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ABSTRACT

Modern deep learning methods provide effective means to learn good representa-
tions. However, is a good representation itself sufficient for efficient reinforcement
learning? This question is largely unexplored, and the extant body of literature
mainly focuses on conditions which permit efficient reinforcement learning with
little understanding of what are necessary conditions for efficient reinforcement
learning. This work provides strong negative results for reinforcement learning
methods with function approximation for which a good representation (feature
extractor) is known to the agent, focusing on natural representational conditions
relevant to value-based learning and policy-based learning. For value-based learn-
ing, we show that even if the agent has a highly accurate linear representation, the
agent still needs to sample an exponential number trajectories in order to find a
near-optimal policy. For policy-based learning, we show even if the agent’s linear
representation is capable of perfectly predicting the optimal action at any state, the
agent still needs to sample an exponential number of trajectories in order to find a
near-optimal policy.
These lower bounds highlight the fact that having a good (value-based or policy-
based) representation in and of itself is insufficient for efficient reinforcement
learning and that additional assumptions are needed. In particular, these results
provide new insights into why the analysis of existing provably efficient reinforce-
ment learning methods make assumptions which are partly model-based in nature.
Furthermore, our lower bounds also imply exponential separations on the sample
complexity between 1) value-based learning with perfect representation and value-
based learning with a good-but-not-perfect representation, 2) value-based learning
and policy-based learning, 3) policy-based learning and supervised learning and 4)
reinforcement learning and imitation learning.

1 INTRODUCTION

Modern reinforcement learning (RL) problems are often challenging due to the huge state space.
To tackle this challenge, function approximation schemes are often employed to provide a compact
representation, so that reinforcement learning can generalize across states. A common paradigm
is to first use a feature extractor to transform the raw input to features (a succinct representation)
and then apply a linear predictor on top of the features. Traditionally, the feature extractor is often
handcrafted (Sutton & Barto, 2018), while more modern methods often train a deep neural network
to extract features. The hope of this paradigm is that, if there exists a good low dimensional (linear)
representation, then efficient reinforcement learning is possible.

Empirically, combining various RL function approximation algorithms with neural networks for
feature extraction has lead to tremendous successes on various tasks (Mnih et al., 2015; Schulman
et al., 2015; 2017). A major problem, however, is that these methods often require a large amount of
samples to learn a good policy. For example, deep Q-network requires millions of samples to solve
certain Atari games (Mnih et al., 2015). Here, one may wonder if there are fundamental statistical
limitations on such methods, and, if so, under what conditions it would be possible to efficiently learn
a good policy?

In the supervised learning context, it is well-known that empirical risk minimization is a statistically
efficient method when using a low-complexity hypothesis space (Shalev-Shwartz & Ben-David,
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2014), e.g. a hypothesis space with bounded VC dimension. For example, polynomial number
of samples suffice for learning a near-optimal d-dimensional linear classifier, even in the agnostic
setting 1. In contrast, in the more challenging RL setting, we seek to understand if efficient learning
is possible (say from a sample complexity perspective) when we have access to an accurate (and
compact) parametric representation — e.g. our policy class contains a near-optimal policy or our
hypothesis class accurately approximates the optimal value function. In particular, this work focuses
on the following question:

Is a good representation sufficient for sample-efficient reinforcement learning?

This question is largely unexplored, where the extant body of literature mainly focuses on conditions
which are sufficient for efficient reinforcement learning though there is little understanding of what are
necessary conditions for efficient reinforcement learning. The challenge in reinforcement learning is
that it is not evident how agents can leverage the given representation to efficiently find a near-optimal
policy for reasons related to the exploration-exploitation trade-off; there is no direct analogue of
empirical risk minimization in the reinforcement learning context.

Many recent works have provided polynomial upper bounds under various sufficient conditions, and
in what follows we list a few examples. For value-based learning, the work of Wen & Van Roy (2013)
showed that for deterministic systems2, if the optimal Q-function can be perfectly predicted by linear
functions of the given features, then the agent can learn the optimal policy exactly with polynomial
number of samples. Recent work (Jiang et al., 2017) further showed that if certain complexity
measure called Bellman rank is bounded, then the agent can learn a near-optimal policy efficiently.
For policy-based learning, Agarwal et al. (2019) gave polynomial upper bounds which depend on a
parameter that measures the difference between the initial distribution and the distribution induced by
the optimal policy.

Our Contributions. This paper gives, perhaps surprisingly, strong negative results to this question.
The main results are exponential lower bounds in terms of planning horizon H for value-based and
policy-based algorithms with given good representations3. A summary of previous upper bounds and
our lower bounds is given in Table 1.

1. For value-based learning, we show even if Q-functions of all policies can be approximated by

linear functions of the given representation with approximation error δ = Ω
(√

H
d

)
where d is

the dimension of the representation and H is the planning horizon, then the agent still needs to
sample exponential number of trajectories to find a near-optimal policy.

2. We show even if optimal policy can be perfectly predicted by a linear function of the given
representation with a strictly positive margin, the agent still requires exponential number of
trajectories to find a near-optimal policy.

