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ABSTRACT

This paper presents the ballistic graph neural network. Ballistic graph neural
network tackles the weight distribution from a transportation perspective and
has many different properties comparing to the traditional graph neural network
pipeline. The ballistic graph neural network does not require to calculate any
eigenvalue. The filters propagate exponentially faster(σ2 ∼ T 2) comparing to
traditional graph neural network(σ2 ∼ T ). We use a perturbed coin operator to
perturb and optimize the diffusion rate. Our results show that by selecting the
diffusion speed, the network can reach a similar accuracy with fewer parameters.
We also show the perturbed filters act as better representations comparing to pure
ballistic ones. We provide a new perspective of training graph neural network, by
adjusting the diffusion rate, the neural network’s performance can be improved.

1 INTRODUCTION

How to collect the nodes’ correlation on graphs fast and precisely? Inspired by convolutional
neural networks(CNNs), graph convolutional networks(GCNs) can be applied to many graph-based
structures like images, chemical molecules and learning systems. Similar to neural networks, GCNs
rely on random walk diffusion based feature engineering to extract and exploit the useful features
of the input data. Akin to neural networks(NNs), promising improvements have been achieved by
defining the diffusion-based filters and using them in a multi-layer NN.

Recent works show random walk based methods can represent graph-structured data on the spatial
vertex domain. For example, Li et al. (2017) use bidirectional random walks on the graph to capture
the spatial dependency and Perozzi et al. (2014) present a scalable learning algorithm for latent
representations of vertices in a network using random walks. Except for the spatial domain, many
researchers focus on approximating filters using spectral graph theory method, for example,Bruna
et al. (2013) construct a convolutional architecture based on the spectrum of the graph Laplacian;
Defferrard et al. (2016) use high order polynomials of Laplacian matrix to learn the graphs in a NN
structure model.

Though the spectral domain method involves operation like solving the eigenvectors |Ψ〉i
n−1
1

of
the graph Laplacian L = In −D−1/2WD−1/2, where n represents the dimension of the data, e.g.
the total number of vertices on a two dimensional image-based graph proposed in Defferrard et al.
(2016), In,D,W is the identity, degree and weight matrix respectively. From the diffusion perspective,
the spatial and spectral methods are attributed to the same diffusive category. For example, for a
k step random walk on the one-dimensional infinite line with no biased walk, the final probability
distribution of the random walk will converge to applying Lk on the initial state. The distance from
the start point of a simple random walk will converge to C

√
k, where C, k is the constant and the

number of total steps respectively. 1.

1there are many discussions about random walk asymptotic behaviour, for example, please see: https:
//www.mit.edu/~kardar/teaching/projects/chemotaxis(AndreaSchmidt)/more_
random.htm, http://mathworld.wolfram.com/RandomWalk2-Dimensional.html and
http://www.math.caltech.edu/~2016-17/2term/ma003/Notes/Lecture16.pdf
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2 RELATED WORK

The authors fail to find related papers that go beyond the classical diffusion frame or tackle the
problem from a transportation perspective. By controlling the speed of diffusion, our model changes
the weight distribution on different nodes by using ballistic diffusion. This method circumvents
increasing the complexity of existed diffusion model or complex matrix calculation(such as inversion
or calculate the eigenvalue of a matrix). The related work we find is:

Graph Attention Networks Graph Attention Networks enables (implicitly) specifying different
weights to different nodes in a neighbourhood. The authors use eij = a(W ~hi,W ~hj) to indicate the
correlation between vertex i and j. By selecting the Ni nodes in the neighbourhood, they assign
different importance to nodes of the same neighbourhood. However, adding attention to the graph,
though changes the weight distribution, makes the pipeline more cumbersome and lack of physical
insight.

3 THE SPEED PROBLEM

The random walk/Laplacian matrix is employed for collecting the correlated information over a graph.
Here we consider a two-dimensional condition, taking the start point as (0,0) and the correlated point
is (i,j), the distance is denoted as dij . As discussed, the distance walker travelled is C

√
k, in this

case, though a ddije step walker can reach (i,j), the probability distribution on the correlated point is
relatively low since the walker’s average distance is C

√
k. In order to fully capture the correlation

between the two vertices(in other words, increase the weight between (0,0) and (i,j)), two main
methods are used:

1. take steps ddije2 steps, in Defferrard et al. (2016), in analogy to a 5×5 filter, the authors use
Laplacian polynomial order up to 25 to achieve a similar accuracy, the number of steps is
far larger than the filter’s size in CNNs.

