density for all states in S.
However, computing this density pempt(S) requires marginalizing out the MDP dynamics, which
requires an accurate model of both the dynamics and the goal-conditioned policy.

We avoid needing to model the entire MDP process by approximating pempt(S) with our previous
learned generative model: pempt(S) ≈ p(S | pφt) ≈ pφt(S). We therefore weight each state by the
following weight function

wt,α(S) , pφt(S)
α, α < 0. (3)

where α is a hyperparameter that controls how heavily we weight each state. If our approximation pφt
was exact, we could choose α = −1 and recover the exact importance sampling procedure described
above. If α = 0, then this skew step has no effect. By choosing intermediate values of α, we can
trade off the reliability of our estimate pφt(S) with the speed at which we want to increase the entropy
of the goal distribution.

Variance Reduction As described, this procedure relies on importance sampling (IS), which can
have high variance, particularly if pφt(S) ≈ 0. We therefore choose a class of generative models
where the probabilities are prevented from collapsing to zero, as we will describe in Section 4. To
further reduce the variance, we train pφt+1

with sampling importance resampling (SIR) (Rubin, 1988).
Rather than sampling from pempt and weighting the update from each sample by wt,α, SIR explicitly
defines a skewed distribution as

pskewedt(s) ,
1

Zα
pempt(s)wt,α(s), Zα =

N∑
n=1

pempt(Sn)wt,α(Sn), (4)

where Zα is the normalizing coefficient and pempt is given by Equation 2. We note that computing
Zα adds little computational overhead, since all of the weights already need to be computed. We then
fit the generative model at the next iteration pφt+1

to pskewedt using standard MLE. We found that
using SIR resulted in significantly lower variance than IS. See Appendix B.2 for this comparision.

Goal Sampling Alternative Because pφt+1
≈ pskewedt , at iteration t + 1, one can sample goals

from either pφt+1
or pskewedt . Sampling goals from pskewedt may be preferred if sampling from the

learned generative model pφt+1
is computationally or otherwise challenging. In either case, one still

needs to train the generative model pφt to create pskewedt . In our experiments, we found that both
methods perform well.
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Summary Overall, Skew-Fit samples data from the environment and weights different samples by
their density under the generative model pφt. We prove in the next section conditions under which
this weighting makes the generative model at the next iteration pφt+1 have higher entropy. With
higher entropy, the pφt+1

is more likely to generate goals at the frontier of unseen states, which results
in more uniform state coverage. Skew-Fit is shown in Figure 2 and summarized in Algorithm 1.

Algorithm 1 Skew-Fit
1: for Iteration t = 1, 2, ... do
2: Collect N states {Si}Ni=1 by sampling goals from pφt (or pskewedt) and running goal-

conditioned policy.
3: Construct skewed distribution pskewedt (Equation 3 and Equation 4).
4: Fit pφt+1 to skewed distribution pskewedt using MLE.
5: end for

3.2 SKEW-FIT ANALYSIS

In this section, we provide conditions under which pφt converges in distribution to the uniform
distribution over the state space S. To make this analysis possible, we consider the case where
N → ∞, which allows us to study the limit behavior of the goal distribution pskewedt . Our most
general result is stated as follows:

Lemma 3.1. Let S be a compact set. Define the set of distributionsQ = {p : support of p is S}. Let
F : Q 7→ Q be a continuous function and such thatH(F(p)) ≥ H(p) with equality if and only if p is
the uniform probability distribution on S , US . Define the sequence of distributions P = (p1, p2, . . . )
by starting with any p1 ∈ Q and recursively defining pt+1 = F(pt).
The sequence P converges to US .

Proof. See Appendix Section E.

We will apply Lemma 3.1 to be the map from pskewedt to pskewedt+1
to show that pskewedt converges

to US . If we assume that the goal-conditioned policy and generative model learning procedure are
well behaved ( i.e., the maps from pφt(S) to pempt and from pskewedt to pφt+1

are continuous ), then
to apply Lemma 3.1, we only need to show that H(pskewedt) ≥ H(pempt) with equality if and only
if pempt = US . For the simple case when pφt = pempt identically at each iteration, we prove the
convergence of Skew-Fit true for any value of α ∈ [−1, 0) in Appendix A.3. However, in practice,
pφt only approximates pempt . To address this more realistic situation, we prove the following result:

Lemma 3.2. Given two distribution pempt and pφt where pempt � pφt
1 and

CovS∼pempt

[
log pempt(S), log pφt(S)

]
> 0, (5)

define the distribution pskewedt as in Equation 4. Let Hα(α) be the entropy of pskewedt for a fixed α.
Then there exists a constant a < 0 such that for all α ∈ [a, 0),

H(pskewedt) = Hα(α) > H(pempt).

Proof. See Appendix Section E.

Thus, our generative model pφt does not need to exactly fit the empirical distribution. We merely
need for the log densities of pφt and pempt to be correlated, which we expect to happen frequently
with an accurate goal-conditioned policy, since pempt is the set of states seen when trying to reach
goals from pφt . In this case, if we choose negative values of α that are small enough, then the entropy
of pskewedt will be higher than that of pempt . Empirically, we found that α values as low as α = −1
performed well.

In summary, we see that under certain assumptions, pskewedt converges to US . Since we train each
generative model pφt+1 by fitting it to pskewedt , we expect pφt to also converge to US .

1 p� q means that p is absolutely continuous with respect to q, i.e. p(s) = 0 =⇒ q(s) = 0.
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4 TRAINING GOAL-CONDITIONED POLICIES WITH SKEW-FIT

Thus far, we have presented and derived Skew-Fit assuming that we have access to a goal-reaching
policy, allowing us to separately analyze how we can maximize H(G). However, in practice we
do not have access to such a policy, and in this section we discuss how we concurrently train a
goal-reaching policy.

Maximizing I(S;G) can be done by simultaneously performing Skew-Fit and training a goal
conditioned policy to minimize H(G | S), or, equivalently, maximize −H(G | S). Maximizing
−H(G | S) requires computing the density log p(G | S), which may be difficult to compute
without strong modeling assumptions. However, for any distribution q, the following lower bound for
−H(G | S) holds:

−H(G | S) = E(G,S)∼pφt ,π [log q(G | S)] +DKL(p | q) ≥ E(G,S)∼pφt ,π [log q(G | S)] ,

where DKL denotes Kullback–Leibler divergence as discussed by Barber & Agakov (2004). Thus, to
minimizeH(G | S), we train a policy to maximize the following reward:

r(S,G) = log q(G | S).

