
Under review as a conference paper at ICLR 2020

SINGLE PATH ONE-SHOT NEURAL ARCHITECTURE
SEARCH WITH UNIFORM SAMPLING

Anonymous authors
Paper under double-blind review

ABSTRACT

We revisit the one-shot Neural Architecture Search (NAS) paradigm and analyze
its advantages over existing NAS approaches. Existing one-shot method (Bender
et al., 2018), however, is hard to train and not yet effective on large scale datasets
like ImageNet. This work propose a Single Path One-Shot model to address the
challenge in the training. Our central idea is to construct a simplified supernet,
where all architectures are single paths so that weight co-adaption problem is al-
leviated. Training is performed by uniform path sampling. All architectures (and
their weights) are trained fully and equally.
Comprehensive experiments verify that our approach is flexible and effective. It
is easy to train and fast to search. It effortlessly supports complex search spaces
(e.g., building blocks, channel, mixed-precision quantization) and different search
constraints (e.g., FLOPs, latency). It is thus convenient to use for various needs.
It achieves start-of-the-art performance on the large dataset ImageNet.

1 INTRODUCTION

Deep learning automates feature engineering and solves the weight optimization problem. Neural
Architecture Search (NAS) aims to automate architecture engineering by solving one more problem,
architecture design. Early NAS approaches (Zoph et al., 2018; Zhong et al., 2018a;b; Liu et al.,
2018a; Real et al., 2018; Tan et al., 2018) solves the two problems in a nested manner. A large
number of architectures are sampled and trained from scratch. The computation cost is unaffordable
on large datasets.

Recent approaches (Wu et al., 2018a; Cai et al., 2018; Liu et al., 2018b; Xie et al., 2018; Pham et al.,
2018; Zhang et al., 2018c; Brock et al., 2017; Bender et al., 2018) adopt a weight sharing strategy
to reduce the computation. A supernet subsuming all architectures is trained only once. Each
architecture inherits its weights from the supernet. Only fine-tuning is performed. The computation
cost is greatly reduced.

Most weight sharing approaches use a continuous relaxation to parameterize the search space (Wu
et al., 2018a; Cai et al., 2018; Liu et al., 2018b; Xie et al., 2018; Zhang et al., 2018c). The archi-
tecture distribution parameters are jointly optimized during the supernet training via gradient based
methods. The best architecture is sampled from the distribution after optimization. There are two
issues in this formulation. First, the weights in the supernet are deeply coupled. It is unclear why
inherited weights for a specific architecture are still effective. Second, joint optimization introduces
further coupling between the architecture parameters and supernet weights. The greedy nature of
the gradient based methods inevitably introduces bias during optimization and could easily mislead
the architecture search. Complex optimization techniques are adopted.

The one-shot paradigm (Brock et al., 2017; Bender et al., 2018) alleviates the second issue. It defines
the supernet and performs weight inheritance in a similar way. However, there is no architecture
relaxation. The architecture search problem is decoupled from the supernet training and addressed
in a separate step. Thus, it is sequential. It combines the merits of both nested and joint optimization
approaches above. The architecture search is both efficient and flexible.

The first issue is still problematic. Existing one-shot approaches (Brock et al., 2017; Bender et al.,
2018) still have coupled weights in the supernet. Their optimization is complicated and involves
sensitive hyper parameters. They have not shown competitive results on large datasets.

1

Under review as a conference paper at ICLR 2020

This work revisits the one-shot paradigm and presents a new approach that further eases the train-
ing and enhances architecture search. Based on the observation that the accuracy of an architecture
using inherited weights should be predictive for the accuracy using optimized weights, we propose
that the supernet training should be stochastic. All architectures have their weights optimized si-
multaneously. This gives rise to a uniform sampling strategy. To reduce the weight coupling in the
supernet, a simple search space that consists of single path architectures is proposed. The training
is hyperparameter-free and easy to converge.

This work makes the following contributions.

1. We present a principled analysis and point out drawbacks in existing NAS approaches that
use nested and joint optimization. Consequently, we hope this work will renew interest in
the one-shot paradigm, which combines the merits of both via sequential optimization.

2. We present a single path one-shot approach with uniform sampling. It overcomes the draw-
backs of existing one-shot approaches. Its simplicity enables a rich search space, including
novel designs for channel size and bit width, all addressed in a unified manner. Architec-
ture search is efficient and flexible. Evolutionary algorithm is used to support real world
constraints easily, such as low latency.

Comprehensive ablation experiments and comparison to previous works on a large dataset (Ima-
geNet) verify that the proposed approach is state-of-the-art in terms of accuracy, memory consump-
tion, training time, architecture search efficiency and flexibility.

2 REVIEW OF NAS APPROACHES

Without loss of generality, the architecture search spaceA is represented by a directed acyclic graph
(DAG). A network architecture is a subgraph a ∈ A, denoted as N (a,w) with weights w.

Neural architecture search aims to solve two related problems. The first is weight optimization,
wa = arg min

w
Ltrain (N (a,w)) , (1)

where Ltrain(·) is the loss function on the training set.

The second is architecture optimization. It finds the architecture that is trained on the training set
and has the best accuracy on the validation set, as

a∗ = arg max
a∈A

ACCval (N (a,wa)) , (2)

where ACCval(·) is the accuracy on the validation set.

Early NAS approaches perform the two optimization problems in a nested manner (Zoph & Le,
2016; Zoph et al., 2018; Zhong et al., 2018a;b; Baker et al., 2016). Numerous architectures are
sampled from A and trained from scratch as in Eq. (1). Each training is expensive. Only small
dataset (e.g., CIFAR 10) and small search space (e.g, a single block) are affordable.

Recent NAS approaches adopt a weight sharing strategy (Cai et al., 2018; Liu et al., 2018b; Wu
et al., 2018a; Xie et al., 2018; Bender et al., 2018; Brock et al., 2017; Zhang et al., 2018c; Pham
et al., 2018). The architecture search space A is encoded in a supernet1, denoted as N (A,W),
where W is the weights in the supernet. The supernet is trained once. All architectures inherit their
weights directly from W . Thus, they share the weights in their common graph nodes. Fine tuning of
an architecture is performed in need, but no training from scratch is incurred. Therefore, architecture
search is fast and suitable for large datasets like ImageNet.

