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ABSTRACT

Meta-learning methods learn the meta-knowledge among various training tasks
and aim to promote the learning of new tasks under the task similarity assump-
tion. However, such meta-knowledge is often represented as a fixed distribution,
which is too restrictive to capture various specific task information. In this work,
we present a localized meta-learning framework based on PAC-Bayes theory. In
particular, we propose a LCC-based prior predictor that allows the meta learner
adaptively generate local meta-knowledge for specific task. We further develop a
pratical algorithm with deep neural network based on the bound. Empirical results
on real-world datasets demonstrate the efficacy of the proposed method.

1 INTRODUCTION

Recent years have seen a resurgence of interest in the field of meta-learning, or learning-to-learn
(Thrun & Pratt, 2012), especially for empowering deep neural networks the capability of fast adapt-
ing to unseen tasks just as humans (Finn et al., 2017; Ravi & Larochelle, 2017). More concretely,
the neural networks are trained from a sequence of datasets, associated with different learning tasks
sampled from a meta-distribution (also called task environment (Baxter, 2000; Maurer, 2005)). The
principal aim of meta learner is to extract transferable meta-knowledge from observed tasks and
facilitate the learning of new tasks sampled from the same meta-distribution. The performance is
measured by the generalization ability from a finite set of observed tasks, which is evaluated by
learning related unseen tasks. For this reason there has been considerable interest in theoretical
bounds on the generalization in terms of the meta-learning algorithm (Denevi et al., 2018b;a).

One typical line of work (Pentina & Lampert, 2014; Amit & Meir, 2018) use PAC-Bayes bound to
analyze the generalization behavior of the meta learner and quantify the relation between the ex-
pected loss on new tasks and the average loss on the observed tasks. In this setup, we formulate
meta-learning as hierarchical Bayes. Accordingly, meta-knowledge is instantiated as a global dis-
tribution over all possible priors, which we call hyperprior and is chosen before observing training
tasks. Each prior is a distribution over a family of classifiers w.r.t. a particular task. To learn versa-
tile meta-knowledge across tasks, the meta learner observes a sequence of training tasks and adjusts
its hyperprior into a hyperposterior distribution over the set of priors. To solve a new task, the base
learner produces a posterior distribution over a family of classifiers based on the associated sam-
ple set and the prior generated by the hyperposterior. Since the PAC-Bayes bound holds uniformly
for all hyperposteriors, it also holds for the training tasks dependent hyperposterior. By choosing
the hyperposterior that minimizes the PAC-Bayes bound, we obtain a meta-learning algorithm with
generalization guarantees.

However, such meta-knowledge is shared across tasks. The global hyperposterior is rather generic,
typically not well tailored to various specific tasks. Consequently, it leads to sub-optimal perfor-
mance for any individual prediction task. As a motivational example, suppose we have two dif-
ferent tasks: distinguishing motorcycle versus bicycle and distinguishing motorcycle versus car.
Intuitively, each task uses distinct discriminative patterns and thus the desired meta-knowledge is
required to extract these patterns simultaneously. This could be a challenging problem to represent
it with a global hyperposterior, since the most significant patterns in the first task could be irrelevant
or even detrimental to the second task.

Hence, we are motivated to pursue a meta-learning framework to effectively define the hyperpos-
terior. The inspiration comes from the PAC-Bayes literature on data distribution dependent priors
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(Catoni, 2007; Parrado-Hernández et al., 2012; Dziugaite & Roy, 2018). The choice of posterior
in each task is constrained by the need to minimize the relative entropy between prior and poste-
rior, since this divergence forms part of the bound and is typically large in standard PAC-Bayes
approaches (Lever et al., 2013). Thus, choosing an appropriate prior for each task which is close to
the related posterior could yield improved generalization bounds.

Inspired by this, we propose a Localized Meta-Learning (LML) framework. Instead of formulating
meta-knowledge as a global hyperposterior, we learn a conditional hyperposterior given task data
distribution that allows a meta learner to adaptively generate an appropriate prior for a new task.
However, the task data distribution is unknown, and our only perception for it is via the associated
sample set. Nevertheless, if the conditional hyperposterior is relatively stable to perturbations of the
sample set, then the generated prior could still reflect the underlying task data distribution, resulting
in a generalization bound that still holds with smaller probability. Following this intuition, the
dependence of a conditional hyperposterior on the task data distribution is parameterized by a prior
predictor using Local Coordinate Coding (LCC)(Yu et al., 2009). In particular, if the classifier in
each task is specialized to a parametric model, including deep neural network, the proposed LCC-
based prior predictor predicts the model parameters using the sample set by exploiting the local
information on the latent manifold. LCC-based prior predictor is invariant under permutations of its
inputs and could be further used for unseen tasks.

The main contributions of this work include: (i) We present a localized meta-learning framework
and provide an analysis leading to a PAC-Bayes Bound for randominzed classifier under Gaussian
randomization; (ii) We propose a LCC-based prior predictor, an implementation of conditional hy-
perposterior, to generate local meta-knowledge for specific task; (iii) We derive a practical localized
meta-learning algorithm for deep neural networks by minimizing the bound; (iv) Experimental re-
sults demonstrate improved performance over meta-learning method in this field.

2 PRELIMINARIES

2.1 LOCAL COORDINATE CODING

We first review some definitions of Local Coordinate Coding (LCC) (Yu et al., 2009) based on which
we develop the proposed LCC-based prior predictor.

Definition 1. (Lipschitz Smoothness (Yu et al., 2009).) A function f(x) on Rd is a (α, β)-Lipschitz
smooth w.r.t. a norm ‖ ·‖ if ‖f(x)−f(x′)‖ ≤ α‖x−x′‖ and ‖f(x′)−f(x)−∇f(x)>(x′−x)‖ ≤
β‖x− x′‖2.

Definition 2. (Coordinate Coding (Yu et al., 2009).) A coordinate coding is a pair (γ, C), where
C ⊂ Rd is a set of anchor points, and γ is a map of x ∈ Rd to [γu(x)]u∈C ∈ R|C| such
that

∑
u γu(x) = 1. It induces the following physical approximation of x in Rd : γ(x) =∑

u∈C γu(x)u.

Definition 3. (Latent Manifold (Yu et al., 2009).) A subsetM ⊂ Rd is called a smooth manifold
with an intrinsic dimension dM := |C| if there exists a constant cM such that given any x ∈ M,
there exists d bases u1(x), . . . ,ud(x) ∈ Rd so that ∀x′ ∈M:

inf
γ∈R|C|

‖x′ − x−
|C|∑
j=1

γjuj(x)‖2 ≤ cM‖x′ − x‖22,

where γ = [γ1, . . . , γ|C|]
> are the local codings w.r.t. the bases.

Definition 2 and 3 imply that any point in Rd can be expressed as a linear combination of a set of
anchor points. Later, we will use them to develop the prior predictor.

2.2 PAC-BAYES META-LEARNING

In order to present the advances proposed in this paper, we next recall some definitions in PAC-Bayes
Meta-Learning (Baxter, 2000; Pentina & Lampert, 2014; Amit & Meir, 2018). In the context of
classification, we assume all tasks share the same input space X , output space Y , space of classifiers
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(hypotheses)H ⊂ {h : X → Y} and loss function ` : Y ×Y → [0, 1]. The meta learner observes n
tasks in the form of sample sets S1, . . . , Sn. The number of samples in task i is denoted bymi. Each
observed task i consists of a set of i.i.d. samples Si = {(xj , yj)}mi

j=1, which is drawn from a data
distribution Si ∼ Dmi

i . Following the meta-learning setup in (Baxter, 2000), we assume that each
data distribution Di is generated i.i.d. from the same meta distribution τ . Let h(x) be the prediction
of x, the goal of each task is to find a classifier h that minimizes the expected loss Ex∼D`(h(x), y).
Since the underlying ‘true’ data distribution Di is unknown, the base learner receives a finite set of
samples Si and produces an “optimal” classifier h = Ab(Si) with a deterministic learning algorithm
Ab(·) that will be used to predict the labels of unseen inputs.