For the RL algorithm, we use reinforcement learning with imagined goals (RIG) (Nair et al., 2018),
though in principle any goal-conditioned method could be used. RIG is an efficient off-policy goal-
conditioned method that solves the vision-based RL problem in a learned latent space. In particular,
RIG fits a β-VAE and uses it to encode all observations and goals into a latent space, which it uses as
the state representation. RIG also uses the β-VAE to compute rewards, log q(G | S). Unlike RIG, we
use the goal distribution from Skew-Fit to sample goals, both for exploration and for relabeling goals
during training (Andrychowicz et al., 2017). Since RIG already trains a generative model over states,
we reuse this β-VAE for the generative model pφ ofSkew-Fit. In other words, our method uses the
likelihood estimates from the β-VAE to choose the probability of sampling each state in Equation 3.
To prevent these probabilities from collapsing to zero, we model the posterior of the β-VAE as a
multivariate Gaussian distribution with a fixed variance and only learn the mean. We include a
detailed summary of RIG and description our how we combine Skew-Fit and RIG in Appendix C.1.

5 RELATED WORK

Many prior methods for training goal-conditioned policies assume that a goal distribution is available
to sample from during exploration (Kaelbling, 1993; Schaul et al., 2015; Andrychowicz et al., 2017;
Pong et al., 2018). Other methods use data collected from a randomly initialized policy or heuristics
based on data collected online to design a non-parametric (Colas et al., 2018b; Warde-Farley et al.,
2018; Florensa et al., 2018a; Zhao & Tresp, 2019) or parametric (Péré et al., 2018; Nair et al., 2018)
goal distribution. We remark that Warde-Farley et al. (2018) also motivate their work in terms of
minimizing a lower bound forH(G | S). Our work is complementary to these goal-reaching methods:
rather than focusing on how to train goal-reaching policies, we propose a principled method for
maximizing the entropy of a goal sampling distribution,H(G).

Our method learns without any task rewards, directly acquiring a policy that can be reused to reach
user-specified goals. This stands in contrast to exploration methods that give bonus rewards based on
state visitation frequency (Bellemare et al., 2016; Ostrovski et al., 2017; Tang et al., 2017; Savinov
et al., 2018; Chentanez et al., 2005; Lopes et al., 2012; Stadie et al., 2016; Pathak et al., 2017;
Burda et al., 2018; 2019; Mohamed & Rezende, 2015; Tang et al., 2017; Fu et al., 2017). While
these methods can also be used without a task reward, they provide no mechanism for distilling the
knowledge gained from visiting diverse states into flexible policies that can be applied to accomplish
new goals at test-time: their policies visit novel states, and they quickly forget about them as other
states become more novel.

Other prior methods extract reusable skills in the form of latent-variable-conditioned policies, where
latent variables can be interpreted as options (Sutton et al., 1999) or abstract skills (Hausman et al.,
2018; Gupta et al., 2018b; Eysenbach et al., 2019; Gupta et al., 2018a; Florensa et al., 2017). The
resulting skills may be diverse, but they have no grounded interpretation, while our method can be
used immediately after unsupervised training to reach diverse user-specified goals.
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Some prior methods propose to choose goals based on heuristics such as learning progress (Baranes
& Oudeyer, 2012; Veeriah et al., 2018; Colas et al., 2018a), how off-policy the goal is (Nachum et al.,
2018), level of difficulty (Florensa et al., 2018b) or likelihood ranking (Zhao & Tresp, 2019). In
contrast, our approach provides a principled framework for optimizing a concrete and well-motivated
exploration objective, and can be shown to maximize this objective under regularity assumptions.
The work of Hazan et al. (2018) also provably optimizes a well-motivated exploration objective,
but is limited to tabular MDPs, while Skew-Fit is able to handle high dimensional settings such as
vision-based continuous control.

6 EXPERIMENTS

Our experiments study the following questions: (1) Does Skew-Fit empirically result in a goal
distribution with increasing entropy? (2) In image-based domains, how does Skew-Fit compare to
prior work on choosing goals for goal-conditioned RL? (3) Can Skew-Fit be applied to a real-world,
vision-based robot task?

Does Skew-Fit Maximize Entropy? To see the effects of Skew-Fit on goal distribution entropy in
isolation of learning a goal reacher, we begin by studying an idealized example where the policy is a
near-perfect goal-reaching policy. The MDP is defined on a 2-by-2 unit square-shaped corridor (see
Figure 3). At the beginning of an episode, the agent begins in the bottom-left corner and samples
a goal from the goal distribution pφt . The policy reaches the state that is closest to this goal and
inside the corridor, giving us a state S to add to our empirical distribution. We compare Skew-Fit
to sampling uniformly from the replay buffer (labeled MLE). The β-VAE hyperparameters used
to train pφt are given in Appendix C.5. As seen in Figure 3, Skew-Fit results in learning a high

Figure 3: (Left) The set of final states visited by our agent and MLE over the course of training. In contrast to
MLE, our method quickly approaches a uniform distribution over the set of valid states. (Right) The entropy of
the sample data distribution, which quickly reaches its maximum for Skew-Fit. The entropy was calculated via
discretization onto a 60 by 60 grid.

entropy, near-uniform distribution over the state space much faster. In contrast, uniform sampling
from the replay buffer results in a policy only setting goals in and exploring the bottom left corner.
These results empirically validate that naively using previous experience to set goals will not result in
diverse exploration and that Skew-Fit results in a high-entropy goal distribution.