Most weight sharing approaches convert the discrete architecture search space into a continuous
one (Wu et al., 2018a; Cai et al., 2018; Liu et al., 2018b; Xie et al., 2018; Zhang et al., 2018c).
Formally, space A is relaxed to A(θ), where θ denotes the continuous parameters that represent the
distribution of the architectures in the space. Note that the new space subsumes the original one,
A ⊆ A(θ). An architecture sampled from A(θ) could be invalid in A.

1“Supernet” is used as a general concept in this work. It has different names and implementation in previous
approaches.

2

Under review as a conference paper at ICLR 2020

An advantage of the continuous search space is that gradient based methods (Liu et al., 2018b; Cai
et al., 2018; Wu et al., 2018a; Véniat & Denoyer, 2018; Xie et al., 2018; Zhang et al., 2018c) is
feasible. Both weights and architecture distribution parameters are jointly optimized, as

(θ∗,Wθ∗) = arg min
θ,W

Ltrain(N (A(θ),W)). (3)

After optimization, the best architecture a∗ is sampled from A(θ∗). Note that it could be invalid in
A. If so, it is validated (e.g., by binarization of θ (Liu et al., 2018b)). It then inherits the weights
from Wθ∗ and is fine-tuned.

Optimization of Eq. (3) is challenging. First, the weights of the graph nodes in the supernet depend
on each other and become deeply coupled during optimization. For a specific architecture, it inherits
certain node weights from W . While these weights are decoupled from the others, it is unclear why
they are still effective.

Second, joint optimization of architecture parameter θ and weights W introduces further complex-
ity. Solving Eq. (3) inevitably introduces bias to certain areas in θ and certain nodes in W during
the progress of optimization. The bias would leave some nodes in the graph well trained and others
poorly trained. With different level of maturity in the weights, different architectures are actually
non-comparable. However, their prediction accuracy is used as guidance for sampling inA(θ) (e.g.,
used as reward in policy gradient (Cai et al., 2018)). This would further mislead the architecture
sampling. This problem is in analogy to the “dilemma of exploitation and exploration” problem in
reinforcement learning. To alleviate such problems, existing approaches adopt complicated opti-
mization techniques (see Table 7 for a summary). Nevertheless, there lacks a comprehensive evalu-
ation of their effectiveness (Li & Talwalkar, 2019).

Task constraints Real world tasks usually have additional requirements on a network’s memory
consumption, FLOPs, latency, energy consumption, etc. These requirements only depends on the
architecture a, not on the weights wa. Thus, they are called architecture constraints in this work. A
typical constraint is that the network’s latency is no more than a preset budget, as

Latency(a∗) ≤ Latmax. (4)

Note that it is challenging to satisfy Eq. (2) and Eq. (4) simultaneously for most previous approaches.
Some works augment the loss function Ltrain in Eq. (3) with soft loss terms that consider the
architecture latency (Cai et al., 2018; Wu et al., 2018a; Xie et al., 2018; Véniat & Denoyer, 2018).
However, it is hard, if not impossible, to guarantee a hard constraint like Eq. (4).

3 OUR SINGLE PATH ONE-SHOT APPROACH

As analyzed above, the coupling between architecture parameters and weights is problematic. This
is caused by joint optimization of both. To alleviate the problem, a natural solution is to decouple
the super net training and architecture search in two sequential steps. This leads to the so called
one-shot approaches (Brock et al., 2017; Bender et al., 2018).

In general, the two steps are formulated as follows. Firstly, the supernet weight is optimized as

WA = arg min
W

Ltrain (N (A,W)) . (5)

Compared to Eq. (3), the continuous parameterization of search space is absent. Only weights are
optimized.

Secondly, architecture searched is performed as

a∗ = arg max
a∈A

ACCval (N (a,WA(a))) . (6)

During search, each sampled architecture a inherits its weights from WA as WA(a). The key dif-
ference of Eq. (6) from Eq. (1) and (2) is that architecture weights are ready for use. Evaluation of
ACCval(·) only requires inference. Thus, the search is very efficient.

The search is also flexible. Any adequate search algorithm is feasible. The architecture constraint
like Eq. (4) can be exactly satisfied. Search can be repeated many times on the same supernet once

3

Under review as a conference paper at ICLR 2020

0 30000 60000 90000 120000 150000
Training Iter

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%
Va

lid
at
io
n
to
p-
1
ac

cu
ra
cy

drop rate 0.01
drop rate 0.05
drop rate 0.1
drop rate 0.5
single path

Figure 1: Comparison of single path strategy and
drop path strategy

0 2 4 6 8 10 12 14 16 18 20
Evolution iters

67.8%

68.0%

68.2%

68.4%

68.6%

68.8%

Va
lid

at
io
n
to
p-
1
ac

cu
ra
cy

Evolution
Random

Figure 2: Evolutionary vs. random architecture
search.

trained, using different constraints (e.g., 100ms latency and 200ms latency). These properties are
absent in previous approaches. These make the one-shot paradigm attractive for real world tasks.

One problem in Sec. 2 still remains. The graph nodes’ weights in the supernet training in Eq.(5) are
coupled. It is unclear why the inherited weights WA(a) are still good for an arbitrary architecture a.

The recent one-shot approach (Bender et al., 2018) attempts to decouple the weights using a “path
dropout” strategy. During an SGD step in Eq. (5), each edge in the supernet graph is randomly
dropped. The random chance is controlled via a dropout rate parameter. In this way, the co-
adaptation of the node weights is reduced during training. Experiments in (Bender et al., 2018)
indicate that the training is very sensitive to the dropout rate parameter. This makes the supernet
training hard. A carefully tuned heat-up strategy is used. In our implementation of this work, we
also found that the validation accuracy is very sensitive to the dropout rate parameter.