2. Pooling: the distance of two vertices are shortened after pooling operation. ddije will
reduced to ddij/2e/ after a 2 ×2 pooling. e.g. Henaff et al. (2015) and Bruna et al. (2013)
use max pooling, Defferrard et al. (2016) use efficient pooling and Tran et al. (2018) use
sort pooling.
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Figure 1: Classical diffusion

Figure 1 shows the relation between the distance
and number of steps for the random walk/Laplacian
matrix. As the steps increases, the walker diffuse
with the distance ∼

√
k, where k is the number of

steps, resulting in the inefficiency in collecting infor-
mation. Suggested by Hammond et al. (2011), the
filter on most common graph convolutional network
is:

gθ(L)x = gθ(UΛUT )x = Ugθ(Λ)UTx (1)

gθ(Λ) =
∑K−1
k=0 θkΛk and θ ∈ RK is a vector of polynomial coefficients. The number of steps

corresponds to the polynomial order of the Laplacian. However, as the number of steps grows, the
distance walker travelled changes slower and slower, resulting in low efficiency and duplicated filters.

In the next section, we will introduce the ballistic walk method that instead of walking at classical
diffusion speed, the walker is able to reach an average distance ∼ Ck in k steps walking. Being
different from the classical diffusive transportation, this method enables us to collect correlation
faster.

4 BALLISTIC WALK ON GRAPH

In the following, we will focus on the regular graphs to demonstrate the ballistic graph neural network,
where image, video and speech data are represented.

2



Under review as a conference paper at ICLR 2020

4.1 INTRODUCTION TO BALLISTIC WALK

The ballistic walk algorithm consists of two parts, a walker in the position space Hspatial and a
coin in the coin spaceHc. Thus the walker is described using states in Hibert spaceHspatial ⊗Hc.
Let the walker initially be at the state |Ψ〉0 = |i, j〉p ⊗ s0, where s0 is normally a symmetric state
in Hc. In analogy to the classical random walk, the next state of the walker can be expressed by
|Ψ〉t+1 = Û |Ψ〉t, where Û consists two operations, a flip operation Ôcoin in the coin space and shift
operation Ŝ in the spatial space.

In this paper, we consider the ballistic walk on a regular two-dimensional graph. The coin space
Hc consists of four states: |↓〉, |↑〉, |←〉, |→〉, represents move up, down, left and right for the next
step. The spatial space Hspatial consisits N states representing the walker’s position, where N is
the number of nodes. The notation |n〉 denotes an orthonormal basis for Hspatial and 〈n| is the
Hermitian conjugate of the state. For a finite-dimensional vector space, the inner product 〈n′|n〉 is
δnn′ and the outer product |n′〉 〈n| equals to a matrix in RN×N . The probability stay on the node
|i, j〉 is

∑
s=↓,↑,←,→

∥∥〈Ψ |i, j〉 ⊗ |s〉∥∥2. Pseudo-code of our method is given in Algorithm 1.

Algorithm 1: Ballistic walk on 2D regular graph
Result: The walker’s state after K steps start from (i, j)

1 p0 = |i, j〉 // The start point
2 s0 = a |↓〉+b |↑〉+c |←〉+d |→〉 // a, b, c, d ∈ C;‖a‖2 +‖b‖2 +‖c‖2 +‖d‖2 = 1
3 Ŝ =

∑
i,j | i− 1, j〉〈i, j | ⊗ |↑〉〈↑|+

∑
i,j | i+ 1, j〉〈i, j | ⊗ |↓〉〈↓|+∑

i,j | i, j + 1〉〈i, j | ⊗ |→〉〈→|+
∑
i,j | i, j − 1〉〈i, j | ⊗ |←〉〈←|

4 Ôcoin = H⊗H //H is usually the Hardmard matrix
5 |Ψ0〉 = p0 ⊗ s0
6 |Ψ1〉 = Ŝ(p0 ⊗ s0)
7 for i = 2; i < K; i = i+ 1 do
8 |Ψi〉 = Ŝ(Ôcoin |Ψi−1〉)
9 end