Vision-Based Continuous Control Tasks We now evaluate Skew-Fit on a variety of continuous
control tasks, where the policy must control a robot arm using only image observations, without
access to any ground truth reward signal. We test our method on three different simulated continuous

Figure 4: We evaluate on these continuous control environments. From left to right: Visual Pusher, a simulated
pushing task; Visual Door, a door opening task; Visual Pickup, a picking task; and Real World Visual Door,
a real world door opening task. All tasks are solved from images and without any task-specific reward. See
Appendix D for details.
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Figure 5: (Left) Learning curves for simulated continuous control experiments. Lower is better. For each
environment and method, we show the mean and standard deviation of 6 seeds and smooth temporally across
25 epochs within each seed. Skew-Fit consistently outperforms RIG and various baselines. See the text for
description of each method. (Right) The first column displays example test goal images for each environment.
In the next two columns, we display final images reached by Skew-Fit and RIG respectively. Under each image
is the final distance in state space to provide a notion of the behavior of each method in the plots.

control tasks released by the authors of RIG (Nair et al., 2018): Visual Door, Visual Pusher, and
Visual Pickup. To our knowledge, these are the only goal-conditioned, vision-based continuous
control environments that are publicly available and used in experimental evaluations in prior work,
making them a good point of comparison. See Figure 4 for visuals and Appendix C for details of
these environments. The policies are trained in a completely unsupervised manner, without access
to any prior information about the state-space or any pre-defined goal-sampling distribution. To
evaluate their performance, we sample goal images from a uniform distribution over valid states and
report the agent’s final distance to the corresponding simulator states (e.g., distance of the object
to the target object location), but the agent never has access to this true uniform distribution nor
the ground-truth state information during training. While this evaluation method and metric is only
practical in simulation, it provides us with a quantitative measure of a policy’s ability to reach a broad
coverage of goals in a vision-based setting.

We use these domains to compare Skew-Fit to a number of existing methods on goal-sampling. We
compare to Warde-Farley et al. (2018), a vision-based method which uses a non-parametric approach
based on clustering to sample goals and an image discriminator to compute rewards. We denote this
method as DISCERN. The other methods that we compare to were developed in non-vision, state-
based environments. To ensure a fair comparison across methods, we combine these prior methods
with a policy trained using RIG. First, we compare to RIG without Skew-Fit. We also compared to
RIG using the relabeling scheme described in the hindsight experience replay (labeled HER). We
compare to curiosity-driven prioritization (Ranked-Based Priority) (Zhao & Tresp, 2019), a variant
of HER that samples goals for relabeling based on their ranked likelihoods. Florensa et al. (2018b)
samples goals from a GAN based on the difficulty of reaching the goal. We compare against this
method by replacing pφ with the GAN and label it AutoGoal GAN. We also separately compare to
the goal proposal mechanism proposed by Warde-Farley et al. (2018) and otherwise train the policy
with RIG, which we label DISCERN-g. Lastly, to demonstrate the difficulty of the exploration
challenge in these domains, we compare to # Exploration (Tang et al., 2017), an exploration method
that assigns bonus rewards based on the novelty of new states. Implementation details of the prior
methods is given in Appendix C.3.

We see in Figure 5 that Skew-Fit significantly outperforms prior methods both in terms of task
performance and sample complexity. The most common failure mode for prior methods is that the
goal distributions collapse, resulting in the agent learning to reach only a fraction of the state space,
as shown in Figure 1. For comparison, additional samples of pφ when trained with and without
Skew-Fit are shown in Appendix B.3. Those images show that without Skew − Fit, pφ produces a
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small, non-diverse distribution for each environment: the object is in the same place for pickup, the
puck is often in the starting position for pushing, and the door is always closed. In contrast, Skew-Fit
proposes goals where the object is in the air and on the ground, where the puck positions are varied,
and the door angle changes.

The direct effect of these goal choices can be seen by visualizing more example rollouts for RIG
and Skew-Fit. Due to space constraints, these visuals are in Figure 13 in Appendix B.3. The figure
shows that standard RIG only learns to reach states close to the initial position, while Skew-Fit learns
to reach the entire state space. A quantitative comparison of the various methods on the pickup task
can be seen in Figure 6, which gives the cumulative total exploration pickups for each method. From
the graph, we can see that only Skew-Fit learns to pay attention to the object and therefore increase
the rate at which the policy picks up the object during exploration. The other methods only rely on
the randomness of the initial policy to occasionally pick up the object, resulting in a near-constant
rate of object lifts.
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Figure 6: Cumulative total pickups during exploration for each method. The prior methods fail to pay attention
to the object and only pick it up at the same rate as the initial policy. In contrast, after seeing the object picked up
a few times, Skew-Fit practices picking up the object more often by sampling the appriopriate exploration goals.
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Figure 7: Learning curve for Real World
Visual Door environment. We visually label
a success if the policy opens the door to the
target angle by the last state of the trajec-
tory. Skew-Fit results in considerable sample
efficiency gains over prior work on this real-
world task.

Real-World Vision-Based Robotic Manipulation We
also demonstrate that Skew-Fit scales well to the real world
with a door opening task, Real World Visual Door. See
Figure 4 for a picture of this environment. While a number
of prior works have studied RL-based learning of door
opening Kalakrishnan et al. (2011); Chebotar et al. (2017),
we demonstrate the first method for autonomous learning
of door opening without a user-provided, task-specific re-
ward function. As in simulation, we do not provide any
goals to the agent and simply let it interact with the door
to solve the door opening task from scratch, without any
human guidance or reward signal. We train two agents
using Skew-Fit with RIG and RIG alone. Unlike in sim-
ulation, we cannot measure the difference between the
policy’s achieved and desired door angle since we do not
have access to the true state of the world. Instead, we
simply visually denote a binary success/failure for each
goal based on whether the last state in the trajectory achieves the target angle. Every seven and a
half minutes of interaction time we evaluate on 5 goals and plot the cumulative successes for each
method. As Figure 7 shows, standard RIG only starts to open the door after five hours of training. In
contrast, Skew-Fit learns to occasionally open the door after three hours of training and achieves a
near-perfect success rate after five and a half hours of interaction time, demonstrating that Skew-Fit
is a promising technique for solving real world tasks without any human-provided reward function.
Videos of Skew-Fit solving this task and the simulated tasks can be viewed on our website.2

Additional Experiments To study the sensitivty of our method to the hyperparameter α, we sweep
α across the values [−1,−0.75,−0.5,−0.25, 0] on the simulated image-based tasks. Due to space
constraints, the sensitivity analysis over the hyperparameter α is in Appendix B, and the results
demonstrate that Skew-Fit works across a large range of values for α, and α = −1 consistently
outperform α = 0, where the empirical distribution is not skewed. Additionally, Appendix C

2Anonymous while under review: https://sites.google.com/view/skew-fit-iclr-2020
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provides a complete description our method hyper-parameters, including network architecture and
RL algorithm hyperparameters.