Single Path Supernet and Uniform Sampling. Let us restart to think about the fundamental
principle behind the idea of weight sharing. The key to the success of architecture search in Eq. (6)
is that, the accuracy of any architecture a on a validation set using inherited weightWA(a) (without
extra fine tuning) is highly predictive for the accuracy of a that is fully trained. Ideally, this requires
that the weight WA(a) to approximate the optimal weight wa as in Eq. (1). The quality of the
approximation depends on how well the training loss Ltrain (N (a,WA(a))) is minimized. This gives
rise to the principle that the supernet weightsWA should be optimized in a way that all architectures
in the search space are optimized simultaneously. This is expressed as

WA = arg min
W

Ea∼Γ(A) [Ltrain(N (a,W (a)))] , (7)

where Γ(A) is a prior distribution of a ∈ A. Note that Eq. (7) is an implementation of Eq. (5). In
each step of optimization, an architecture a is randomly sampled. Only weights W (a) are activated
and updated. So the memory usage is efficient. In this sense, the supernet is no longer a valid net-
work. It behaves as a stochastic supernet (Véniat & Denoyer, 2018). This is different from (Bender
et al., 2018).

To reduce the co-adaptation between node weights, we propose a supernet structure that each archi-
tecture is a single path, as shown in Fig.3. Compared to the path dropout strategy in (Bender et al.,
2018), the single path strategy is hyperparameter-free. We compared the two strategies within the
same search space (as in this work). Note that the original drop path in (Bender et al., 2018) may
drop all operations in a block, resulting in a short cut of identity connection. In our implementa-
tion, it is forced that one random path is kept in this case since our choice block does not have an
identity branch. We randomly select sub network and evaluate its validation accuracy during the
training stage. Results in Fig.1 show that drop rate parameters matters a lot. Our single path strategy
corresponds to using drop rate 1. It works the best.

The prior distribution Γ(A) is important. In this work, we empirically find that uniform sampling
is good. This is not much of a surprise. A recent work also finds that purely random search is
competitive to several SOTA NAS approaches(Li & Talwalkar (2019)). We also experimented with
a variant that samples the architectures uniformly according to their constraints, named uniform

4

Under review as a conference paper at ICLR 2020

constraint sampling. Specifically, we randomly choice a range, and then sample the architecture
repeatedly until the FLOPs of sampled architecture falls in the range. This is because a real task
usually expects to find multiple architectures satisfying different constraints. In this work, we use
the uniform constraint sampling.

We note that sampling a path according to architecture distribution during optimization is already
used in previous weight sharing approaches (Pham et al., 2018; Véniat & Denoyer, 2018; Wu et al.,
2018a; Cai et al., 2018; Xie et al., 2018; Zhang et al., 2018c). The difference is that, the distribution
Γ(A) is a fixed priori during our training (Eq. (7)), while it is learnable and updated (Eq. (3)) in
previous approaches (e.g. RL (Pham et al., 2018), policy gradient (Véniat & Denoyer, 2018; Cai
et al., 2018), Gumbel Softmax (Wu et al., 2018a; Xie et al., 2018), APG (Zhang et al., 2018c)).
As analyzed in Sec. 2, the latter makes the supernet weights and architecture parameters highly
correlated and optimization difficult.

Comprehensive experiments in Sec. 4 show that our approach achieves better results than the SOTA
methods (Cai et al., 2018; Wu et al., 2018a). Note that there is no such theoretical guarantee that
using a fixed prior distribution is inherently better than optimizing the distribution during training.
Our better result likely indicates that the joint optimization in Eq. (3) is too difficult for the existing
optimization techniques.

Supernet Architecture and Novel Choice Block Design. Choice blocks are used to build a
stochastic architecture. Fig. 3 illustrates an example case. A choice block consists of multiple
architecture choices. For our single path supernet, each choice block only has one choice invoked at
the same time. A path is obtained by sampling all the choice blocks.

The simplicity of our approach enables us to define different types of choice blocks to search various
architecture variables. Specifically, we propose two novel choice blocks to support complex search
spaces.

Choice Block

Choice Block

Choice Block

Choice 1 Choice 2 Choice 3

Figure 3: Choice blocks for our
single path supernet.

max input channels

max
output
channels

kernel size

current input channels (c_in)

Convolutional
Layer Weights

output
channels
(c_out)

Weights[:c_out, :c_in, :]

Figure 4: Choice block for
channel number search.

Convolutional
Layer

Weight
Bit Width

Kernel
WeightsQuantizer

Feature
Bit WidthQuantizer

Figure 5: Choice block for
mixed-precision quantization
search.

Channel Number Search. We propose a new choice block based on weight sharing, as shown in
Fig. 4. The main idea is to preallocate a weight tensor with maximum number of channels, and
the system randomly selects the channel number and slices out the corresponding subtensor for
convolution. With the weight sharing strategy, we found that the supernet can converge quickly.

In detail, assume the dimensions of preallocated weights are (max c out, max c in, ksize). For each
batch in supernet training, the number of current output channels c out is randomly sampled. Then,
we slice out the weights for current batch with the form Weights[: c out, : c in, :], which is used to
produce the output. The optimal number of channels is determined in the search step.

Mixed-Precision Quantization Search. In this work, We design a novel choice block to search
the bit widths of the weights and feature maps, as shown in Fig. 5. We also combine the channel
search space discussed earlier to our mixed-precision quantization search space. During supernet
training, for each choice block feature bit width and weight bit width are randomly sampled. They
are determined in the evolutionary step. See Sec. 4 and Fig. 5 for details.

Evolutionary Architecture Search. For architecture search in Eq. (6), previous one-shot
works (Brock et al., 2017; Bender et al., 2018) use random search. This is not effective for a large
search space. This work uses an evolutionary algorithm. Note that evolutionary search in NAS is
used in (Real et al., 2018), but it is costly as each architecture is trained from scratch. In our search,
each architecture only performs inference. This is very efficient.

5

Under review as a conference paper at ICLR 2020

The algorithm is elaborated in Algorithm 1. For all experiments, population size P = 50, max
iterations T = 20 and k = 10. For crossover, two randomly selected candidates are crossed to
produce a new one. For mutation, a randomly selected candidate mutates its every choice block with
probability 0.1 to produce a new candidate. Crossover and mutation are repeated to generate enough
new candidates that meet the given architecture constraints. Before the inference of an architecture,
the statistics of all the Batch Normalization (BN) (Ioffe & Szegedy, 2015) operations are recalculated
on a random subset of training data (20000 images on ImageNet). It takes a few seconds. This is
because the BN statistics from the supernet are usually not applicable to the candidate nets. This is
also referred in (Bender et al., 2018).