4.2 EXPERIMENTS

The experiment is performed on the MNIST dataset, The Hadmard matrixH is 1√
2

[
1 1
1 −1

]
and the

initial state is Ψ0 = 1j/2 |↑〉+ 1/2 |↓〉 − 1j/2 |←〉 − 1/2 |→〉. Figure 2 and 3 show the difference
in diffusion between the random walk based diffusion and the ballistic diffusion on a 28 × 28 grid
starting from the center. Comparing to the classical random walk, the ballistic walker shows cohesive
behaviour and transports faster. The comparison between the speed is shown in Figure 4.

The diffusive classical walker’s distances at time = 15 and time = 20 center around the same
range. The ballistic walkers’ differences are more significant, which means collecting different
information. Comparing to classical random walk, the ballistic walker has a speed of ∼ k. This linear
transportation behaviour enables the filters collect correlation on graph more efficiently.

As shown in Figure 4, the distance for a diffusive walk at time = 25 is around taking an 8-step
ballistic walk. Defferrard et al. (2016) considers 25 steps diffusive filters to approximate a 5 × 5
kernel with 10 feature maps(10 hidden units). For comparison, we take an 8-step-ballistic kernel with
the same number of feature maps. The feature maps are then fully connected to 10/32 units and then
connected to 10 units for classification. The notations are denoted as Ball10 and Ball32. Table 1
summarizes the capabilities of our model compared to other recent modeling approaches.

Baselines We compare our approaches with the following baselines:

• DeepWalk: Perozzi et al. (2014) uses local information obtained from truncated random walks.
For iterating over all the vertices of the graph, the authors generate a random walk |Wvi = t| for
every node, and then use it to update representations.
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(a) Step: 1 (b) Step: 5 (c) Step: 10 (d) Step: 15 (e) Step: 20

Figure 2: The classical diffusion at different steps

(a) Step: 1 (b) Step: 5 (c) Step: 10 (d) Step: 15 (e) Step: 20

Figure 3: The ballistic diffusion at different steps
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Figure 4: The diffusion behaviour of ballistic and diffusive walk.

• Graph Attention Networks (GAT): Veličković et al. (2017) assigns different weights to different
nodes in a neighbourhood. The graph attentional layer changes the weight distribution on the
neighbourhood nodes.

• Manifold Regularization (ManiReg): Belkin et al. (2006) brings together ideas from the theory
of regularization in reproducing kernel Hilbert spaces, manifold learning and spectral methods. In
the paper, their propose data-dependent geometric regularization method based on graph Laplacian.

• Graph Convolutional Network (GCN): Kipf & Welling (2016) conducts the following
layer-wise propagation in hidden layers using random walk based method(X(k+1) = σ
(D−1/2AD−1/2X(k)W (k))). The final perceptron layer for classication is defines as: Z =
softmax(D−1/2AD−1/2X(k)W (k)).

• Graph Learning-Convolutional Networks(GLCN): Jiang et al. (2019) contains one graph learn-
ing layer, several graph convolution layers and one final perceptron layer. The layer-wise propaga-
tion rule is: X(k+1) = σ(D

−1/2
s D−1/2X(k)W (k)).

5 REVISIT THE SPEED PROBLEM

In the last section, we introduce the ballistic walk, which transports faster than the diffusive classical
walk. By selecting the ballistic filters up to K = 8, we reach 97% and use 1/3 parameters comparing
to spline method using classical diffusive filters. This suggests ballistic filters are able to collect
correlation more efficiently comparing to random walk based Laplacian filters.

Figure 6 shows the transportation behaviour of different kinds of filters. There exists two phases:
’trapped to diffusive’ phase and ’diffusive to ballistic’ phase. The laplacian-based filters can be seen as
the up-bound filters of the trapped to diffusive phase(the orange points) and obey the

√
steps law. As

the steps grow, the filters are inefficient. As shown in the Figure 6, the filters are repeatedly sampling
the region with distance< 10 as the steps grow up to 70 steps, this means the filtered information
can be very similar, leading to invalid feature layers. The ballistic filters lie at the up-bound of
the ’diffusive to ballistic’ phase(the blue points), the linear propagation ensures gathering the long
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Figure 5: Results of one layer Ballistic graph network with 10 and 32 hidden units on MNIST dataset.
The feature layers include 8 ballistic filters.