7 CONCLUSION

We presented a formal objective for self-supervised goal-directed exploration, allowing researchers
to quantify progress and compare progress when designing algorithms that enable agents to au-
tonomously learn. We also presented Skew-Fit, an algorithm for training a generative model to
approximate a uniform distribution over valid states, using data obtained via goal-conditioned rein-
forcement learning, and our theoretical analysis gives conditions under which Skew-Fit converges to
the uniform distribution. When such a model is used to choose goals for exploration and to relabeling
goals for training, the resulting method results in much better coverage of the state space, enabling our
method to explore effectively. Our experiments show that when we concurrently train a goal-reaching
policy using self-generated goals, Skew-Fit produces quantifiable improvements on simulated robotic
manipulation tasks, and can be used to learn a door opening skill to reach a 95% success rate directly
on a real-world robot, without any human-provided reward supervision.

REFERENCES

Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong, R., Welinder, P., Mcgrew, B., Tobin, J., Abbeel,
P., and Zaremba, W. Hindsight Experience Replay. In Advances in Neural Information Processing Systems
(NIPS), 2017.

Baranes, A. and Oudeyer, P.-Y. Active Learning of Inverse Models with Intrinsically Motivated Goal Exploration
in Robots. Robotics and Autonomous Systems, 61(1):49–73, 2012. doi: 10.1016/j.robot.2012.05.008.

Barber, D. and Agakov, F. V. Information maximization in noisy channels: A variational approach. In Advances
in Neural Information Processing Systems, pp. 201–208, 2004.

Bellemare, M., Srinivasan, S., Ostrovski, G., Schaul, T., Saxton, D., and Munos, R. Unifying count-based
exploration and intrinsic motivation. In Advances in Neural Information Processing Systems (NIPS), pp.
1471–1479, 2016.

Billingsley, P. Convergence of probability measures. John Wiley & Sons, 2013.

Burda, Y., Edwards, H., Storkey, A., and Klimov, O. Exploration by random network distillation. arXiv preprint
arXiv:1810.12894, 2018.

Burda, Y., Edwards, H., Pathak, D., Storkey, A., Darrell, T., and Efros, A. A. Large-scale study of curiosity-driven
learning. In International Conference on Learning Representations (ICLR), 2019.

Chebotar, Y., Kalakrishnan, M., Yahya, A., Li, A., Schaal, S., and Levine, S. Path integral guided policy search.
In 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 3381–3388. IEEE, 2017.

Chentanez, N., Barto, A. G., and Singh, S. P. Intrinsically motivated reinforcement learning. In Advances in
neural information processing systems, pp. 1281–1288, 2005.

Colas, C., Fournier, P., Sigaud, O., and Oudeyer, P. CURIOUS: intrinsically motivated multi-task, multi-goal
reinforcement learning. CoRR, abs/1810.06284, 2018a.

Colas, C., Sigaud, O., and Oudeyer, P.-Y. Gep-pg: Decoupling exploration and exploitation in deep reinforcement
learning algorithms. International Conference on Machine Learning (ICML), 2018b.

Eysenbach, B., Gupta, A., Ibarz, J., and Levine, S. Diversity is All You Need: Learning Skills without a Reward
Function. In International Conference on Learning Representations (ICLR), 2019.

Florensa, C., Duan, Y., and Abbeel, P. Stochastic neural networks for hierarchical reinforcement learning. In
International Conference on Learning Representations (ICLR), 2017.

Florensa, C., Degrave, J., Heess, N., Springenberg, J. T., and Riedmiller, M. Self-supervised Learning of Image
Embedding for Continuous Control. In Workshop on Inference to Control at NeurIPS, 2018a.

Florensa, C., Held, D., Geng, X., and Abbeel, P. Automatic Goal Generation for Reinforcement Learning Agents.
In International Conference on Machine Learning (ICML), 2018b.

10



Under review as a conference paper at ICLR 2020

Fu, J., Co-Reyes, J. D., and Levine, S. EX 2 : Exploration with Exemplar Models for Deep Reinforcement
Learning. In Advances in Neural Information Processing Systems (NIPS), 2017.

Fujimoto, S., van Hoof, H., and Meger, D. Addressing Function Approximation Error in Actor-Critic Methods.
In International Conference on Machine Learning (ICML), 2018.

Gupta, A., Eysenbach, B., Finn, C., and Levine, S. Unsupervised meta-learning for reinforcement learning.
CoRR, abs:1806.04640, 2018a.

Gupta, A., Mendonca, R., Liu, Y., Abbeel, P., and Levine, S. Meta-Reinforcement Learning of Structured
Exploration Strategies. In Advances in Neural Information Processing Systems (NIPS), 2018b.

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., Kumar, V., Zhu, H., Gupta, A., Abbeel, P.,
and Levine, S. Soft actor-critic algorithms and applications. CoRR, abs/1812.05905, 2018.

Hausman, K., Springenberg, J. T., Wang, Z., Heess, N., and Riedmiller, M. Learning an Embedding Space for
Transferable Robot Skills. In International Conference on Learning Representations (ICLR), pp. 1–16, 2018.

Hazan, E., Kakade, S. M., Singh, K., and Soest, A. V. Provably efficient maximum entropy exploration. CoRR,
abs/1812.02690, 2018.

Kaelbling, L. P. Learning to achieve goals. In International Joint Conference on Artificial Intelligence (IJCAI),
volume vol.2, pp. 1094 – 8, 1993.

Kalakrishnan, M., Righetti, L., Pastor, P., and Schaal, S. Learning force control policies for compliant
manipulation. In 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4639–4644.
IEEE, 2011.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., and Wierstra, D. Continuous
control with deep reinforcement learning. In International Conference on Learning Representations (ICLR),
2016. ISBN 0-7803-3213-X. doi: 10.1613/jair.301.

Lopes, M., Lang, T., Toussaint, M., and Oudeyer, P.-Y. Exploration in model-based reinforcement learning
by empirically estimating learning progress. In Advances in Neural Information Processing Systems, pp.
206–214, 2012.

Mohamed, S. and Rezende, D. J. Variational information maximisation for intrinsically motivated reinforcement
learning. In Advances in neural information processing systems, pp. 2125–2133, 2015.

Nachum, O., Brain, G., Gu, S., Lee, H., and Levine, S. Data-Efficient Hierarchical Reinforcement Learning. In
Advances in Neural Information Processing Systems (NeurIPS), 2018.