Fig. 2 plots the validation accuracy over generations, using both evolutionary and random search
methods. It is clear that evolutionary search is more effective. Experiment details are in Sec. 4.

The evolutionary algorithm is flexible in dealing with different constraints in Eq. (4), because the
mutation and crossover processes can be directly controlled to generate proper candidates to satisfy
the constraints. Previous RL-based (Tan et al., 2018) and gradient-based (Cai et al., 2018; Wu et al.,
2018a; Véniat & Denoyer, 2018) methods design tricky rewards or loss functions to deal with such
constraints. For example, (Wu et al., 2018a) uses a loss function CE(a,wa) · α log(LAT(a))β to
balance the accuracy and the latency. It is hard to tune the hyper parameter β to satisfy a hard
constraint like Eq. (4).

Summary. The combination of single path supernet, uniform sampling training strategy, evolu-
tionary architecture search, and rich search space design makes our approach simple, efficient and
flexible. Table 7 in Appendix performs a comprehensive comparison of our approach against previ-
ous weight sharing approaches on various aspects. Ours is the easiest to train, occupies the smallest
memory, best satisfies the architecture (latency) constraint, and easily supports large datasets. Ex-
tensive results in Sec. 4 verify that our approach is the state-of-the-art.

4 EXPERIMENT RESULTS

Dataset. All experiments are performed on ImageNet (Russakovsky et al., 2015). We randomly
split the original training set into two parts: 50000 images for validation (50 images for each class
exactly) and the rest as the training set. The original validation set is used for testing, on which all
the evaluation results are reported, following (Cai et al., 2018).

Training. For the training of the supernet and retraining of the best architecture (after evolutionary
search) from scratch, we use the same settings (including data augmentation strategy, learning rate
schedule, etc.) as (Ma et al., 2018). The batch size is 1024. Supernet is trained for 120 epochs
(150000 iterations) and the best architecture for 240 epochs (300000 iterations). Training uses 8
NVIDIA GTX 1080Ti GPUs.

Search Space: Building Blocks. First, we evaluate our method on the task of building block
selection, i.e. to find the optimal combination of building blocks under a certain complexity con-
straint. Our basic building block design is inspired by a state-of-the-art manually-designed network
– ShuffleNet v2 (Ma et al., 2018). Table 1 shows the overall architecture of the supernet. There
are 20 choice blocks in total. Each choice block has 4 candidates, namely “choice 3”, “choice 5”,
“choice 7” and “choice x” respectively (see Fig.6 in Appendix for details). They differ in kernel
sizes and the number of depthwise convolutions. The size of the search space is 420.

We use FLOPs ≤ 330M as the complexity constraint, as the FLOPs of a plenty of previous networks
lies in [300,330], including manually-designed networks (Howard et al., 2017; Sandler et al., 2018;
Zhang et al., 2018b; Ma et al., 2018) and those obtained in NAS (Cai et al., 2018; Wu et al., 2018a;
Tan et al., 2018).

Table 2 shows the results. For comparison, we set up a series of baselines as follows: 1) select a
certain block choice only (denoted by “all choice *” entries); note that different choices have differ-
ent FLOPs, thus we adjust the channels to meet the constraint. 2) Randomly select some candidates
from the search space. 3) Replace our evolutionary architecture optimization with random search
used in (Brock et al., 2017; Bender et al., 2018). Results show that random search equipped with our
single path supernet finds an architecture only slightly better that random select (73.8 vs. 73.7). It
does no mean that our single path supernet is less effective. This is because the random search is too

6

Under review as a conference paper at ICLR 2020

input shape block channels repeat stride
2242 × 3 3× 3 conv 16 1 2
1122 × 16 CB 64 4 2
562 × 64 CB 160 4 2
282 × 160 CB 320 8 2
142 × 320 CB 640 4 2
72 × 640 1× 1 conv 1024 1 1
72 × 1024 GAP - 1 -

1024 fc 1000 1 -

Table 1: Supernet architecture. CB - choice
block. GAP - global average pooling. The
“stride” column represents the stride of the
first block in each repeated group.

model FLOPs top-1 acc(%)
all choice 3 324M 73.4
all choice 5 321M 73.5
all choice 7 327M 73.6
all choice x 326M 73.5
random select (5 times) ∼320M ∼73.7
SPS + random search 323M 73.8
ours (fully-equipped) 319M 74.3

Table 2: Results of building block search. SPS
– single path supernet.

naive to pick good candidates from the large search space. Using evolutionary search, our approach
finds out an architecture that achieves superior accuracy (74.3) over all the baselines.

Search Space: Channels. Based on our novel choice block for channel number search, we first
evaluate channel search on the baseline structure “all choice 3” (refer to Table 2): for each building
block, we search the number of “mid-channels” (output channels of the first 1x1 conv in each build-
ing block) varying from 0.2x to 1.6x (with stride 0.2), where “k-x” means k times the number of
default channels. Same as Sec. 4, we set the complexity constraint FLOPs ≤ 330M . Table 3 (first
part) shows the result. Our channel search method has higher accuracy (73.9) than the baselines.

To further boost the accuracy, we search building blocks and channels jointly. There are two alter-
natives: 1) running channel search on the best building block search result of Sec. 4; or 2) searching
on the combined search space directly. In our experiments, we find the results of the first pipeline is
slightly better. As shown in Table 3, searching in the joint space achieves the best accuracy (74.7%
acc.), surpassing all the previous state-of-the-art manually-designed (Ma et al., 2018; Sandler et al.,
2018) or automatically-searched models (Tan et al., 2018; Zoph et al., 2018; Liu et al., 2018a;b; Cai
et al., 2018; Wu et al., 2018a) under the complexity of ∼ 300M FLOPs.