PAC-Bayes theory studies the properties of randomized classifier, called Gibbs classifier. Let Q be a
distribution over H, to make a prediction, the Gibbs classifier samples a classifier h ∈ H according
to Q and then predicts a label with the chosen h. The expected error under data distribution D
and empirical error on the sample set S are then given by averaging over distribution Q, namely
er(Q) = Eh∼QE(x,y)∼D`(h(x), y) and êr(Q) = Eh∼Q 1

m

∑m
j=1 `(h(xj), yj), respectively.

The goal of the meta learner is to extract meta-knowledge contained in the observed tasks that will
be used as prior knowledge for learning new tasks. The prior knowledge P is in the form of a
distribution over classifiers H. In each task, the base learner produces an posterior Q = Ab(S, P )
over H based on a sample set S and a prior P . All tasks are learned through the same learning
procedure. The meta learner treats the prior P itself as a random varible and assumes the meta-
knowledge is in the form of a distribution over all possible priors. Let hyperprior P be an initial
distribution over priors, meta learner uses the observed tasks to adjust its original hyperprior P into
hyperposteriorQ from the learning process. The quality of the hyperposteriorQ is measured by the
expected task error of learning new tasks using priors generated from it, which is formulated as:

er(Q) = EP∼QE(D,m)∼τ,S∼Dmer(Q = Ab(S, P )). (1)

Accordingly, the empirical counterpart of the above quantity is given by:

êr(Q) = EP∼Q
1

n

n∑
i=1

êr(Q = Ab(Si, P )). (2)

3 PAC-BAYES META-LEARNING BOUND WITH GAUSSIAN RANDOMIZATION

In this section, we present a novel meta-learning generalization bound with Gaussian randomization.
In particular, the classifier h is parameterized as hw with w ∈ Rdw . The prior and posterior is a
distribution over the set of all possible parameters w. We choose both the prior P and posteriorQ to
be spherical Gaussians, i.e. P = N (wP , σ2

wIdw) andQ = N (wQ, σ2
wIdw). The mean wP is a ran-

dom variable distributed first according to the hyperprior P , which we formulate as N (0, σ2
wIdw),

and later according to hyperposteriorQ, which we model asN (wQ, σ2
wIdw). When encountering a

new task i, we first sample the mean of prior wP from the hyperposteriorN (wQ, σ2
wIdw), and then

use it as a basis to learn the mean of posterior wQ = Ab(Si, P ), as shown in Figure 1(left). Then,
we derive a novel PAC-Bayes meta-learning bound w.r.t. hyperposterior Q.
Theorem 1. Consider the Meta-Learning (ML) framework, given the hyperprior P = N (0, σ2

vIdv),
then for any hyperposterior Q, any c1, c2 > 0 and any δ ∈ (0, 1] with probability ≥ 1− δ we have,

er(Q) ≤c′1c′2êr(Q) + (

n∑
i=1

c′2
2c2nmiσ2

w

+
c′1

2c1nσ2
w

)‖wQ‖2

+

n∑
i=1

c′2
2c2nmiσ2

w

‖wQ
i −wQ‖2 + const(n,mi, δ), (3)

where c′1 = c1
1−e−c1

and c′2 = c2
1−e−c2

.

Proof. See Appendix D for the proof.

Notice that the expected task generalization error is bounded by the empirical multi-task error plus
two complexity terms. The first term demonstrates the environment-complexity which converges to
zero if infinite number of tasks are observed from the task environment (n→∞), while the second
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is the task-complexity of the observed tasks which converges to zero when the sufficient samples in
each task is observed (mi → ∞). This new bound reveals two superiority over the existing meta-
learning PAC-Bayes bounds (Pentina & Lampert, 2014; Amit & Meir, 2018). First, it converges
at the rate of O( 1

m ) while the existing bounds converge at the rate of O( 1√
m

), which indicates the
bound is tighter. Second, the values c1, c2 allow to control the trade-off between the empirical error
and the complexity terms, making the derived algorithm more flexible.

4 LOCALIZED META-LEARNING

4.1 OVERALL FRAMEWORK

Our motivation stems from a core challenge in PAC-Bayes meta-learning bound in 3, wherein the
complexity term

∑n
i=1

c′2
2c2nmiσ2

w
‖wQ

i − wQ‖2 is typically vital to the bound and so finding the
tightest possible bound generally depends on minimizing this term. It is obvious that the optimal

wQ is
∑n
i=1

c′2w
Q
i

2c2nmiσ2
w

. However, if the learned posteriors for each task are mutually exclusive, i.e.,
one learned posterior has negative effect on another task, this term could be inevitably large.

wQ is the mean of hyperposterior Q and this term naturally indicates the divergence between the
mean of prior wP

i sampled from the hyperposterior Q and the mean of posterior wQ
i in each task.

Therefore, we propose to adaptively choose the mean of prior wP
i according to task i. It is obvious

that the complexity term vanishes if we set wP
i = wQ

i , but the prior Pi in each task has to be chosen
independent of the sample set Si. Fortunately, PAC-Bayes theorem allows us to choose prior upon
the data distribution distribution Di. Therefore, we propose a prior predictor Φ : Dm → wP which
receives task data distribution Dm and outputs the mean of prior wP . In this way, the generated
priors could focus locally on those regions of model parameters that are of particular interest for
solving specific task.

Particularly, the prior predictor is parameterized as Φv with v ∈ Rdv . We abuse notation P and
Q and assume v as a random variable distributed first according to the hyperprior P , which we
reformulate as N (0, σ2

vIdv), and later according to hyperposterior Q, which we reformulate as
N (vQ, σ2

vIdv). Given a new task i, we first sample v from hyperposterior N (vQ, σ2
vIdv) and

estimate the mean of prior wP
i by leveraging prior predictor wP

i = Φv(Dm
i ). Then, the base

learner utilizes the sample set Si and the prior Pi = N (wP
i , σ

2
wIdw) to produce a mean posterior

wQ
i = Ab(Si, Pi), as illustrated in Figure 1(right).

Meta Learner
(A global distribution 𝓠)

𝑺𝟏~𝑫𝟏
𝒎𝟏

Task 1

𝑺𝟐~𝑫𝟐
𝒎𝟐 𝑺𝒏~𝑫𝒏

𝒎𝒏

Task 2 Task n

Base Learner

𝑺~𝑫𝒎

Future Task·

Prior

𝒩(𝒘𝓠, 𝝈𝒘
𝟐 𝑰𝒅𝒘) 𝒘𝑷 𝒘𝑸

Meta Learner
(Prior Predictor 𝚽)

𝑺𝟏~𝑫𝟏
𝒎𝟏

Task 1

𝑺𝟐~𝑫𝟐
𝒎𝟐 𝑺𝒏~𝑫𝒏

𝒎𝒏

Task 2 Task n

Base Learner

𝑺~𝑫𝒎

Future Task·

Prior

𝚽𝐯(𝐃
𝐦) 𝒘𝑷 𝒘𝑸

Figure 1: Comparison between meta-learning (left) and localized meta-learning (right). In regular
meta-learning, the mean of prior wP is sampled from a global hyperposterior distribution Q =
N (wQ, σ2

wIdw). In the localized meta-learning, wP is produced by a prior predictor Φv(Dm).

4.2 LCC-BASED PRIOR PREDICTOR

To make wP close to wQ in each task, the prior predictor is required to (i) uncover the tight relation-
ship between the sample set and model parameter. Intuitively, features and parameters yield similar
local and global structures in their respective space in the classification problem. Features in the
same category tend to being spatially clustered together while maintaining the separation between
different classes. Take linear classifier as an example, let wk be the parameters w.r.t. category k, the
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separability between classes is implemented as x ·wk, which also explicitly encourages intra-class
compactness. A reasonable choice of wk is to maximize the inner product distance with the input
features in the same category and minimize the distance with the input features of the non-belonging
categories. Besides, the prior predictor should be (ii) category-agnostic since it will be used contin-
uously as new tasks and hence new categories become available. Lastly, it should be (iii)invariant
under permutations of its inputs.