Nair, A., Pong, V., Dalal, M., Bahl, S., Lin, S., and Levine, S. Visual Reinforcement Learning with Imagined
Goals. In Advances in Neural Information Processing Systems (NeurIPS), 2018.

Nielsen, F. and Nock, R. Entropies and cross-entropies of exponential families. In Image Processing (ICIP),
2010 17th IEEE International Conference on, pp. 3621–3624. IEEE, 2010.

Ostrovski, G., Bellemare, M. G., Oord, A., and Munos, R. Count-based exploration with neural density models.
In International Conference on Machine Learning, pp. 2721–2730, 2017.

Pathak, D., Agrawal, P., Efros, A. A., and Darrell, T. Curiosity-Driven Exploration by Self-Supervised Prediction.
In International Conference on Machine Learning (ICML), pp. 488–489. IEEE, 2017.

Péré, A., Forestier, S., Sigaud, O., and Oudeyer, P.-Y. Unsupervised Learning of Goal Spaces for Intrinsically
Motivated Goal Exploration. In International Conference on Learning Representations (ICLR), 2018.

Pong, V., Gu, S., Dalal, M., and Levine, S. Temporal Difference Models: Model-Free Deep RL For Model-Based
Control. In International Conference on Learning Representations (ICLR), 2018.

Rubin, D. B. Using the sir algorithm to simulate posterior distributions. Bayesian statistics, 3:395–402, 1988.

Savinov, N., Raichuk, A., Marinier, R., Vincent, D., Pollefeys, M., Lillicrap, T., and Gelly, S. Episodic curiosity
through reachability. arXiv preprint arXiv:1810.02274, 2018.

Schaul, T., Horgan, D., Gregor, K., and Silver, D. Universal Value Function Approximators. In International
Conference on Machine Learning (ICML), pp. 1312–1320, 2015. ISBN 9781510810587.

Stadie, B. C., Levine, S., and Abbeel, P. Incentivizing Exploration In Reinforcement Learning With Deep
Predictive Models. In International Conference on Learning Representations (ICLR), 2016.

11



Under review as a conference paper at ICLR 2020

Sutton, R. S., Precup, D., and Singh, S. Between mdps and semi-mdps: A framework for temporal abstraction in
reinforcement learning. Artificial intelligence, 112(1-2):181–211, 1999.

Tang, H., Houthooft, R., Foote, D., Stooke, A., Chen, X., Duan, Y., Schulman, J., De Turck, F., and Abbeel, P.
#Exploration: A Study of Count-Based Exploration for Deep Reinforcement Learning. In Neural Information
Processing Systems (NIPS), 2017.

Veeriah, V., Oh, J., and Singh, S. Many-goals reinforcement learning. arXiv preprint arXiv:1806.09605, 2018.

Warde-Farley, D., de Wiele, T. V., Kulkarni, T., Ionescu, C., Hansen, S., and Mnih, V. Unsupervised control
through non-parametric discriminative rewards. CoRR, abs/1811.11359, 2018.

Zhao, R. and Tresp, V. Curiosity-driven experience prioritization via density estimation. CoRR, abs/1902.08039,
2019.

12



Under review as a conference paper at ICLR 2020

A PROOFS

A.1 PROOF OF LEMMA 3.1

Lemma A.1. Let S be a compact set. Define the set of distributions Q = {p : support of p is S}.
Let F : Q 7→ Q be a continuous function and such that H(F(p)) ≥ H(p) with equality if and
only if p is the uniform probability distribution on S, US . Define the sequence of distributions
P = (p1, p2, . . . ) by starting with any p1 ∈ Q and recursively defining pt+1 = F(pt).
The sequence P converges to US .

Proof. The uniform distribution US is well defined since S is compact. Because S is a compact
set, by Prokhorov’s Theorem Billingsley (2013), the set Q is sequentially compact. Thus, P has a
convergent subsequence P ′ = (pk1 , pk2 , . . . ) ⊂ P for k1 < k2 < . . . that converges to a distribution
p∗ ∈ Q. Because F is continuous, p∗ must be a fixed point of F since by the convergence mapping
theorem, we have that

lim
i→∞

pki = p∗ =⇒ lim
i→∞

F(pki) = H(p∗)

and so

p∗ = lim
i→∞

pki

= lim
i→∞

F(pki−1
)

= H(p∗).
The only fixed point of F is US since for any distribution p that is not the uniform distribution,
US , we have that H(F(p)) > H(p) which implies that F(p) 6= p. Thus, P ′ converges to the only
fixed point, US . Since the entropy cannot decrease, then entropy of the distributions in P must also
converge to the entropy of US . Lastly, since entropy is a continuous function of distribution, P must
converge to US .

A.2 PROOF OF LEMMA 3.2

Lemma A.2. Given two distribution p(x) and q(x) where p� q and

0 < Covp[log p(X), log q(X)] (6)

define the distribution pα as

pα(x) =
1

Zα
p(x)q(x)α

where α ∈ R and Zα is the normalizing factor. LetHα(α) be the entropy of pα. Then there exists a
constant a > 0 such that for all α ∈ [−a, 0),

Hα(α) > Hα(0) = H(p). (7)

Proof. Observe that {pα : α ∈ [−1, 0]} is a one-dimensional exponential family

pα(x) = eαT (x)−A(α)+k(x)

with log carrier density k(x) = log p(x), natural parameter α, sufficient statistic T (x) = log q(x),
and log-normalizer A(α) =

∫
X e

αT (x)+k(x)dx. As shown in Nielsen & Nock (2010), the entropy of
a distribution from a one-dimensional exponential family with parameter α is given by:

Hα(α) , H(pα) = A(α)− αA′(α)− Epα [k(X)]

The derivative with respect to α is then

d

dα
Hα(α) = −αA′′(α)−

d

dα
Epα [k(x)]

= −αA′′(α)− Eα[k(x)(T (x)−A′(α)]
= −αVarpα [T (x)]− Covpα [k(x), T (x)]
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where we use the fact that the nth derivative of A(α) give the n central moment, i.e. A′(α) =
Epα [T (x)] and A′′(α) = Varpα [T (x)]. The derivative of α = 0 is

d

dα
Hα(0) = −Covp0 [k(x), T (x)]

= −Covp[log p(x), log q(x)]
which is negative by assumption. Because the derivative at α = 0 is negative, then there exists a
constant a > 0 such that for all α ∈ [−a, 0],Hα(α) > Hα(0) = H(p).