Model FLOPs Top-1 acc(%)
all choice 3 324M 73.4
rand sel. channels (5 times) ∼ 323M ∼ 73.1
choice 3 + channel search 329M 73.9
rand sel. blocks + channels ∼ 325M ∼ 73.4
block search 319M 74.3
block search + channel search 328M 74.7
MobileNet V1 (0.75x) Howard et al. (2017) 325M 68.4
MobileNet V2 (1.0x) Sandler et al. (2018) 300M 72.0
ShuffleNet V2 (1.5x) Ma et al. (2018) 299M 72.6
NASNET-A Zoph et al. (2018) 564M 74.0
PNASNET Liu et al. (2018a) 588M 74.2
MnasNet Tan et al. (2018) 317M 74.0
DARTS Liu et al. (2018b) 595M 73.1
Proxyless-R (mobile)* Cai et al. (2018) 320M 74.2 (74.6)
FBNet-B* Wu et al. (2018a) 295M 74.1 (74.1)

Table 3: Results of channel search. * Perfor-
mances are reported in the form “x (y)”, where
“x” means the accuracy retrained by us and “y”
means accuracy reported by the original paper.

Comparison with State-of-the-arts. Results
in Table 3 shows our method is superior. Nev-
ertheless, the comparisons could be unfair be-
cause different search spaces and training meth-
ods are used in previous works (Cai et al.,
2018). To make direct comparisons, we bench-
mark our approach to the same search space of
(Cai et al., 2018; Wu et al., 2018a). In addition,
we retrain the searched models reported in (Cai
et al., 2018; Wu et al., 2018a) under the same
settings to guarantee the fair comparison.

The search space and supernet architecture in
ProxylessNAS (Cai et al., 2018) is inspired by
MobileNet v2 (Sandler et al., 2018) and Mnas-
Net (Tan et al., 2018). It contains 21 choice
blocks; each choice block has 7 choices (6 dif-
ferent building blocks and one skip layer). The
size of the search space is 721. FBNet (Wu
et al., 2018a) also uses a similar search space.

Table 4 reports the accuracy and complexities (FLOPs and latency on our device) of 5 models
searched by (Cai et al., 2018; Wu et al., 2018a), as the baselines. Then, for each baseline, our
search method runs under the constraints of same FLOPs or same latency, respectively. Results
shows that for all the cases our method achieves comparable or higher accuracy than the counterpart
baselines. We also point out that since the target devices in (Cai et al., 2018; Wu et al., 2018a) are
different from ours, the reported results may be sub-optimal on our platform.

Furthermore, it is worth noting that all our 10 architectures in Table 4 are searched on the same
supernet, justifying the flexibility and efficiency of our approach to deal with different complexity

7

Under review as a conference paper at ICLR 2020

constraints: supernet is trained once and searched multiple times. In contrast, previous methods (Wu
et al., 2018a; Cai et al., 2018) have to train multiple supernets under various constraints. According
to Table 6, searching is much cheaper than supernet training.

baseline network FLOPs latency top-1 acc(%) top-1 acc(%) top-1 acc(%)
baseline ours (same FLOPs) ours (same latency)

FBNet-A (Wu et al., 2018a) 249M 13ms 73.0 (73.0) 73.2 73.3
FBNet-B (Wu et al., 2018a) 295M 17ms 74.1 (74.1) 74.2 74.8
FBNet-C (Wu et al., 2018a) 375M 19ms 74.9 (74.9) 75.0 75.1
Proxyless-R (mobile) (Cai et al., 2018) 320M 17ms 74.2 (74.6) 74.5 74.8
Proxyless (GPU) (Cai et al., 2018) 465M 22ms 74.7 (75.1) 74.8 75.3

Table 4: Compared with state-of-the-art NAS methods (Wu et al., 2018a; Cai et al., 2018) using the
same search space. The latency is evaluated on a single NVIDIA Titan XP GPU, with batchsize =
32. Accuracy numbers in the brackets are reported by the original papers; others are trained by us.
All our architectures are searched from the same supernet via evolutionary architecture optimization.

Method BitOPs top1-acc(%) Method BitoPs top1-acc(%)
ResNet-18 float point 70.9 ResNet-34 float point 75.0

2W2A 6.32G 65.6 2W2A 13.21G 70.8
ours 6.21G 66.4 ours 13.11G 71.5

3W3A 14.21G 68.3 3W3A 29.72G 72.5
DNAS 15.62G 68.7 DNAS 38.64G 73.2
ours 13.49G 69.4 ours 28.78G 73.9

4W4A 25.27G 69.3 4W4A 52.83G 73.5
DNAS 25.70G 70.6 DNAS 57.31G 74.0
ours 24.31G 70.5 ours 51.92G 74.6

Table 5: Results of mixed-precision quantization
search. “kWkA” means k-bit quantization for all
the weights and activations. DNAS (Wu et al.,
2018b).

Application: Mixed-Precision Quantization.
We evaluate our method on ResNet-18 and
ResNet-34 as common practice in previous
quantization works (e.g. (Choi et al., 2018; Wu
et al., 2018b; Liu et al., 2018c; Zhou et al.,
2016; Zhang et al., 2018a)). Following (Zhou
et al., 2016; Choi et al., 2018; Wu et al., 2018b),
we only search and quantize the res-blocks, ex-
cluding the first convolutional layer and the
last fully-connected layer. In the search space,
choices of weight and feature bit widths include
{(1, 2), (2, 2), (1, 4), (2, 4), (3, 4), (4, 4)}. As
for channel search, we search the number of
“bottleneck channels” (i.e. the output channels
of the first convolutional layer in each residual
block) in {0.5x, 1.0x, 1.5x}, where “k-x” means k times the number of original channels. The size
of the search space is (3×6)N = 18N , whereN is the number of choice blocks (N = 8 for ResNet-
18 and N = 16 for ResNet-34). Note that for each building block we use the same bit widths for
the two convolutions. We use PACT (Choi et al., 2018) as the quantization algorithm.

Table 5 reports the results. The baselines are denoted as kWkA (k = 2, 3, 4), which means uniform
quantization of weights and activations with k-bits. Then, our search method runs under the con-
straints of the corresponding BitOps. We also compare with a recent mixed-precision quantization
search approach (Wu et al., 2018b). Results shows that our method achieves superior accuracy in
most cases. Also note that all our results for ResNet-18 and ResNet-34 are searched on the same
supernet. This is very efficient.