Structure Ball10 Ball32 GC10(Non-Param) GC10(Spline) GC10(Cheb)
Accuracy 97.21(K=8) 97.38(K=8) 95.75(K=25) 97.26(K=25) 97.48(K=25)
Structure ManiReg DeepWalk GCN GAT GLCN
Accuracy 94.62 95.34 91.01 92.81 95.46

Table 1: Results on MNIST dataset using Ballistic filters with K = 8 compared with traditional
diffusion-based graph convolutional network with K = 25 in Defferrard et al. (2016)

.

correlation information in a relatively small number of steps. However, linear transportation also
brings drawbacks:

• Sparse sampling at the mid-distance region: as shown in Figure 6 (figure in the figure), for
a 35-steps walker, the points from distance = 6 to distance = 13 enables the ballistic
filters can better interpret the long correlation. However, the distance intervals between the
ballistic filters are relatively sparse, and this can result in the missing some correlation.

• Beyond the boundary: the linear ballistic transportation makes the walker go beyond the
boundary (for our case the distance is 14). With the same number of the steps, the ballistic
walker travels to the boundary line(shown in Figure 7).

Is there a way to generate filters that can collect the correlation within distance < 14 area while
circumventing cumbersome classical diffusion? In other words, we are interested in generating filters
with a transportation speed between ballistic and classical diffusion. By controlling the speed of
the filters, we circumvent going beyond the boundary and make all our filters localized between the
regions with restricted distance(denoted as the diffusive to ballistic phase in Figure 6).

6 DE-COHERENCE

In the ballistic diffusion, we use Hardmard transformation on the coin space, The Hardmard operator
(SU(2)) helps spilt the state in the coin space and finally leads to linear ballistic transportation.
However, as mentioned in the last section, we are interested in generating filters lines between
ballistic and classical phase so that we can circumvent the boundary and slow-transportation problem.
In this section, we introduce the de-coherence scheme to perturb ballistic transportation by adding a
noise term to the Hardmard operation at every step. This noisy perturbation results in the de-coherence
of ballistic filters and thus slows down the transportation.

6.1 THE INTRODUCTION TO DECOHERENCE

We want our filters have a diffusion distance in a reasonable region(a < Distance < b). However,
the ballistic filters’ distances increase with steps. The filters are not capable to dense sampling some
specific regions. By selecting different randomness and steps, we can generate filters localized in a
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Trapped to Diffusive phase

Diffusive to Ballistic phase
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Go beyond the boundary

Localize near the start point

Figure 6: Comparison between diffusive and ballistic transportation. Cassical diffusive walker
transports slower and localizes near the start point, and ballistic walker moves beyond the boundary
as steps grow. We are interested in learning the information with in the 28 × 28 gird.

(a) (b) (c) (d)

Figure 7: Comparison between ballistic and classical transportation. (a) Classical diffusion started
from a line; (b) Classical diffusion started from a point; (c) Ballistic diffusion started from a line; (d)
Ballistic diffusion started from a point. The ballistic filters have the exceeding boundary problem.

bounded area. The noisy Hardmard can be written as

Hr(β) =

[
1 eiβ

e−iβ −1

]
(2)

Randomness α = 0 α = 0.01 α = 0.05 α = 0.1
Speed 0.612 0.608 0.586 0.516
Randomness α = 0.15 α = 0.20 α = 0.25 α = 0.30
Speed 0.414 0.323 0.268 0.240

Table 2: Diffusion rate with different randomness

Table 3 shows the accuracy with
different perturbated filters(α =
0, 0.05, 0.10, 0.15, 0.20). β = 2 ×
R × πα denotes the randomness in
the coin space,R is a random number
between 0 and 1. The corresponding
transportation speed is shown in ta-
ble 2. As the α increases to 0.20,
the speed drops to 0.323. α is a con-
troller of the diffusion speed, as α becomes larger, the ballistic tranportation will finally evolve to the
classical diffusive couterpart.
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Figure 8: Comparison between diffusive and ballistic transportation with different random Hardmard
operator.