A.3 SIMPLE CASE PROOF

We prove the convergence directly for the (even more) simplified case when pθ = p(S | pφt) using a
similar technique:
Lemma A.3. Assume the set S has finite volume so that its uniform distribution US is well defined
and has finite entropy. Given any distribution p(s) whose support is S, recursively define pt with
p1 = p and

pt+1(s) =
1

Ztα
pt(s)

α, ∀s ∈ S

where Ztα is the normalizing constant and α ∈ [0, 1).

The sequence (p1, p2, . . . ) converges to US , the uniform distribution S.

Proof. If α = 0, then p2 (and all subsequent distributions) will clearly be the uniform distribution.
We now study the case where α ∈ (0, 1).

At each iteration t, define the one-dimensional exponential family {ptθ : θ ∈ [0, 1]} where ptθ is

ptθ(s) = eθT (s)−A(θ)+k(s)

with log carrier density k(s) = 0, natural parameter θ, sufficient statistic T (s) = log pt(s), and log-
normalizer A(θ) =

∫
S e

θT (s)ds. As shown in Nielsen & Nock (2010), the entropy of a distribution
from a one-dimensional exponential family with parameter θ is given by:

Htθ(θ) , H(ptθ) = A(θ)− θA′(θ)
The derivative with respect to θ is then

d

dθ
dHtθ(θ) = −θA′′(θ)

= −θVars∼ptθ [T (s)]
= −θVars∼ptθ [log pt(s)] (8)

≤ 0

where we use the fact that the nth derivative of A(θ) is the n central moment, i.e. A′′(θ) =
Vars∼ptθ [T (s)]. Since variance is always non-negative, this means the entropy is monotonically
decreasing with θ. Note that pt+1 is a member of this exponential family, with parameter θ = α ∈
(0, 1). So

H(pt+1) = Htθ(α) ≥ Htθ(1) = H(pt)
which implies

H(p1) ≤ H(p2) ≤ . . . .
This monotonically increasing sequence is upper bounded by the entropy of the uniform distribution,
and so this sequence must converge.

The sequence can only converge if d
dθH

t
θ(θ) converges to zero. However, because α is bounded away

from 0, Equation 8 states that this can only happen if

Vars∼ptθ [log pt(s)]→ 0. (9)

Because pt has full support, then so does ptθ. Thus, Equation 9 is only true if log pt(s) converges to a
constant, i.e. pt converges to the uniform distribution.
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B ADDITIONAL REINFORCEMENT LEARNING EXPERIMENTS

B.1 SKEW-FIT WITH LEARNED POLICIES

Sensitivity Analysis We study the sensitvity of the α hyperparameter by testing values of
α ∈ [−1,−0.75,−0.5,−0.25, 0] on the Visual Door and Visual Pusher task. The results are in-
cluded in Figure 8 and shows that our method is robust to different parameters of α, particularly for
the more challenging Visual Pusher task. Also, the method consistently outperform α = 0, which is
equivalent to sampling uniformly from the replay buffer.

Figure 8: We sweep different values of α on Visual Door, Visual Pusher and Visual Pickup. Skew-Fit helps
the final performance on the Visual Door task, and outperforms No Skew-Fit (alpha=0) as seen in the zoomed
in version of the plot. In the more challenging Visual Pusher task, we see that Skew-Fit consistently helps and
halves the final distance. Similarly, in we observe that Skew-Fit consistently outperforms No Skew-fit on Visual
Pickup. Note that alpha=-1 is not always the optimal setting for each environment, but performs strongly in each
case in terms of final performance.

2D navigation We reproduce the 2D navigation environment experiment from Section 6, and
replace the oracle goal-reacher with a goal-reaching policy that is simultaneously trained with the
goal setter. The policy outputs velocities with maximum speed of one. Evaluation goals are chosen
uniformly over the valid states. In Figure 9a, we can see that a policy trained with a goal distribution
trained by Skew-Fit consistently learns to reach all goals, whereas a goal distribution trained with
uniform sampling (labeled MLE) results in a policy that fails to reach states far from the starting
position.
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Figure 9: (a) Comparison of Skew-Fit vs MLE goal sampling on final distance to goal on RL version of the
pointmass environment. Skew-Fit consistently learns to solve the task, while MLE often fails. (b) Heatmaps
of final distance to each possible goal location for Skew-Fit and MLE. Skew-Fit learns a good policy over the
entire state space, but MLE performs poorly for states far away from the starting position.
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Method NLL
MLE on uniform (oracle) 20175.4
Skew-Fit on unbalanced 20175.9
MLE on unbalanced 20178.03

Table 1: Despite training on a unbalanced Visual Door dataset (see Figure 7 of paper), the negative log-likelihood
(NLL) of Skew-Fit evaluated on a uniform dataset matches that of a VAE trained on a uniform dataset.

B.2 VARIANCE ABLATION

Figure 10: Gradient variance averaged across parameters in last epoch of training VAEs. Values of α less than
−1 are numerically unstable for importance sampling (IS), but not for Skew-Fit.

We measure the gradient variance of training a VAE on an unbalanced Visual Door image dataset with
Skew-Fit vs Skew-Fit with importance sampling (IS) vs no Skew-Fit (labeled MLE). We construct
the imbalanced dataset by rolling out a random policy in the environment and collecting the visual
observations. Most of the images contained the door in a closed position; in a few, the door was
opened. In Figure 10, we see that the gradient variance for Skew-Fit with IS is catastrophically
large for large values of α. In contrast, for Skew-Fit with SIR, which is what we use in practice, the
variance is relatively similar to that of MLE. Additionally we trained three VAE’s, one with MLE on
a uniform dataset of valid door opening images, one with Skew-Fit on the unbalanced dataset from
above, and one with MLE on the same unbalanced dataset. As expected, the VAE that has access to
the uniform dataset gets the lowest negative log likelihood score. This is the oracle method, since in
practice we would only have access to imbalanced data. As shown in Table 1, Skew-Fit considerably
outperforms MLE, getting a much closer to oracle log likelihood score.

B.3 GOAL AND PERFORMANCE VISUALIZATION

We visualize the goals sampled from Skew-Fit as well as those sampled when using the prior method,
RIG (?). As shown in Figure 11 and Figure 12, the generative model pφ results in much more diverse
samples when trained with Skew-Fit. We we see in Figure 13, this results in a policy that more
consistently reaches the goal image.