To satisfy the above conditions, we follow the idea of nearest class mean classifier (Mensink et al.,
2013), which represents classe parameter by averaging its feature embeddings. This idea has been
explored in transductive few-shot learning problem (Bertinetto et al., 2016; Yang et al., 2018). Snell
et al. (2017) learns a metric space across tasks such that when represented in this embedding, pro-
totype (centroid) of each class can be used for label prediction in the new task. Qiao et al. (2018)
directly predicts the classifier weights using the activations by exploiting the close relationship be-
tween the parameters and the activations in a neural network associated with the same category. In
summary, the classification problem of each task is transformed as a generic metric learning prob-
lem which is shared across tasks. Once this mapping has been learned on observed tasks, due to
the structure-preserving property, it could be easily generalize to new tasks. Formally, let each task
be a K-class classification problem. Then the parameter of classifier in task i is represented as
wi = [wi[1], . . . ,wi[k], . . . ,wi[K]]. The prior predictor for class k could be defined as:

wP
i [k] = Φv(Dmik

ik ) = E
Sik∼D

mik
ik

1

mik

∑
xj∈Sik

φv(xj), (4)

where φv(·) : Rd → Rdw is the feature embedding function, mik is the number of samples belong-
ing to category k, Sik and Dik are the sample set and data distribution for category k in task i. We
call this function the expected prior predictor. Since data distribution Dik is considered unknown
and our only insight as to Dik is through the sample set Sik, we approximate the expected prior
predictor by its empirical counterpart, based on mik observed samples in the category k:

ŵP
i [k] = Φ̂v(Sik) =

1

mik

∑
xj∈Sik

φv(xj), (5)

which we call the empirical prior predictor. Although we can implement the embedding func-
tion φv(·) with a multilayer perceptron (MLP), both input x and model parameter w are high-
dimensional, making the empirical prior predictor Φ̂v(·) difficult to learn. According to Definition
(3), any points on the latent manifold can be approximated by a linear combination of a set of anchor
points. Inspired by this, if the anchor points are sufficiently localized, the empirical prior predic-
tor Φ̂v(S) can also be approximated by a linear function w.r.t. a set of codings. Accordingly, we
propose a LCC-based prior predictor, which is defined as:

w̄P
i [k] = Φ̄v(Sik) =

1

mik

∑
xj∈Sik

∑
u∈C

γu(xj)Φv(u), (6)

where Φv(u) ∈ Rdw is the feature embedding of base u ∈ Rd. As such, the pa-
rameters of LCC-based prior predictor w.r.t. category k can be represented as vk =
[Φvk

(u1),Φvk
(u2), . . . ,Φvk

(u|C|)]. Lemma 1 illustrates the approximation error.

Lemma 1. (Empirical Pior Predictor Approximation) Given the definition of ŵP
i [k] and w̄P

i [k] in
Eq. (5) and Eq. (6), let (γ,C) be an arbitrary coordinate coding on Rd and φ be an (α, β)-Lipschitz
smooth function. We have for all x ∈ Rd

‖ŵP
i [k]− w̄P

i [k]‖ ≤ 1

mik

∑
xj∈Sik

(
α‖xj − x̄j‖+ β

∑
u∈C
‖x̄j − u‖2

)
= Oα,β(γ,C), (7)

where x̄j =
∑

u∈C γu(xj)u. Then given any ε > 0, there exists a coding (γ,C) such that

Oα,β(γ,C) ≤ [αcM + (1 + 5
√
|C|)β]ε2. (8)
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X

Φ(x)

Manifold

Local linearity

Anchor Point

Figure 2: A geometric view of Local Coordinate Coding. Given a set of anchor points, if data lie
on a manifold, the empirical prior predictor Φ̂v(S) can be locally approximated by a linear function
w.r.t. the coding. Given all bases, Φ̂v(S) can be globally approximated.

Proof. See appendix B for the proof.

The first inequality of Lemma 1 demonstrates that a good LCC-based prior predictor should make x
close to its physical approximation x̄ and should be localized. The second inequality shows that the
complexity of LCC coding scheme depends only on the number of anchor points |C| instead of the
input dimension. In fact, a small |C| is usually sufficient to achieve good approximation.

Optimization of LCC. We minimize the first inequality in (7) to obtain a set of anchor points. As
with (Yu et al., 2009), we simplifies the localization error term by assuming x̄ = x, and then we
optimize the following objective function:

arg min
γ,C

n∑
i=1

∑
xj∈Si

α‖xj − x̄j‖2 + β
∑
u∈C
‖xj − u‖2 s.t.

∑
u∈C

γu(x) = 1,∀x, (9)

where x̄ =
∑

u∈C γu(x)u. In practice, we update C and γ by alternately optimizing a LASSO
problem and a least-square regression problem, respectively.

4.3 PAC-BAYES LOCALIZED META-LEARNING BOUND WITH GAUSSIAN RANDOMIZATION

In order to derive a PAC-Bayes generalization bound for localized meta-learning, we first bound the
approximation error between expected prior predictor and LCC-based prior predictor.
Lemma 2. Given the definition of wP and w̄P in Eq. (4) and (6), let X be a compact set with
radius R, i.e., ∀x,x′ ∈ X , ‖x− x′‖ ≤ R. For any δ ∈ (0, 1] with probability ≥ 1− δ, we have

‖wP − w̄P ‖2 ≤
K∑
k=1

(
αR
√
mik

(1 +

√
1

2
log(

1

δ
)) +Oα,β(γ,C)

)2

. (10)

Proof. See appendix C for the proof.

Lemma 2 shows that the approximation error between expected prior predictor and LCC-based
prior predictor depends on (i) the concentration of prior predictor and (ii) the quality of LCC coding
scheme. The first term implies the number of samples for each category should be larger for better
approximation. This is consistent with the results on estimating the center of mass (Cristianini &
Shawe-Taylor, 2004). Based on Lemma 2, we have the following PAC-Bayes LML bound.
Theorem 2. Consider the Localized Meta-Learning (LML) framework, give the hyperprior P =
N (0, σ2

vIdv), then for any hyperposterior Q, any c1, c2 > 0 and any δ ∈ (0, 1] with probability
≥ 1− δ we have,

er(Q) ≤c′1c′2êr(Q) + (

n∑
i=1

c′2
2c2nmiσ2

v

+
c′1

2c1nσ2
v

)‖vQ‖2

+

n∑
i=1

c′2
c2nmiσ2

w

‖wQ
i − Φ̄vQ(Si)‖2 + const(α, β,R, δ, n,mi), (11)

where c′1 = c1
1−e−c1

and c′2 = c2
1−e−c2

.
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Proof. See appendix D for the proof.

Similar with the PAC-Bayes meta-learning bound in Theorem 1 and the bounds in (Pentina & Lam-
pert, 2014; Amit & Meir, 2018), the expected task error er(Q) is bounded by the empirical task
error êr(Q) plus the task-complexity and environment-complexity terms. The main innovation here
is to exploit the potential to choose the mean of prior wP based on task data S. Intuitively, if the
selection of the LCC-based prior predictor is appropriate, it will narrow the the divergence between
the mean of prior wP

i sampled from the hyperposteriorQ and the mean of posterior wQ
i in each task.

Therefore, the bound can be tighter than the ones in meta-learning framework. Our empirical study
in Section 5 illustrates that the algorithms derived from this bound can achieve better performance
than the methods derivied from standard PAC-Bayes meta-learning bounds.

When one is choosing the LCC-based prior predictor Φ̄v(·), the number of anchor points |C|, there
is a blance between accuracy and simplicity. As we increase |C|, it will essentially increase the
expressive power of Φ̄v(·) and reduce the complexity term ‖wQ− Φ̄vQ(S)‖2. However, at the same
time, it will increase the complexity term ‖vQ‖2 and make the bound loose. If we set |C| to 1, it is
degraded to the regular meta-learning framework.