6.2 SUMMAY OF THE SPEED WITH RANDOMNESS

After taking randomized operations, the accuracy can be improved. In other words, by using filters
from the perturbed ballistic walk, we are now able to dense sample the ’meaningful regions’ and avoid
the shallow sampling and slow transportation problem by selecting the step and the randomness of the
ballistic walker. The ’meaningful regions’ are denoted as blue and yellow in Figure 6 (figure in the
figure). In our model, we fix the first eight filters as the pure ballistic filters without perturbation. We

…
…
..Filters

Conv 5×5
Stride = 2

Conv 2×2
Stride = 2 FC

…
…
..

FC

28

28

28

28

25
64 64

512

10
14

14

7

7

Figure 9: The model architecture with 25 filters as feature maps

then select different filters from perturbed filters. The model architecture is shown in Figure 9. The
input signals are first passed to 25 different feature maps using the selected filters. We then apply the
convolutional operation and average pooling on the feature maps. After a fully connected layer with
512 hidden units, the network is connected to 10 units for the classification task. We select our filters
up to the distance<14 regions(∼ 25 steps for ballistic duffusion), and this ensures the filters gather the
correlation information within reasonable regions. For pure ballistic filters, the classification accuracy
is around 99.11%, when we keep the first eight ballistic filters and use different filters with different
randomness, the accuracy increases to 99.39%. Our results show that the classification accuracy can
be improved using a mixture of perturbed filters within certain distance region.

6.3 COIN OPERATOR

The ballistic walk filters can also be generalized to different coin operators. Except using Hardmard
and noisy Hardmard coin operator, we can also use a discrete Fourier operator(DFO) or Grover
operator, the discrete Fourier operator is written:

DFO =
1

d1/2


1 1 1 ... 1
1 ω ω2 ... ωd−1

1 ... ... ... ...
1 ωd−1 ω2(d−1) ... ω(d−1)(d−1)

 =
1

2


1 1 1 1
1 ω ω2 ω3

1 ω2 ω4 ω6

1 ω3 ω6 ω9

 (3)
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Accuracy
Filter Index Ballistic(α = 0) α = 0.1 α = 0.15 α = 0.05 α = 0.20

99.11±0.13 1-25 0 0 0 0
99.14±0.17 1-8 9,10 24,25 10-23 0
99.32±0.09 1-8 3-10 4-10 8,9 0
99.35±0.07 1-8 1-8 1-8 9 0
99.23±0.13 1-8 2,4,6,8,10,12 3,6,9,12,15,18 2,4,6,8,10 0
99.32±0.06 1-8 3,6,9,12 3,6,9,12 3,6,9,12 3,6,9,12,15
99.39±0.09 1-8 3,6,9,12 3,6,9,12 9,12,15,18 12,15,18,21,24

Table 3: Accuracy with different randomized Hardmard operations. We use 25 filters with different
steps and randomness for each case.

where ω = e2πi/d is the dth root of unity and the Grover operator is:

G =


a b b ... b
b a b ... b
... ... ... ... ...
b b b ... a

 =
1

2


−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

 (4)

where a = (2/d) − 1 and b = 2/d. The results are shown in Table 4. Note that we usually select
unitary operation in the coin space to keep the probability as a constant. However, not every unitary
operator results in ballistic transportation, the Grover operator will localize near the start point as the
steps grow, however, they all have a speed-up effect comparing to the classical diffusive filters.

Structure DFO10 DFO32 Grover10 Grover32
Accuracy 97.32 97.58 97.26 97.39

Table 4: Performance using Grover and DFO filters

Diffusive
DFO
Grover
Ballistic
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(a)

(b) (c)

Figure 10: Comparison between DFO and Grover operator at 15 steps. (a) The transportation speed.
(b) The walker’s distribution after 15 steps using DFO. (c) The walker’s distribution after 15 steps
using Grover operator.

The DFO and Grover operator have a transportation speed between the ballistic filters and diffusive
filters, thus can be seen as special forms of randomized filters. The general Hadamard coin is balanced.
DFO retains the balanced properties on a general graph. Every state in coin space is obtained with
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equal probability. The Grover operator helps retain the symmetry of the signal and is permutation
symmetric. The Grover operator is not a balanced coin because the probability(weight in our case)
does not change its propagating directions(p = (1− 2/d)2).