C IMPLEMENTATION DETAILS

C.1 RIG WITH SKEW-FIT SUMMARY

Algorithm 2 provides detailed pseudo-code for how we combined our method with RIG. Steps that
were removed from the base RIG algorithm are highlighted in blue and steps that were added are
highlighted in red. The main differences between the two are (1) sampling exploration goals from the
buffer using pskewed instead of the VAE prior, (2) relabeling with replay buffer goals sampled using
pskewed instead of from the VAE prior, and (3) training the VAE on replay buffer data data sampled
using pskewed instead of uniformly.
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Figure 11: Proposed goals from the VAE for RIG and with Skew-Fit on the Visual Pickup, Visual Pusher, and
Visual Door environments. Standard RIG produces goals where the door is closed and the object and puck is in
the same position, while RIG + Skew-Fit proposes goals with varied puck positions, occasional object goals in
the air, and both open and closed door angles.
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Figure 12: Proposed goals from the VAE for RIG (left) and with RIG + Skew-Fit (right) on the Real World
Visual Door environment. Standard RIG produces goals where the door is closed while RIG + Skew-Fit proposes
goals with both open and closed door angles.

Figure 13: Example reached goals by Skew-Fit and RIG. The first column of each environment section specifies
the target goal while the second and third columns show reached goals by Skew-Fit and RIG. Both methods
learn how to reach goals close to the initial position, but only Skew-Fit learns to reach the more difficult goals.
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C.2 LIKELIHOOD ESTIMATION USING β-VAE

We estimate the density under the VAE by using a sample-wise approximation to the marginal over x
estimated using importance sampling:

pφt(x) = Ez∼qθt (z|x)
[

p(z)

qθt(z|x)
pψt(x | z)

]
≈ 1

N

N∑
i=1

[
p(z)

qθt(z|x)
pψt(x | z)

]
.

where qθ is the encoder, pψ is the decoder, and p(z) is the prior, which in this case is unit Gaussian.
We found that sampling N = 10 latents for estimating the density worked well in practice.

C.3 IMPLEMENTATION OF PRIOR WORK

We replaced TD3 (Fujimoto et al., 2018) with soft actor critic (SAC) from Haarnoja et al. (2018)
for all the methods that use RIG, including Skew-Fit.. This is in contrast to the original RIG Nair
et al. (2018) paper which used TD3 Fujimoto et al. (2018). We found that maximum entropy policies
in general improved the performance of RIG, and that we did not need to add noise on top of
the stochastic policy’s noise. For our RL network architectures and training scheme, we use fully
connected networks for the policy, Q-function and value networks with two hidden layers of size
400 and 300 each. We also delay training any of these networks for 10000 time steps in order
to collect sufficient data for the replay buffer as well as to ensure the latent space of the VAE is
relatively stable (since we train the VAE online in this setting). As in RIG, we train a goal-conditioned
value functions Schaul et al. (2015) using hindsight experience replay Andrychowicz et al. (2017),
relabelling 50% of exploration goals as goals sampled from the VAE prior N (0, 1) and 30% from
future goals in the trajectory. In the prior RIG method, the VAE was pre-trained on a uniform
sampling of images from the state space of each environment. In order to ensure a fair comparison to
Skew-Fit, we forego pre-training and instead train the VAE alongside RL, using the variant described
in the RIG paper.

C.4 VISION-BASED CONTINUOUS CONTROL EXPERIMENTS

In our experiments, we use an image size of 48x48. For our VAE architecture, we use a modified
version of the architecture used in the original RIG paper Nair et al. (2018). Our VAE has three
convolutional layers with kernel sizes: 5x5, 3x3, and 3x3, number of output filters: 16, 32, and 64
and strides: 3, 2, and 2. We then have a fully connected layer with the latent dimension number of
units, and then reverse the architecture with de-convolution layers. We vary the latent dimension of
the VAE, the β term of the VAE and the α term for Skew-Fit based on the environment. Additionally,
we vary the training schedule of the VAE based on the environment. See the table at the end of the
appendix for more details. Our VAE has a Gaussian decoder with identity variance, meaning that we
train the decoder with a mean-squared error loss.

When training the VAE alongside RL, we found the following two schedules to be effective for
different environments:

1. For first 5K steps: Train VAE using standard MLE training every 500 time steps for 1000
batches. After that, train VAE using Skew-Fit every 500 time steps for 200 batches.

2. For first 5K steps: Train VAE using standard MLE training every 500 time steps for 1000
batches. For the next 45K steps, train VAE using Skew-Fit every 500 steps for 200 batches.
After that, train VAE using Skew-Fit every 1000 time steps for 200 batches.

We found that initially training the VAE without Skew-Fit improved the stability of the algorithm.
This is due to the fact that density estimates under the VAE are constantly changing and inaccurate
during the early phases of training. Therefore, it made little sense to use those estimates to prioritize
goals early on in training. Instead, we simply train using MLE training for the first 5K timesteps,
and after that we perform Skew-Fit according to the VAE schedules above. Table 3 lists the hyper-
parameters that were shared across the continuous control experiments. Table 4 lists hyper-parameters
specific to each environment. Additionally, Appendix C.1 shows the combined RIG + Skew-Fit
algorithm.
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Hyper-parameter Value
Algorithm TD3 Fujimoto et al. (2018)a

# training batches per time step 1
Q network hidden sizes 400, 300

Policy network hidden sizes 400, 300
Q network and policy activation ReLU

Exploration Noise None
RL Batch Size 1024

Discount Factor 0.99
Path length 25

Reward Scaling 100
Number of steps per epoch 5000

Table 2: Hyper-parameters used for 2D RL experiment (Figure 9a).

aWe expect similar performance had we used SAC.

Hyper-parameter Value Comments
# training batches per time step 2 Marginal improvements after 2

Exploration Noise None (SAC policy is stochastic) Did not tune
RL Batch Size 1024 smaller batch sizes work as well

VAE Batch Size 64 Did not tune
Discount Factor 0.99 Did not tune
Reward Scaling 1 Did not tune

Path length 100 Did not tune
Replay Buffer Size 100000 Did not tune

Number of Latents for Estimating Density (N ) 10 Marginal improvements beyond 10

Table 3: General hyper-parameters used for all continuous control experiments.