4.4 LOCALIZED META-LEARNING ALGORITHM

Since the bound in (11) holds uniformly w.r.t. Q, the guarantees of Theorem 2 also hold for the
resulting learned hyperposterior Q = N (vQ, σ2

vIdv), so the mean of prior wP sampled from the
learned hyperposterior work well for future tasks. The PAC-Bayes localized meta-learning bound in
(11) can be compactly written as

n∑
i=1

E
v
êri(Qi = Ab(Si, P )) + α1‖vQ‖2 +

n∑
i=1

α2

mi
‖wQ

i − Φ̄vQ(Si)‖2, (12)

where α1, α2 > 0 are hyperparameters. For task i, the learning algorithm Ab(·) can be formulated
as w?

i = arg min
wQ

i

E
v
êri(Qi = N (wQ

i , σ
2
wIdw)). Following Amit & Meir (2018), we jointly opti-

mize the parameters of LCC-based prior predictor v and the parameters of classifiers in each task
w1,w2, . . . ,wn, which is formulated as

arg min
v,w1,...,wn

n∑
i=1

E
v
êri(wi) + α1‖vQ‖2 +

n∑
i=1

α2

mi
‖wQ

i − Φ̄vQ(Si)‖2 (13)

We can optimize v and w via mini-batch SGD. The details of algorithms for meta-training and
meta-testing are given in Algorithms 1 and 2 in the appendix. The expectation over Gaussian
distribution and its gradient can be efficiently estimated by using the re-parameterization trick
(Kingma & Welling, 2014; Rezende et al., 2014). For example, to sample w from the posterior
Q = N (wQ, σ2

wIdw), we first draw ξ ∼ N (0, Idw) and then apply the deterministic function
wQ + ξ � σ, where � is an element-wise multiplication.
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Figure 3: The average test accuracy of learning a new task for different number of training tasks
(|C| = 64).

5.1 DATASETS AND SETUP

We use CIFAR-100 and Caltech-256 in our experiments. CIFAR-100 (Krizhevsky, 2009) contains
60,000 images from 100 fine-grained categories and 20 coarse-level categories. As in (Zhou et al.,
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Figure 4: (a) the impact of number of bases |C| in LCC. (b) the divergence value (normalized)
between the generated prior from meta model and the posterior from the learned base model.

2018), we use 64, 16, and 20 classes for meta-training, meta-validation, and meta-testing, respec-
tively. Caltech-256 has 30,607 color images from 256 classes (Griffin et al., 2007). Similarly, we
split the dataset into 150, 56 and 50 classes for meta-training, meta-validation and meta-testing.
We consider 5-way classification problem. Each task is generated by randomly sample 5 categories
and each category contains 50 samples. The base model use the convolutional architecture in (Finn
et al., 2017), which consists of 4 convolutional layers, each with 32 filters and a fully-connected
layer mapping to the number of classes on top. High dimensional data often lies on some low di-
mensional manifolds. We utilize an auto-encoder to extract the semantic information of image data
and then construct the LCC scheme based on the embeddings. The parameters of prior predictor and
base model are random perturbations in the form of Gaussian distribution. Since the meta-learning
objective leads to difficult optimization process, we conduct two experiment settings that use or
not use the pre-trained base model as an initialization, which utilizes all the meta-training classes
(64-class classification in CIFAR-100 case) to train the feature extractor. We compare the proposed
LML method with ML-PL method (Pentina & Lampert, 2014), ML-AM method (Amit & Meir,
2018) and ML-A which is derived from Theorem 1. In these methods, we use their main theorems
about the PAC-Bayes generalization bound to derive the objective for the algorithm. To ensure a fair
comparison, all approaches adopt the same network architecture and pre-trained feature extractor.

5.2 RESULTS

In Figure 3, we demonstrate the average test error of learning a new task based on the number of
training tasks in different settings (with or without a pre-trained feature extractor). It is obvious
that the performance continually increases as we increase the number of training task for all the
methods. This is consistent with the generalization bounds that the complexity term converges to
zero if large numbers of tasks are observed. ML-A consistently outperforms ML-PL and ML-AM
since the bound w.r.t. ML-A in Theorem 1 converges at the rate of O( 1

m ) while the bounds w.r.t.
ML-PL and ML-AM converge at the rate ofO( 1√

m
). This demonstrates the importance of using tight

generalization bound. Our proposed LML significantly outperforms the baselines, which validates
the effectiveness of the the proposed LCC-based prior predictor. It is a more suitable representation
for meta-knowledge than the traditional global hyperposterior in ML-A, ML-AM and ML-PL. We
also note that if the pre-trained feature extractor is provided, all of these methods do better than
training random initialization.

In Figure 4(b), we show the divergence between the mean of generated prior wP from meta model
and the mean of learned posterior wQ for LML and ML-A. This further validates the effectiveness
of the LCC-based prior predictor which could narrow the divergence term and thus tight the bound.
In Figure 4(a), we vary the number of bases |C| in LCC scheme from 4 to 256, the optimal value is
around 64 in both datasets. This indicates that LML is sensitive to the number of bases |C|, which
further effects the quality of LCC-based prior predictor and the performance of LML.

6 RELATED WORK

Meta-Learning. Meta-learning literature commonly considers the empirical task error by directly
optimizing a loss of meta learner across tasks in training data. Recently, this has been successfully
applied in a variety of models for few-shot learning (Ravi & Larochelle, 2017; Snell et al., 2017;

8
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Finn et al., 2017; Vinyals et al., 2016). Although Rusu et al. (2019); Zintgraf et al. (2019); Wang
et al. (2019) consider task adaptation when using meta-knowledge for specific task, all of them are
not based on generalization error bounds, which is focus of our work. Meta-learning in the online
setting has regained attention recently (Denevi et al., 2018b;a; 2019; Balcan et al., 2019), in which
online-to-batch conversion results could imply generalization bounds. Most related to our work are
(Pentina & Lampert, 2014; Amit & Meir, 2018) which provide a PAC-Bayes generalization bound
for meta-learning framework. In contrast, neither work considers localized meta-knowledge for
specific tasks.

Localized PAC-Bayes Learning. There has been a prosperous line of research for learning priors
to improve the PAC-Bayes bounds Catoni (2007); Guedj (2019). (Parrado-Hernández et al., 2012)
showed that priors can be learned by splitting the available training data into two parts, one for
learning the prior, one for learning the posterior. (Lever et al., 2013) derived an expression for the
overall best prior, i.e. the distribution resulting in the smallest possible bound value and bounded
the KL divergence by a term independent of data distribution. Recently, (Rivasplata et al., 2018)
bounded the KL divergence by investigating the stability of the hypothesis. (Dziugaite & Roy,
2018) optimized the prior term in a differentially private way. In summary, theses methods construct
some quantities that reflect the underlying data distribution, rather than the sample set, and then
choose the prior P based on these quantities. These work, however, are only applicable for single
task problem and could not transfer knowledge across tasks in meta-learning setting.

7 CONCLUSION

This work contributes a novel localized meta-learning framework from a theoretical perspective. We
propose a generalization bound based on PAC-Bayes theory with Gaussian randomization. Instead
of formulating meta-knowledge as a global distribution, we propose a LCC-based prior predictor
to output local meta-knowledge by using task information. We further develop a pratical algorithm
with deep neural network based on the bound. An interesting topic for future work would be to
explore other principle to construct the prior predictor. Another challenge is to apply the localized
meta-learning framework to a more realistic scenario that tasks are sampled non i.i.d. from an
environment.
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A NOTATIONS

The expected prior predictor w.r.t. class k in task i is defined as:

wP
i [k] = Φv(Dmik

ik ) = E
Sik∼D

mik
ik

1

mik

∑
xj∈Sik

φv(xj).

The empirical prior predictor w.r.t. class k in task i is defined as:

ŵP
i [k] = Φ̂v(Sik) =

1

mik

∑
xj∈Sik

φv(xj).