7 CONCLUSION AND FUTURE WORK

In this paper, we introduced a generalization of graph neural network: ballistic graph neural network.
We started from the speed problem of the traditional diffusive kernel and tackle this problem from the
perspective of transportation behaviour. We showed the linear transportation behaviour of ballistic
filters and introduced the de-coherence scheme to adjust the filters’ speed. Compared with diffusive
filters, the ballistic filters achieve similar accuracy using 1/3 of the parameters. Besides, we showed
that the efficiency of the ballistic filters could be improved by controlling transportation behaviour.
Compared to the random walk method, we used two operators: the coin operator and shift operator to
control the walker, and thus controlled the information the walker gathers. Our pipeline provides a
new perspective for efficient extracting the graphical information using diffusion-related models.

Future work can investigate these two directions:

The Network Structure. In this paper, we use simplified architecture to demonstrate the concept
of the ballistic walk, the layers are limited to 5 layers, and we use traditional average pooling. More
layers can be added to improve particular accuracy, and more sophisticated pooling methods can be
introducedDefferrard et al. (2016). Other techniques like dropout can also be employed to improve
accuracy.

The Ballistic Filter. De-coherence can also be introduced into the shift operator. In other words,
we can use perturbed shifted operator, and thus we introduce randomness in the spatial domain. We
can also try different unitary operators in the coin space or change the initial state of the walker. The
extension to general graphs can be generalized by adding self-loops to the nodes and thus make the
graph regular.

8 DISCUSSION: BALLISTIC FILTER IN ONE DIMENSIONAL CONDITION

The ballistic filters are inspired by two-dimensional quantum walk. The quantum coherence effect
guarantees fast ballistic transportation. The different states in the coin space can be seen as the
independent state from spatial behaviour, for example, the spin of fermions or the polarization of
light. More information about the quantum walk can be found at Childs et al. (2003).

Why introducing ballistic filters results in better performance? We here offer a conjecture from the
perspective of signal processing using one-dimensional condition.

The classical diffusion in the one-dimensional case has the shape of:

g(x) =
a

π
e−ax

2

(5)

and the frequency part can be written as:

ĝ(f) = e
π2f2

a (6)

The ĝ(f) decreases as f increases and thus can be seen as a low pass filter. (gaussian low pass filter)
For a gaussian high-pass filter, the spatial distribution is:Makandar & Halalli (2015)

hg(x) = C(1− e
−(H

2
−x)2

A2 ) (7)

The long time probability distribution of ballistic walk is:Luo & Xue (2015)

P (x) = P0 + ae−d
(x−b)1.5

N0.5 (8)

Figure 11 shows the distribution of gaussian high pass filter and the cumulative distribution of 24th
and 25step of ballistic diffusion. These two distributions have a similar shape while the ballistic
distribution has steeper edges resulted from fast transportation.
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Figure 11: Different distributions. (a) cumulative distribution of 24th and 25step of ballistic diffusion.
(b) Gaussian high pass filter.

Figure 12: Ballistic diffusion with pulse signal.

The ballistic filters’ capability to collect the long-time probability means it can act as a high-pass filter
with different sizes. The size of the filters depends on the walking steps. Figure 12 shows the ballistic
diffusion with a pulse signal from t = −τ to t = τ . The orange dashed line is an approximated shape
of ballistic transportation of the leftmost signal(t = −τ ), and the blue dashed line corresponds to
t = τ . The width of the approximated shape is related to the walking steps. For diffusive tranporation
after certain steps of difussion, the region from t = −τ to t = −τ have a gaussian shape since it is
aggreated sum of gaussian distribution with centers range from t = −τ to t = −τ . The classical
diffusion acts like a blur filter(low pass filter). The shape of pulse signal from t = −τ to t = τ
evolves to a ’valley’ shape and thus the ballistic diffusion is similar to a high pass filter.
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Figure 13: Schematic diagram of different filters and their Fourier transformation.

Figure 13 (a) and (b) shows approximate shape of the one dimensional ballistic and classical filtering
result with a pulse signal from t = −3 to t = 3, respectively. Figure 13(c) shows the Fourier
transformations. With faster transportation, the filters are capable of collecting more high frequency
compared to localized diffusive filters.
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