Hyper-parameter Visual Pusher Visual Door Visual Pickup Real World Visual Door
Path Length 50 100 50 100
β for β-VAE 20 20 30 60

Latent Dimension Size 4 16 16 16
α for Skew-Fit −1 −1/2 −1 −1/2

VAE Training Schedule 2 1 2 1
Sample Goals From pφ pskewed pskewed pskewed

Table 4: Environment specific hyper-parameters
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Algorithm 2 RIG and RIG + Skew-Fit. Blue text denotes RIG specific steps and red text denotes RIG +
Skew-Fit specific steps

Require: VAE encoder qφ, VAE decoder pψ , policy
πθ , goal-conditioned value function Qw, α, VAE
Training Schedule.

1: Collect D = {s(i)} using exploration policy.
2: Train β-VAE on data uniformly sampled from D.
3: Fit prior p(z) to latent encodings {µφ(s(i))}.
4: for n = 0, ..., N − 1 episodes do
5: Sample latent goal from prior zg ∼ p(z).
6: Sample latent goal e(s′) from (s, a, s′, zg) ∼
R using pφ if R not empty. Otherwise, use
zg ∼ p(z).

7: Sample initial state s0 ∼ E.
8: for t = 0, ..., H − 1 steps do
9: Get action at ∼ πθ(e(st), zg).

10: Get next state st+1 ∼ p(· | st, at).
11: Store (st, at, st+1, zg) into replay bufferR.
12: Sample transition (s, a, s′, zg) ∼ R.
13: Encode z = e(s), z′ = e(s′).
14: (Probability 0.5) replace zg with z′g ∼ p(z).
15: (Probability 0.5) replace zg with e(s′) where

(s, a, s′, zg) ∼ R using pφ

16: Compute new reward r = −||z′ − zg||.
17: Minimize Bellman Error using

(z, a, z′, zg, r).
18: end for
19: for t = 0, ..., H − 1 steps do
20: for i = 0, ..., k − 1 steps do
21: Sample future state shi , t < hi ≤ H − 1.
22: Store (st, at, st+1, e(shi)) intoR.
23: end for
24: end for
25: Construct skewed replay buffer distribution pφ

using data fromR with Equation ??
26: if total_steps < 5000 then
27: Fine-tune β-VAE on data uniformly sampled

fromR according to VAE Training Schedule.
28: else
29: Fine-tune β-VAE on data uniformly sampled

fromR according to VAE Training Schedule.
30: Fine-tune β-VAE on data sampled from R

using pφ according to VAE Training Schedule.
31: end if
32: end for

C.5 ORACLE 2D NAVIGATION EXPERIMENTS

We initialize the VAE to only output points in the bottom left corner of the environment. Both the
encoder and decoder have ReLU hidden activations, 2 hidden layers with 32 units, and no output
activations. The VAE has a latent dimension of 16 and a Gaussian decoder trained with mean-squared
error loss, batch size of 500, and 100 epochs per iteration. For Skew-Fit hyperparameters, α = −0.5
and N = 10000.

D ENVIRONMENT DETAILS

Point-Mass: In this environment, an agent must learn to navigate a square-shaped corridor (see
Figure 3). The observation is the 2D position, and the agent must specify a velocity as the 2D action.
The reward at each time step is the negative distance between the achieved position and desired
position.

Visual Pusher: A MuJoCo environment with a 7-DoF Sawyer arm and a small puck on a table that
the arm must push to a target position. The agent controls the arm by commanding x, y position for
the end effector (EE). The underlying state is the EE position, e and puck position p. The evaluation
metric is the distance between the goal and final puck positions. The hand goal/state space is a 10x10
cm2 box and the puck goal/state space is a 30x20 cm2 box. Both the hand and puck spaces are
centered around the origin. The action space ranges in the interval [−1, 1] in the x and y dimensions.

Visual Door: A MuJoCo environment with a 7-DoF Sawyer arm and a door on a table that the arm
must pull open to a target angle. Control is the same as in Visual Pusher. The evaluation metric is the
distance between the goal and final door angle, measured in radians. In this environment, we do not
reset the position of the hand or door at the end of each trajectory. The state/goal space is a 5x20x15
cm3 box in the x, y, z dimension respectively for the arm and an angle between [0, .83] radians. The
action space ranges in the interval [−1, 1] in the x, y and z dimensions.

Visual Pickup: A MuJoCo environment with the same robot as Visual Pusher, but now with a different
object. The object is cube-shaped, but a larger intangible sphere is overlaid on top so that it is easier
for the agent to see. Moreover, the robot is constrained to move in 2 dimension: it only controls the
y, z arm positions. The x position of both the arm and the object is fixed. The evaluation metric is
the distance between the goal and final object position. For the purpose of evaluation, 75% of the
goals have the object in the air and 25% have the object on the ground. The state/goal space for both
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the object and the arm is 10cm in the y dimension and 13cm in the z dimension. The action space
ranges in the interval [−1, 1] in the y and z dimensions.

Real World Visual Door: A Rethink Sawyer Robot with a door on a table. The arm must pull the door
open to a target angle. The agent controls the arm by commanding the x, y, z velocity of the EE. Our
controller commands actions at a rate of up to 10Hz with the scale of actions ranging up to 1cm in
magnitude. The underlying state and goal is the same as in Visual Door. Again we do not reset the
position of the hand or door at the end of each trajectory. We obtain images using a Kinect Sensor.
The state/goal space for the environment is a 10x10x10 cm3 box. The action space ranges in the
interval [−1, 1] (in cm) in the x, y and z dimensions. The door angle lies in the range [0, 45] degrees.

E GOAL-CONDITIONED RL MINIMIZES H(G | S)

Some goal-conditioned RL methods such as Warde-Farley et al. (2018); Nair et al. (2018) present
methods for minimizing a lower bound forH(G | S), by approximating log p(G | S) and using it
as the reward. Meanwhile, other goal-conditioned RL methods (Kaelbling, 1993; Lillicrap et al.,
2016; Schaul et al., 2015; Andrychowicz et al., 2017; Pong et al., 2018; Florensa et al., 2018a)
are not developed with the intention of minimizing the conditional entropyH(G | S), the optimal
goal-conditioned policy will deterministically reach the goal, resulting in a conditional entropy of
zero: H(G | S) = 0. Thus, goal-conditioned RL methods effectively minimizeH(G | S).
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