The LCC-based prior predictor w.r.t. class k in task i is defined as:

w̄P
i [k] = Φ̄v(Sik) =

1

mik

∑
xj∈Sik

∑
u∈C

γu(xj)Φv(u).

B PROOF OF LEMMA 1

This lemma bounds the error between the empirical prior predictor ŵP
i [k] and the LCC-based prior

predictor w̄P
i [k].

Lemma 1 Given the definition of ŵP
i [k] and w̄P

i [k] in Eq. (5) and Eq. (6), let (γ,C) be an arbitrary
coordinate coding on Rdx and φ be an (α, β)-Lipschitz smooth function and . We have for all
x ∈ Rdx

‖ŵP
i [k]− w̄P

i [k]‖ ≤ 1

mik

∑
xj∈Sik

(
α‖xj − x̄j‖+ β

∑
u∈C
‖x̄j − u‖2

)
= Oα,β(γ,C), (14)

where x̄j =
∑

u∈C γu(xj)u. Then given any ε > 0, there exists a coding (γ,C) such that

Oα,β(γ,C) ≤ [αcM + (1 + 5
√
dM)β]ε2. (15)

Proof. Let x̄j =
∑

u∈C γu(xj)u. We have

‖Φ̂v(Sik)− Φ̄v(Sik)‖2

=
1

mik

∑
xj∈Sik

‖Φv(xj)−
∑
u∈C

γu(xj)Φv(u)‖2

≤ 1

mik

∑
xj∈Sik

(
‖Φv(xj)− Φv(x̄j)‖2 + ‖

∑
u∈C

γu(xj)(Φv(u)− Φv(x̄j)‖2
)

=
1

mik

∑
xj∈Sik

(
‖Φv(xj)− Φv(x̄j)‖2 + ‖

∑
u∈C

γu(xj)(Φv(u)− Φv(
∑
u∈C

γu(xj)u))−∇Φv(x̄j)(u− x̄j)‖2
)

≤ 1

mik

∑
xj∈Sik

(
‖Φv(xj)− Φv(x̄j)‖2 +

∑
u∈C
|γu(xj)|‖(Φv(u)− Φv(

∑
u∈C

γu(xj)u))−∇Φv(x̄j)(u− x̄j)‖2
)

≤ 1

mik

∑
xj∈Sik

(
α‖xj − x̄j‖2 + β

∑
u∈C
‖x̄j − u‖22

)
= Oα,β(γ,C)

In the above derivation, the first inequality holds by the triangle inequality. The second equality
holds since

∑
u∈C γu(xj) = 1 for all xj . The last inequality uses the assumption of (α, β)-Lipschitz

smoothness of Φv(·).

According to the Manifold Coding Theorem in (Yu et al., 2009), if the data points x lie on a compact
smooth manifoldM. Then given any ε > 0, there exists anchor points C ⊂ M and coding γ such
that

1

mik

∑
xj∈Sik

(
α‖xj − x̄j‖2 + β

∑
u∈C
‖x̄j − u‖22

)
≤ [αcM + (1 + 5

√
dM)β]ε2. (16)

This implies the desired bound.

12



Under review as a conference paper at ICLR 2020

The first inequality of this lemma demonstrates that the quality of the LCC approximation is bounded
by two terms: the first term ‖xj − x̄j‖2 indicates x should be close to its physical approximation
x̄, the second term ‖x̄j − u‖ implies that the coding should be localized. This second inequality
shows that the approximation error of local coordinate coding depends on the intrinsic dimension of
the manifold instead of the dimension of input.

C PROOF OF LEMMA 2

In order to proof Lemma 2, we first introduce a relevant theorem.
Theorem 3. (Vector-valued extension of McDiarmid’s inequality (Rivasplata et al., 2018)) Let
X1, . . . ,Xm ∈ X be independent random variables, and f : Xm → Rdw be a vector-valued
mapping function. If, for all i ∈ {1, . . . ,m}, and for all x1, . . . ,xm,x

′
i ∈ X , the function f

satisfies
sup
xi,x′i

‖f(x1:i−1,xi,xi+1:m)− f(x1:i−1,x
′
i,xi+1:m)‖ ≤ ci (17)

Then E‖f(X1:m) − E[f(X1:m)]‖ ≤
√∑m

i=1 c
2
i . For any δ ∈ (0, 1) with probability ≥ 1 − δ we

have

‖f(X1:m)− E[f(X1:m)]‖ ≤

√√√√ m∑
i=1

c2i +

√∑m
i=1 c

2
i

2
log(

1

δ
). (18)

The above theorem indicates that bounded differences in norm implies concentration of f(X1:m)
around its mean in norm, i.e., ‖f(X1:m)− E[f(X1:m)]‖ is small with high probability.

Then, we bound the error between expected prior predictor wP and the empirical prior predictor
ŵP .
Lemma 3. Given the definition of wP

i [k] and ŵP
i [k] in (4) and (5), let X be a compact set with

radius R, i.e., ∀x,x′ ∈ X , ‖x− x′‖ ≤ R. For any δ ∈ (0, 1] with probability ≥ 1− δ, we have

‖wP
i [k]− ŵP

i [k]‖ ≤ αR
√
mik

(1 +

√
1

2
log(

1

δ
)) (19)

Proof. According to the definition of Φ̂v(·) in (5), for all points x1, . . . ,xj−1,xj+1, . . . ,xmk
,x′j

in the sample set Sik, we have

sup
xi,x′i

‖Φ̂v(x1:j−1,xj ,xj+1:mk
)− Φ̂v(x1:j−1,x

′
j ,xj+1:mk

)‖

=
1

mik
sup
xj ,x′j

‖Φv(xj)− Φv(x′j)‖ ≤
1

mik
sup
xj ,x′j

α‖xj − x′j‖ ≤
αR

mik
, (20)

whereR denotes the domain of x, sayR = supx ‖x‖. The first inequality follows from the Lipschitz
smoothness condition of Φv(·) and the second inequality follows by the definition of domain X .
Utilizing Theorem 3, for any δ ∈ (0, 1] with probability ≥ 1− δ we have

‖wP
i [k]− ŵP

i [k]‖ = ‖Φ̂v(Sik)− E[Φ̂v(Sik)]‖ ≤ αR
√
mik

(1 +

√
1

2
log(

1

δ
)). (21)

This implies the bound.

Lemma 3 shows that the bounded difference of function Φv(·) implies its concentration, which can
be further used to bound the differences between empirical prior predictor w̄P

i [k] and expexted prior
predictor wP

i [k].

Lemma 2 Given the definition of wP
i and w̄P

i in (4) and (6), let X be a compact set with radius R,
i.e., ∀x,x′ ∈ X , ‖x− x′‖ ≤ R. For any δ ∈ (0, 1] with probability ≥ 1− δ, we have

‖wP
i − w̄P

i ‖2 ≤
K∑
k=1

(
αR
√
mik

(1 +

√
1

2
log(

1

δ
)) +Oα,β(γ,C)

)2

. (22)
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Proof According to the definition of wP , w̄P and ŵP , we have

‖wP
i − w̄P

i ‖2

=

K∑
k=1

‖wP
i [k]− w̄P

i [k]‖2

=

K∑
k=1

‖E[Φ̂v(Sik)]− Φ̂v(Sik) + Φ̂v(Sik)− Φ̄v(Sik)‖2

=

K∑
k=1

(
‖E[Φ̂v(Sik)]− Φ̂v(Sik)‖2 + ‖Φ̂v(Sik)− Φ̄v(Sik)‖2 + 2(E[Φ̂v(Sik)]− Φ̂v(Sik))>(Φ̂v(Sik)− Φ̄v(Sik))

)
≤

K∑
k=1

(
‖E[Φ̂v(Sik)]− Φ̂v(Sik)‖2 + ‖Φ̂v(Sik)− Φ̄v(Sik)‖2 + 2‖E[Φ̂v(Sik)]− Φ̂v(Sik)‖‖Φ̂v(Sik)− Φ̄v(Sik)‖

)
.