Method Proxyless FBNet Ours
GPU memory cost
(8 GPUs in total) 37G 63G 24G

Training time 15 Gds 20 Gds 12 Gds
Search time 0 0 <1 Gds
Retrain time 16 Gds 16 Gds 16 Gds
Total time 31 Gds 36 Gds 29 Gds

Table 6: Search Cost. Gds - GPU days

Search Cost Analysis. The search cost is a
matter of concern in NAS methods. So we an-
alyze the search cost of our method and previ-
ous methods (Wu et al., 2018a; Cai et al., 2018)
(reimplemented by us). We use the search space
of our building blocks to measure the memory
cost of training supernet and overall time cost.
All the supernets are trained for 150000 iter-
ations with a batch size of 256. All models
are trained with 8 GPUs. The Table 6 shows
that our approach clearly uses less memory than
other two methods because of the single path supernet. And our approach is much more efficient
overall although we have an extra search step that costs less than 1 GPU day. Note Table 6 only com-
pares a single run. In practice, our approach is more advantageous and more convenient to use when
multiple searches are needed. As summarized in Table 7, it guarantees to find out the architecture
satisfying constraints within one search. Repeated search is easily supported.

8

Under review as a conference paper at ICLR 2020

REFERENCES

Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. Designing neural network architec-
tures using reinforcement learning. arXiv preprint arXiv:1611.02167, 2016.

Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay Vasudevan, and Quoc Le. Understand-
ing and simplifying one-shot architecture search. In International Conference on Machine Learn-
ing, pp. 549–558, 2018.

Andrew Brock, Theodore Lim, James M Ritchie, and Nick Weston. Smash: one-shot model archi-
tecture search through hypernetworks. arXiv preprint arXiv:1708.05344, 2017.

Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture search on target task
and hardware. arXiv preprint arXiv:1812.00332, 2018.

Jungwook Choi, Zhuo Wang, Swagath Venkataramani, Pierce I-Jen Chuang, Vijayalakshmi Srini-
vasan, and Kailash Gopalakrishnan. Pact: Parameterized clipping activation for quantized neural
networks. arXiv preprint arXiv:1805.06085, 2018.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

Liam Li and Ameet Talwalkar. Random search and reproducibility for neural architecture search.
arXiv preprint arXiv:1902.07638, 2019.

Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan
Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. In Proceed-
ings of the European Conference on Computer Vision (ECCV), pp. 19–34, 2018a.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055, 2018b.

Zechun Liu, Baoyuan Wu, Wenhan Luo, Xin Yang, Wei Liu, and Kwang-Ting Cheng. Bi-real net:
Enhancing the performance of 1-bit cnns with improved representational capability and advanced
training algorithm. In Proceedings of the European Conference on Computer Vision (ECCV), pp.
722–737, 2018c.

Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet v2: Practical guidelines
for efficient cnn architecture design. In Proceedings of the European Conference on Computer
Vision (ECCV), pp. 116–131, 2018.

Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and Jeff Dean. Efficient neural architecture
search via parameter sharing. arXiv preprint arXiv:1802.03268, 2018.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image
classifier architecture search. arXiv preprint arXiv:1802.01548, 2018.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International journal of computer vision, 115(3):211–252, 2015.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 4510–4520, 2018.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, and Quoc V Le. Mnasnet: Platform-
aware neural architecture search for mobile. arXiv preprint arXiv:1807.11626, 2018.

Tom Véniat and Ludovic Denoyer. Learning time/memory-efficient deep architectures with bud-
geted super networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 3492–3500, 2018.

9

Under review as a conference paper at ICLR 2020

Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuandong Tian,
Peter Vajda, Yangqing Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient convnet design via
differentiable neural architecture search. arXiv preprint arXiv:1812.03443, 2018a.

Bichen Wu, Yanghan Wang, Peizhao Zhang, Yuandong Tian, Peter Vajda, and Kurt Keutzer. Mixed
precision quantization of convnets via differentiable neural architecture search. arXiv preprint
arXiv:1812.00090, 2018b.

Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. Snas: stochastic neural architecture search.
arXiv preprint arXiv:1812.09926, 2018.

Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and Gang Hua. Lq-nets: Learned quantization for
highly accurate and compact deep neural networks. In Proceedings of the European Conference
on Computer Vision (ECCV), pp. 365–382, 2018a.

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely efficient
convolutional neural network for mobile devices. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 6848–6856, 2018b.

Xinbang Zhang, Zehao Huang, and Naiyan Wang. You only search once: Single shot neural archi-
tecture search via direct sparse optimization. arXiv preprint arXiv:1811.01567, 2018c.

Zhao Zhong, Junjie Yan, Wei Wu, Jing Shao, and Cheng-Lin Liu. Practical block-wise neural
network architecture generation. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 2423–2432, 2018a.

Zhao Zhong, Zichen Yang, Boyang Deng, Junjie Yan, Wei Wu, Jing Shao, and Cheng-Lin
Liu. Blockqnn: Efficient block-wise neural network architecture generation. arXiv preprint
arXiv:1808.05584, 2018b.

Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. Dorefa-net: Train-
ing low bitwidth convolutional neural networks with low bitwidth gradients. arXiv preprint
arXiv:1606.06160, 2016.

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578, 2016.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures
for scalable image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 8697–8710, 2018.

A APPENDIX

Algorithm 1: Evolutionary Architecture Search
1 Input: supernet weights WA, population size P, architecture constraints C, max iteration T , validation

dataset Dval

2 Output: the architecture with highest validation accuracy under architecture constraints
3 P0 := Initialize population(P, C); Topk := ∅;
4 n := P/2; Crossover number
5 m := P/2; Mutation number
6 prob := 0.1; Mutation probability
7 for i = 1 : T do
8 ACCi−1 := Inference(WA,Dval,Pi−1);
9 Topk := Update Topk(Topk,Pi−1,ACCi−1);

10 Pcrossover := Crossover(Topk, n, C);
11 Pmutation := Mutation(Topk,m, prob, C);
12 Pi := Pcrossover ∪ Pmutation;
13 end
14 Return the architecture with highest accuracy in Topk;

10

Under review as a conference paper at ICLR 2020

Approach Supernet
optimization

Architecture
search

Hyper parameters in
supernet Training

Memory consumption
in supernet training

How to satisfy
constraint

Experiment
on ImageNet

ENAS (Pham et al., 2018) Alternative RL and fine tuning Short-time
fine tuning setting

Single path +
RL system None No

BSN (Véniat & Denoyer, 2018) Stochastic super networks +
policy gradient

Weight of
cost penalty Single path Soft constraint in training.