(23)

Substitute Lemma 3 and Lemma 1 into the above inequality, we can derive

PSik∼D
mk
k

‖wP − w̄P ‖2 ≤
K∑
k=1

(
αR
√
mik

(1 +

√
1

2
log(

1

δ
)) +Oα,β(γ,C)

)2
 ≥ 1− δ. (24)

This gives the assertion.

Lemma 2 shows that the approximation error between expected prior predictor and LCC-based
prior predictor depends on the number of samples in each categories and the qualtiy of LCC coding
scheme.

D PROOF OF THEOREM 2

Theorem 2 Let Q be the posterior of base learner Q = N (wQ, σ2
wIdw) and P be the prior

N (Φ̄v(S), σ2
wIdw). The mean of prior is produced by the LCC-based prior predictor Φ̄v(S) in

Eq. (6) and its parameter v is sampled from the hyperposterior of meta learnerQ = N (vQ, σ2
vIdv).

Give the hyperprior P = N (0, σ2
vIdv), then for any hyperposterior Q, any c1, c2 > 0 and any

δ ∈ (0, 1] with probability ≥ 1− δ we have,

er(Q) ≤c′1c′2êr(Q) + (

n∑
i=1

c′2
2c2nmiσ2

v

+
c′1

2c1nσ2
v

)‖vQ‖2

+

n∑
i=1

c′2
c2nmiσ2

w

‖wQ
i − Φ̄vQ(Si)‖2 + const(α, β,R, δ, n,mi), (25)

where c′1 = c1
1−e−c1

and c′2 = c2
1−e−c2

.

Proof Our proof contains two steps. First we bound the error within observed tasks due to observing
limited number of samples. Then we bound the error on the task environment level due to observing
a finite number of tasks. Both of the two steps utilize Catino’s classical PAC-Bayes bound (Catoni,
2007) to measure the error. We give here a general statement of the Catino’s classical PAC-Bayes
bound.
Theorem 4. (Classical PAC-Bayes bound, general notations) Let X be a sample space and X
be some distribution over X , and let F be a hypotheses space of functions over X . Define a loss
function g(f,X) : F × X → [0, 1], and let XG

1 , {X1, . . . , XG} be a sequence of K independent
random variables distributed according to X. Let π be some prior distribution over F (which must
not depend on the samples X1, . . . , Xk). For any δ ∈ (0, 1], the following bounds holds uniformly
for all posterior distribution ρ over F (even sample dependent),

PXK
1 ∼i.i.dX

{
E

X∼X
E
f∼ρ

g(f,X) ≤ c

1− e−c

[
1

G

G∑
g=1

E
f∼ρ

g(f,Xk) +
KL(ρ||π) + log 1

δ

K × c

]
,∀ρ

}
≥ 1− δ. (26)
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First step We utilize Theorem 4 to bound the generalization error in each of the observed tasks.
Let i ∈ 1, . . . , n be the index of task. For task i, we substitute the following definition into the
Catinos’s PAC-Bayes Bound. Specifically, Xg , (xij , yij),K , mi denote the samples and
X , Di denotes the data distribution. We instantiate the hypotheses with a hierarchical model
f , (v,w), where v ∈ Rdv and w ∈ Rdw are the parameters of meta learner (prior predic-
tor) Φv(·) and base learner h(·) respectively. The loss function only considers the base learner,
which is defined as g(f,X) , `(hw(x), y). The prior over model parameter is represented
as π , (P, P ) , (N (0, σ2

vIdv),N (wP , σ2
wIdw)), a Gaussian distribution (hyperprior of meta

learner) centered at 0 and a Gaussian distribution (prior of base learner) centered at wP , respec-
tively. We set the posterior to ρ , (Q, Q) , (N (vQ, σ2

vIdv),N (wQ, σ2
wIdw)), a Gaussian dis-

tribution (hyperposterior of meta learner) centered at vQ and a Gaussian distribution (posterior of
base learner) centered at wQ. According to Theorem 4, the generalization bound holds for any
posterior distribution including the one generated in our localized meta-learning framework. Specif-
ically, we first sample v from hyperposterior N (vQ, σ2

vIdv) and estimate wQ by leveraging ex-
pected prior predictor wQ = Φv(D). The base learner algorithm Ab(S, P ) utilizes the sample set
S and the prior P = N (wP , σ2

wIdw) to produce a posterior Q = Ab(S, P ) = N (wQ, σ2
wIdw).

Then we sample base learner parameter w from posterior N (wQ, σ2
wIdw) and compute the in-

curred loss `(hw(x), y). On the whole, meta-learning algorithm Am(S1, . . . , Sn,P) observes
a series of tasks S1, . . . , Sn and adjusts its hyperprior P = N (vP , σ2

vIdv) into hyperposterior
Q = Am(S1, . . . , Sn,P) = N (vQ, σ2

vIdv).

The KL divergence term between prior π and posterior ρ is computed as follows:

KL(ρ‖π) = E
f∼ρ

log
ρ(f)

π(f)
= E

v∼N (vQ,σ2
vIdv )

E
w∼N (wQ,σ2

wIdw )
log
N (vQ, σ2

vIdv)N (wQ, σ2
wIdw)

N (0, σ2
vIdv)N (wP , σ2

wIdw)

= E
v∼N (vQ,σ2

vIdv )
log
N (vQ, σ2

vIdv)

N (0, σ2
vIdv)

+ E
v∼N (vQ,σ2

vIdv )
E

w∼N (wQ,σ2
wIdw )

log
N (wQ, σ2

wIdw)

N (wP , σ2
wIdw)

=
1

2σ2
v

‖vQ‖2 + E
v∼N (vQ,σ2

vIdv )

1

2σ2
w

‖wQ −wP ‖2. (27)

In our localized meta-learning framework, in order to make KL(Q||P ) small, the center of prior
distribution wP is generated by LCC-based prior predictor w̄P = Φ̄v(S). Denote the term

E
v∼N (vQ,σ2

vIdv )

1
2σ2

w
‖wQ −wP ‖2 by E

v

1
2σ2

w
‖wQ −wP ‖2 for convinence, we have

E
v

1

2σ2
w

‖wQ −wP ‖2 =E
v

1

2σ2
w

‖wQ − w̄P + w̄P −wP ‖2

=E
v

1

2σ2
w

[‖wQ − w̄P ‖2 + ‖w̄P −wP ‖2 + 2(wQ − w̄P )>(w̄P −wP )]

≤E
v

1

2σ2
w

[‖wQ − w̄P ‖2 + ‖w̄P −wP ‖2 + 2‖wQ − w̄P ‖‖w̄P −wP ‖]

≤ 1

σ2
w

E
v
‖wQ − Φ̄v(S)‖2 +

1

σ2
w

E
v
‖w̄P −wP ‖2. (28)

Since w̄P
i = Φ̄v(Si) = [Φ̄v(Si1), . . . , Φ̄v(Sik), . . . , Φ̄v(SiK)], we have

E
v
‖wQ

i − Φ̄v(Si)‖2 =

K∑
k=1

E
v
‖wQ

i [k]− Φ̄v(Sik)‖2

=

K∑
k=1

(
‖wQ

i [k]‖2 − 2(wQ
i [k])>(Φ̄vQ(Sik)) + ‖Φ̄vQ(Sik)‖2 + V

v
[‖Φ̄v(Sik)‖]

)
=

K∑
k=1

(
‖wQ

i [k]− Φ̄vQ(Sik)‖2 +
dv
|C|

σ2
v

)
=‖wQ

i − Φ̄vQ(Si)‖2 + dwKσ
2
v, (29)
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where V
v

[‖Φ̄v(Sik)‖] denotes the variance of ‖Φ̄v(Sik)‖. The last equality uses the fact that dv =

|C|dw. Combining Lemma 2, for any δ′ ∈ (0, 1] with probability ≥ 1− δ′ we have

E
v

1

2σ2
w

‖wQ
i −wP

i ‖2

≤ 1

σ2
w

‖wQ
i − Φ̄vQ(Si)‖2 + dwK(

σv
σw

)2 +
1

σ2
w

K∑
k=1

(
αR
√
mik

(1 +

√
1

2
log(

1

δ
)) +Oα,β(γ,C)

)2

(30)

Then, according to Theorem 4, we obtain that for any δi
2 > 0

PSi∼D
mi
i

{
E

(x,y)∼Di

E
v∼N (vQ,σ2

vIdv )
E

w∼N (wQ,σ2
wIdw )

`(hw(x), y)

≤ c2
1− e−c2

· 1

mi

mi∑
j=1

E
v∼N (vQ,σ2

vIdv )
E

w∼N (wQ,σ2
wIdw )

`(hw(xj), yj)

+
1

(1− e−c2) ·mi

(
1

2σ2
v

‖vQ‖2 + E
v∼N (vQ,σ2

vIdv )

1

2σ2
w

‖wQ
i −wP

i ‖2 + log
2

δi

)
,∀Q

}
≥ 1− δi

2
,

(31)

for all observed tasks i = 1, . . . , n. Define δ′ = δi
2 and combine inequality (30), we obtain

PSi∼D
mi
i

{
E

(x,y)∼Di

E
v∼N (vQ,σ2

vIdv )
E

w∼N (wQ,σ2
wIdw )

`(hw(x), y)

≤ c2
1− e−c2

· 1

mi

mi∑
j=1

E
v∼N (vQ,σ2

vIdv )
E

w∼N (wQ,σ2
wIdw )

`(hw(xj), yj)

+
1

(1− e−c2)mi
·
(

1

2σ2
v

‖vQ‖2 +
1

σ2
w

‖wQ
i − Φ̄vQ(Si)‖2 + log

2

δi
+ dwK(

σv
σw

)2

+
1

σ2
w

K∑
k=1

(
αR
√
mik

(1 +

√
1

2
log(

2

δi
)) +Oα,β(γ,C)

)2
)
,∀Q

}
≥ 1− δi, (32)

Using the notations in Section 4, the above bound can be simplified as

PSi∼D
mi
i

{
E

v∼N (vQ,σ2
vIdv ),wP =Φv(D),Pi=N (wP ,σ2

wIdw )
er(Ab(Si, Pi))

≤ c2
1− e−c2

E
v∼N (vQ,σ2

vIdv ),wP =Φv(D),Pi=N (wP ,σ2
wIdw )

êr(Ab(Si, Pi))

+
1

(1− e−c2)mi

(
1

2σ2
v

‖vQ‖2 +
1

σ2
w

‖wQ
i − Φ̄vQ(Si)‖2 + log

2

δi
+ dwK(

σv
σw

)2

+
1

σ2
w

K∑
k=1

(
αR
√
mik

(1 +

√
1

2
log(

2

δi
)) +Oα,β(γ,C)

)2
)
,∀Q

}
≥ 1− δi. (33)

Second step Next we bound the error due to observing a limited number of tasks from the envi-
ronment. We reuse Theorem 4 with the following substitutions. The samples are (Di,mi, Si), i =
1, . . . , n, where (Di,mi) are sampled from the same meta distribution τ and Si ∼ Dmi

i . The
hyposthesis is parameterized as Φv(D) with meta learner parameter v. The loss function is
g(f,X) , E

(x,y)∼D
E

w∼N (wQ,σ2
wIdw )

`(hw(x), y), where wQ = Ab(Si, Pi). Let π , N (0, σ2
vIdv) be
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the prior over meta learner parameter, the following holds for any δ0 > 0,

P(D
mi
i )∼τ,Si∼D

mi
i ,i=1,...,n

{
E

(D,m)∼τ
E

S∼Dm
E

v∼N (vQ,σ2
vIdv )

E
w∼N (wQ,σ2

wIdw )
E

(x,y)∼Di

`(hw(x), y)

≤ c1
1− e−c1

· 1

n

n∑
i=1

E
v∼N (vQ,σ2

vIdv )
E

w∼N (wQ,σ2
wIdw )

E
(x,y)∼Di

`(hw(x), y)

+
1

(1− e−c1)n

(
1

2σ2
v

‖vQ‖2 + log
1

δ0

)
,∀Q

}
≥ 1− δ0, (34)

Using the term in Section 4, the above bound can be simplified as

P(D
mi
i )∼τ,Si∼D

mi
i ,i=1,...,n

{
er(Q)

≤ c1
1− e−c1

· 1

n

n∑
i=1

E
v∼N (vQ,σ2

vIdv ),wP =Φv(D),Pi=N (wP ,σ2
wIdw )

er(Ab(Si, Pi))

+
1

(1− e−c1)n

(
1

2σ2
v

‖vQ‖2 + log
1

δ0

)
,∀Q

}
≥ 1− δ0, (35)

Finally, by employing the union bound, we could bound the probability of the intersection of the
events in (33) and (35) For any δ > 0, set δ0 , δ

2 and δi , δ
2n for i = 1, . . . , n, we have

P(D
mi
i )∼τ,Si∼D

mi
i ,i=1,...,n

{
er(Q)

≤ c1c2
(1− e−c1)(1− e−c2)

1

n

n∑
i=1

E
v∼N (vQ,σ2

vIdv ),wP =Φv(D),Pi=N (wP ,σ2
wIdw )

êr(Ab(Si, Pi))

+
1

n

n∑
i=1

1

(1− e−c2)mi

(
1

2σ2
v

‖vQ‖2 +
1

σ2
w

‖wQ
i − Φ̄vQ(Si)‖2 + log

4n

δ

+
1

σ2
w

K∑
k=1

(
αR
√
mik

(1 +

√
1

2
log(

4n

δ
)) +Oα,β(γ,C)

)2

+ dwK(
σv
σw

)2


+

1

(1− e−c1)n

(
1

2σ2
v

‖vQ‖2 + log
2

δ

)
,∀Q

}
≥ 1− δ. (36)

We can further simplify the notation and obtain that

P(D
mi
i )∼τ,Si∼D

mi
i ,i=1,...,n

{
er(Q) ≤ c′1c′2êr(Q)

+(

n∑
i=1

c′2
2c2nmiσ2

v

+
c′1

2c1nσ2
v

)‖vQ‖2 +

n∑
i=1

c′2
c2nmiσ2

w

‖wQ
i − Φ̄vQ(Si)‖2

+const(α, β,R, δ, n,mi),∀Q

}
≥ 1− δ, (37)

where c′1 = c1
1−e−c1

and c′2 = c2
1−e−c2

. This completes the proof.

E PROOF OF THEOREM 1

Theorem 2 Let Q be the posterior of base learner Q = N (wQ, σ2
wIdw) and P be the prior

N (wP , σ2
wIdw). The mean of prior is sampled from the hyperposterior of meta learner Q =

N (wQ, σ2
wIdw). Give the hyperprior P = N (0, σ2

wIdw), then for any hyperposterior Q, any
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c1, c2 > 0 and any δ ∈ (0, 1] with probability ≥ 1− δ we have,

er(Q) ≤ c′1c′2êr(Q) + (

n∑
i=1

c′2
2c2nmiσ2

v

+
c′1

2c1nσ2
v

)‖wQ‖2

+

n∑
i=1

c′2
2c2nmiσ2

w

‖wQ
i −wQ‖2 + const(n,mi, δ), (38)

where c′1 = c1
1−e−c1

and c′2 = c2
1−e−c2

.