Not guaranteed No

DARTS (Liu et al., 2018b) Gradient-based, path dropout Path dropout rate.
Weight of auxiliary loss Whole supernet None Transfer

Proxyless (Cai et al., 2018)
Stochastic relaxation of

the discrete search +
policy gradient

Scaling factor
of latency loss Two paths Soft constraint in training.

Not guaranteed. Yes

FBNet (Wu et al., 2018a)
Stochastic relaxation of the

discrete search to differentiable
optimization via Gumbel softmax

Temperature parameter
in Gumbel softmax.

Coefficient in
constraint loss

Whole supernet Soft constraint in training.
Not guaranteed. Yes

SNAS (Xie et al., 2018) Same as FBNet Same as FBNet Whole supernet Soft constraint in training.
Not guaranteed. Transfer

SMASH (Brock et al., 2017) Hypernetwork Random None Hypernet+single Path None No
One-Shot (Bender et al., 2018) Path dropout Random Drop rate Whole supernet Not investigated Yes

Ours Uniform path
sampling Evolution None Single path Guaranteed in searching.

Support multiple constraints. Yes

Table 7: Overview and comparison of SOTA weight sharing approaches. Ours is the easiest to train,
occupies the smallest memory, best satisfy the architecture (latency) constraint, and easily supports
the large dataset. Note that those approaches belonging to the joint optimization category (Eq. (3))
have “Supernet optimization” and “Architecture search” columns merged.

5x5DWconv
(stride=2)

1x1Conv

1x1Conv

5x5DWconv
(stride=2)

1x1Conv

Concat

Channels Shuffle

1x1Conv

7x7DWconv
(stride=2)

1x1Conv

Concat

Channels Shuffle

7x7DWconv
(stride=2)

1x1Conv

3x3DWconv

1x1Conv

3x3DWconv
(stride=2)

Concat

Channels Shuffle

1x1Conv

3x3DWconv

1x1Conv

3x3DWconv
(stride=2)

1x1Conv

1x1Conv

3x3DWconv

1x1Conv

Concat

Channels Shuffle

Channels Split

1x1Conv

5x5DWconv

1x1Conv

Channels Shuffle

Channels Split

Concat

1x1Conv

7x7DWconv

1x1Conv

Concat

Channels Shuffle

Channels Split

3x3DWconv

1x1Conv

3x3DWconv

Concat

Channels Shuffle

1x1Conv

3x3DWconv

1x1Conv

Channels Split

1x1Conv

3x3DWconv
(stride=2)

1x1Conv

Concat

Channels Shuffle

3x3DWconv
(stride=2)

1x1Conv

(a) Choice blocks with stride=1

(b) Choice blocks with stride=2

Figure 6: Choice blocks used in Sec. 4. From left to right : Choice 3, Choice 5, Choice 7, Choice x.

11

Under review as a conference paper at ICLR 2020

C
ho

ic
e_

3

C
ho

ic
e_

5

C
ho

ic
e_

7

C
ho

ic
e_

x

1.
0x

0.
6x

1.
6x

1.
2x

1.
0x

1.
0x

0.
8x

1.
6x

1.
2x

1.
0x

1.
6x

1.
0x

1.
2x

1.
6x

0.
8x

0.
8x

1.
2x

1.
2x

1.
4x

1.
0x

1.
4x

1.
2x

0.
8x

1.
2x

0.
6x

1.
4x

0.
8x

1.
0x

0.
6x

1.
2x

1.
6x

1.
2x

1.
0x

1.
4x

1.
6x

1.
0x

1.
0x

1.
2x

1.
0x

0.
8x

(a) Block search result

(b) Channel search result

(c) Block search + channel search result

Figure 7: Structures of searched architectures in Sec. 4. (a) Result of building block search. (b)
Result of channel search on all choice 3 structure. (c) Result of channel search on best building
block search structure.

12

Under review as a conference paper at ICLR 2020

M
B

6
7x

7

M
B

6
5x

5

M
B

3
5x

5

Id
en

tit
y

Id
en

tit
y

M
B

3
3x

3

M
B

3
7x

7

M
B

3
3x

3

M
B

3
3x

3

Id
en

tit
y

Id
en

tit
y

M
B

3
7x

7

M
B

3
5x

5

M
B

3
5x

5

M
B

3
5x

5

Id
en

tit
y

M
B

3
3x

3

M
B

3
3x

3

M
B

3
7x

7

M
B

3
7x

7

M
B

3
7x

7

M
B

3
3x

3

M
B

3
3x

3

Id
en

tit
y

M
B

6
5x

5

M
B

3
3x

3

M
B

3
5x

5

M
B

6
3x

3

M
B

6
7x

7

M
B

3
5x

5

M
B

3
3x

3

M
B

6
7x

7

M
B

3
7x

7

M
B

6
5x

5

M
B

3
5x

5

M
B

3
5x

5

M
B

3
5x

5

M
B

6
7x

7

M
B

3
7x

7

M
B

3
7x

7

M
B

3
5x

5

M
B

6
7x

7

M
B

3
5x

5

M
B

3
3x

3

M
B

3
3x

3

Id
en

tit
y

M
B

3
3x

3

M
B

3
3x

3

M
B

3
5x

5

M
B

3
5x

5

M
B

6
7x

7

M
B

3
7x

7

M
B

3
3x

3

M
B

3
7x

7

M
B

6
3x

3

M
B

3
5x

5

M
B

3
5x

5

M
B

3
5x

5

M
B

6
7x

7

M
B

3
7x

7

M
B

3
7x

7

M
B

3
5x

5

M
B

6
7x

7

M
B

3
7x

7

Id
en

tit
y

Id
en

tit
y

Id
en

tit
y

M
B

6
7x

7

Id
en

tit
y

Id
en

tit
y

M
B

3
3x

3

M
B

6
7x

7

M
B

3
7x

7

Id
en

tit
y

M
B

3
7x

7

M
B

6
3x

3

M
B

3
5x

5

M
B

3
5x

5

M
B

3
3x

3

M
B

6
7x

7

M
B

6
7x

7

M
B

3
5x

5

Id
en

tit
y

M
B

6
7x

7

(a) Searched result with same FLOPs of FBNet-A

(b) Searched result with same FLOPs of FBNet-B

(c) Searched result with same FLOPs of FBNet-C

(d) Searched result with same FLOPs of Proxyless-R(mobile)