Proof Instead of generating the mean of prior with a prior predictor, the vanilla meta-learning
framework directly produces the mean of prior wP by sampling from hyperposterior Q =
N (wQ, σ2

wIdw). Then the base learner algorithm Ab(S, P ) utilizes the sample set S and the prior
P = N (wP , σ2

wIdw) to produce a posterior Q = Ab(S, P ) = N (wQ, σ2
wIdw). Similar with the

two-steps proof in Theorem 2, we first get an intra-task bound by using Theorem 4. For any δi > 0,
we have

PSi∼D
mi
i

{
E

(x,y)∼Di

E
wP∼N (wQ,σ2

wIdw )
E

w∼N (wQ,σ2
wIdw )

`(hw(x), y)

≤ c2
1− e−c2

· 1

mi

mi∑
j=1

E
wP∼N (wQ,σ2

wIdw )
E

w∼N (wQ,σ2
wIdw )

`(hw(xj), yj)

+
1

(1− e−c2) ·mi

(
1

2σ2
w

‖wQ‖2 + E
wP

i ∼N (wQ,σ2
wIdw )

1

2σ2
w

‖wQ
i −wP

i ‖2 + log
1

δi

)
,∀Q

}
≥ 1− δi,

(39)

The term E
wP

i ∼N (wQ,σ2
wIdw )

1
2σ2

w
‖wQ

i −wP
i ‖2 can be simplified as

E
wP

i ∼N (wQ,σ2
wIdw )

1

2σ2
w

‖wQ
i −wP

i ‖2

=
1

2σ2
w

(
‖wQ

i ‖
2 − 2(wQ

i )>wQ + ‖wQ‖2 + V
wP

i

[‖wP
i ‖]
)

=
1

2σ2
w

(
‖wQ

i −wQ‖2 + σ2
w

)
, (40)

where V
wP

i

[‖wP
i ‖] denotes the variance of ‖wP

i ‖. Then we get an inter-task bound. For any δ0 > 0,

we have

P(D
mi
i )∼τ,Si∼D

mi
i ,i=1,...,n

{
E

(D,m)∼τ
E

S∼Dm
E

wP∼N (wQ,σ2
wIdw )

E
w∼N (wQ,σ2

wIdw )
E

(x,y)∼Di

`(hw(x), y)

≤ c1
1− e−c1

· 1

n

n∑
i=1

E
wP∼N (wQ,σ2

wIdw )
E

w∼N (wQ,σ2
wIdw )

E
(x,y)∼Di

`(hw(x), y)

+
1

(1− e−c1)n

(
1

2σ2
w

‖wQ‖2 + log
1

δ0

)
,∀Q

}
≥ 1− δ0. (41)

For any δ > 0, set δ0 , δ
2 and δi , δ

2n for i = 1, . . . , n. Using the union bound, we finally get

P(D
mi
i )∼τ,Si∼D

mi
i ,i=1,...,n

{
er(Q) ≤ c′1c′2êr(Q)

+(

n∑
i=1

c′2
2c2nmiσ2

w

+
c′1

2c1nσ2
w

)‖wQ‖2 +

n∑
i=1

c′2
2c2nmiσ2

w

‖wQ
i −wQ‖2

+const(δ, n,mi),∀Q

}
≥ 1− δ, (42)

where c′1 = c1
1−e−c1

and c′2 = c2
1−e−c2

. This completes the proof.
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F DETAILS OF EXPERIMENTS

F.1 DATA PREPARATION

We used the 5-way 50-shot classification setups, where each task instance involves classifying im-
ages from 5 different categories sampled randomly from one of the meta-sets. We did not employ
any data augmentation or feature averaging during meta-training, or any other data apart from the
corresponding training and validation meta-sets.

F.2 NETWORK ARCHITECHTURE

Auto-Encoder for LCC For CIFAR100, the encoder is 7 layers with 16-32-64-64-128-128-256
channels. Each convolutional layer is followed by a LeakyReLU activation and a batch normaliza-
tion layer. The 1st, 3rd and 5th layer have stride 1 and kernel size (3, 3). The 2nd, 4th and 6th layer
have stride 2 and kernel size (4, 4). The 7th layer has stride 1 and kernel size (4, 4). The decoder
is same as encoder except that the layers are in reverse order. The input is resize to 32 × 32. For
Caltech-256, the encoder is 5 layers with 32-64-128-256-256 channels. Each convolutional layer is
followed by a LeakyReLU activation and a batch normalization layer. The first 4 layers have stride
2 and kernel size (4, 4). The last layer have stride 1 and kernel size (6, 6).The decoder is same as
encoder except that the layers are in reverse order. The input is resize to 96× 96.

Base Model The network architecture used for the classification task is a small CNN with 4 convo-
lutional layers , each with 32 filters, and a linear output layer, similiar to (Finn et al., 2017). Each
convolutional layer is followed by a Batch Normalization layer, a Leaky ReLU layer and a max
pooling layer. For CIFAR100, the input is resized to 32 × 32. For Caltech-256, the input is resized
to 96× 96.

F.3 OPTIMIZATION

Auto-Encoder for LCC As optimizer we used Adam(Kingma & Ba, 2015) with β1 = 0.9 and
β2 = 0.999. The initial learning rate is 1× 10−4. The number of epoch is 100. Batch size is 512.

LCC Training We alternatively train the coefficients and bases of LCC with Adam with β1 = 0.9
and β2 = 0.999. In specifics, for both dataset, we alternatively update the coefficients for 60 times
and then update the bases for 60 times. The number of training epoch is 3.The number of bases is
64. The batch size is 256.

Pre-Training of Feature Extractor We use 64-way classification in CIFAR-100 and 150-way clas-
sification in Caltech-256 to pre-train the feature embedding only on the meta-training dataset. For
both CIFAR100 and Caltech-256, an L2 regularization term of 5e−4 was used. We used the Adam
optimizer. The initial learning rate is 1 × 10−3, β1 is 0.9 and β2 is 0.999. The number of epoch is
50. The batch size is 512.

Meta-Training We use the cross-entropy loss as in (Amit & Meir, 2018). Although this is incon-
sistent with the bounded loss setting in our theoretical framework, we can still have a guarantees on
a variation of the loss which is clipped to [0, 1]. In practice, the loss is almost always smaller than
one. For CIFAR100 and Caltech-256, the number of epoch of meta-training phase is 12; the number
of epoch of meta-testing phase is 40. The batch size is 32 for both datasets. As optimizer we used
Adam with β1 = 0.9 and β2 = 0.999. In the settting with pre-trained base mdel, the learning rate
is 1× 10−5 for convolutional layers and 5× 10−4 for the linear output layer. In the setting without
pre-trained base model, the learning rate is 1× 10−3 for convolutional layers and 5× 10−3 for the
linear output layer. The confidence parameter is chosen to be δ = 0.1. The variance hyper-parameter
for prior predictor and base model are σw = σv = 0.01. The hyperparameter α1, α2 in LML and
ML-A are set to 0.01.

G PSEUDOCODE

In algorithms 1 and 2 we give the pseudocode for meta-training and meta-testing, repectively.
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Algorithm 1 Localized Meta-Learning (LML) algorithm, meta-training
Input: Data sets of observed tasks: S1, . . . , Sn.
Output: Learned prior predictor Φ̄ parameterized by v.
Initialize v ∈ Rdv and wi ∈ Rdw for i = 1 . . . , n.
Construct LCC scheme (γ,C) from the whole training data by optimizing Eq. (9).
while not converged do

for each task i ∈ {1, . . . , n} do
Sample a random mini-batch from the data S′i ⊂ Si.
Approximate E

v
êri(wi) using S′i.

end for
Compute the objective in (13), i.e. J ←

∑n
i=1 Ev êri(wi) + α1‖vQ‖2 +

∑n
i=1

α2

mi
‖wQ

i −
Φ̄vQ(Si)‖2.
Evaluate the gradient of J w.r.t. {v,w1, . . . ,wn} using backpropagation.
Take an optimization step.

end while

Algorithm 2 Localized Meta-Learning (LML) algorithm, meta-testing
Input: Data set of a new task: S
Output: Learned base model for new task parameterized by w′.
Initialize based model parameter by LCC-based prior predictor, i.e. w′ ← Φ̄v(S).
while not converged do

Sample a random mini-batch from the data S′ ⊂ S.
Approximate E

v
êri(w

′) using S′.

Evaluate the gradient of E
v
êri(Qi = N (w′, σ2

wIdw)) w.r.t. w′ using backpropagation.
Take an optimization step.

end while
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