(e) Searched result with same FLOPs of Proxyless (GPU)

M
B

6
5x

5

M
B

6
5x

5

M
B

6
5x

5

M
B

3
5x

5

M
B

3
3x

3

Id
en

tit
y

Id
en

tit
y

M
B

3
7x

7

M
B

3
3x

3

M
B

3
5x

5

M
B

3
5x

5

Id
en

tit
y

M
B

3
3x

3

M
B

3
7x

7

M
B

3
3x

3

M
B

3
7x

7

M
B

3
5x

5

M
B

3
3x

3

M
B

3
7x

7

M
B

3
5x

5

M
B

6
7x

7

Figure 8: Structures of searched architectures under FLOPs constraints by using ProxylessNAS
search space, see Table 4 for details.

13

Under review as a conference paper at ICLR 2020

(a) Searched result with same latency of FBNet-A

(b) Searched result with same latency of FBNet-B and Proxyless-R(mobile)

(c) Searched result with same latency of FBNet-C

M
B

3
3x

3

M
B

3
5x

5

Id
en

tit
y

Id
en

tit
y

M
B

3
3x

3

M
B

3
3x

3

Id
en

tit
y

Id
en

tit
y

M
B

3
3x

3

M
B

3
7x

7

Id
en

tit
y

M
B

3
3x

3

M
B

3
5x

5

M
B

3
3x

3

M
B

3
5x

5

M
B

3
5x

5

M
B

6
3x

3

M
B

6
5x

5

M
B

3
7x

7

M
B

3
3x

3

M
B

6
5x

5

M
B

3
3x

3

M
B

3
3x

3

Id
en

tit
y

Id
en

tit
y

M
B

3
3x

3

M
B

6
3x

3

M
B

3
5x

5

M
B

3
5x

5

M
B

6
3x

3

M
B

6
7x

7

M
B

3
3x

3

M
B

6
5x

5

M
B

6
5x

5

M
B

3
7x

7

M
B

6
3x

3

M
B

3
5x

5

M
B

6
5x

5

M
B

6
7x

7

M
B

3
7x

7

M
B

3
3x

3

M
B

6
7x

7

M
B

3
3x

3

M
B

3
7x

7

M
B

3
3x

3

Id
en

tit
y

M
B

6
3x

3

M
B

3
5x

5

M
B

3
3x

3

M
B

6
3x

3

M
B

3
7x

7

M
B

3
5x

5

M
B

3
3x

3

M
B

3
7x

7

M
B

6
5x

5

M
B

6
7x

7

M
B

6
3x

3

M
B

6
5x

5

M
B

6
5x

5

M
B

6
7x

7

M
B

3
3x

3

M
B

3
7x

7

M
B

6
5x

5

M
B

3
3x

3

Id
en

tit
y

Id
en

tit
y

Id
en

tit
y

Id
en

tit
y

Id
en

tit
y

M
B

3
7x

7

M
B

3
7x

7

M
B

6
7x

7

M
B

6
7x

7

M
B

3
7x

7

Id
en

tit
y

M
B

6
5x

5

M
B

6
3x

3

M
B

3
3x

3

Id
en

tit
y

M
B

6
7x

7

M
B

3
5x

5

M
B

3
7x

7

M
B

6
3x

3

M
B

6
5x

5

(d) Searched result with same latency of Proxyless(GPU)

Figure 9: Structures of searched architectures under GPU latency constraints by using ProxylessNAS
search space, see Table 4 for details.

14

Under review as a conference paper at ICLR 2020

1W
2A

2W
2A

1W
4A

2W
4A

3W
4A

4W
4A (a) Searched result with 6.21 GBitOPs

1.
5x

1.
0x

1.
0x

1.
5x

1.
5x

1.
5x

1.
5x

1.
5x

1.
5x

1.
5x

1.
5x

0.
5x

0.
5x 1.
0x

1.
0x

1.
0x

(b) Searched result with 13.49 GBitOPs
1.

5x

1.
0x

1.
5x

1.
5x

1.
5x

1.
5x

1.
5x

1.
5x

(c) Searched result with 24.31 GBitOPs0.
6x

(d) Searched result with 13.11 GBitOPs

1.
0x

1.
5x

1.
5x

1.
5x

1.
5x

1.
5x

0.
5x

1.
0x

1.
0x

1.
0x

1.
0x

1.
0x

1.
5x

1.
5x

1.
0x 1.
5x

(e) Searched result with 28.78 GBitOPs

1.
5x

1.
5x

1.
5x

1.
0x

1.
0x

1.
5x

1.
5x

1.
0x 1.
5x

0.
5x

1.
5x

0.
5x

1.
0x

1.
5x

1.
5x

1.
0x

(f) Searched result with 51.92 GBitOPs

1.
5x

1.
5x

1.
5x

1.
5x

1.
5x

1.
5x

1.
5x

1.
0x

1.
5x

1.
0x

1.
0x

1.
0x

1.
5x

1.
5x

1.
5x 1.
5x

Figure 10: Searched architectures of joint searching channel size and bit width under BitOPs con-
straints, see Table 5 for details. (a) - (c) are searched based on Resnet18. (d) - (f) are searched based
on Resnet34.

15

	Introduction
	Review of NAS Approaches
	Our Single Path One-Shot Approach
	Experiment Results
	Appendix