These lower bounds hold even in deterministic systems and even if the agent knows the transition
model. Note these negative results apply to the case where the Q-function or the optimal policy can
be predicted well by a linear function of the given representation. Since the class of linear functions
is a strict subset of many more complicated function classes, including neural networks in particular,
our negative results imply lower bounds for these more complex function classes as well. Our results
highlight three conceptual insights:

• Efficient RL may require the representation to encode model information (transition and reward), as
under (implicit) model-based assumptions, there exist upper bounds that can tolerate approximation
error (Jiang et al., 2017; Yang & Wang, 2019b; Sun et al., 2019).

• Since our lower bounds apply even when the agent knows the transition model, the hardness is
not due to the difficulty of exploration in the standard sense. The unknown reward function is
sufficient to make the problem exponentially difficult.

• Our lower bounds are not due to the agent’s inability to perform efficient supervised learning, since
our assumptions do admit polynomial sample complexity upper bounds if the data distribution is
fixed.

1Here we only study the sample complexity and ignore the computational complexity.
2MDPs where both reward and transition are deterministic.
3 Our results can be easily extend to infinite horizon MDPs with discount factors by replacing the planning

horizon H with 1
1−γ

, where γ is the discount factor. We omit the discussion on discount MDPs for simplicity.
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Query Oracle RL Generative Model Known Transition

Previous Upper Bounds

Exact linear Q∗ + DetMDP (Wen & Van Roy, 2013) X X X

Exact linear Q∗ + Bellman-Rank (Jiang et al., 2017) X X X

Exact Linear Q∗ + Low Var + Gap (Du et al., 2019a) X X X

Exact Linear Q∗ + Gap (Open Problem / Theorem C.1) ? X X
Approx. Linear Qπ for all π +

Concentratability (Munos, 2005; Antos et al., 2008) X× X X

Approx. Linear Qπ for all π +
Bounded Dist Mismatch Coeff (Kakade & Langford, 2002) X× X X

Lower Bounds (this work)

Approx Linear Q∗ (Theorem 4.1) × × ×
Approx Linear Qπ for all π (Theorem 4.1) × × ×

Exact Linear π∗ + Margin + Gap + DetMDP (Theorem 4.2) × × ×

Exact Linear Q∗ (Open Problem) ? ? ?

Table 1: Summary of theoretical results on reinforcement learning with linear function approximation.
See Section 2 for discussion on this table. RL, Generative Model, Known Transition are defined
in Section 3.3. Exact linear Q∗: Assumption 4.1 with ζ = 0. Approx linear Q∗: Assumption 4.1

with ζ = Ω
(√

H
d

)
. Exact linear π∗: Assumption 4.3. Margin: Assumption 4.4. Exact Linear Qπ

for all π: Assumption 4.2 with ζ = 0. Approximate Linear Qπ for all π: Assumption 4.2 with

ζ = Ω
(√

H
d

)
. DetMDP: deterministic system defined in Section 3.1. Bellman-rank: Definition 5 in

Jiang et al. (2017). Low Var: Assumption 1 in Du et al. (2019b). Gap: Assumption 3.1. Bounded
Distribution Mismatch Coefficient: Definition 3.3 in Agarwal et al. (2019). X: there exists an
algorithm with polynomial sample complexity to find a near-optimal policy. X×: requires certain
condition on the initial distribution. ×: exponential number of samples is required. ?: open problem.

Instead, one interpretation is that the hardness is due to a distribution mismatch in the following sense:
the agent does not know which distribution to use for minimizing a (supervised) learning error (see
Kakade (2003) for discussion), and even a known transition model is not information-theoretically
sufficient to reduce the sample complexity.

Furthermore, our work implies several interesting exponential separations on the sample complexity
between: 1) value-based learning with perfect representation and value-based learning with a good-
but-not-perfect representation, 2) value-based learning and policy-based learning, 3) policy-based
learning and supervised learning and 4) reinforcement learning and imitation learning. We provide
more details in Section 5.

2 RELATED WORK

A summary of previous upper bounds, together with lower bounds proved in this paper, is provided
in Table 1. Some key assumptions are formally stated in Section 3 and Section 4. Our lower bounds
highlight that classical complexity measures in supervised learning including small approximation
error and margin, and standard assumptions in reinforcement learning including optimality gap
and deterministic systems, are not enough for efficient RL with function approximation. We need
additional assumptions, e.g., ones used in previous upper bounds, for efficient RL.

2.1 PREVIOUS LOWER BOUNDS

Existing exponential lower bounds, to our knowledge, construct unstructured MDPs with an ex-
ponentially large state space and reduce a bandit problem with exponentially many arms to an
MDP (Krishnamurthy et al., 2016; Sun et al., 2017). However, these lower bounds cannot apply to
MDPs whose transition models, value functions, or policies can be approximated with some natural
function classes, e.g., linear functions, neural networks, etc. The current paper gives the first set of
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lower bounds for RL with linear function approximation (and thus also hold for super class of linear
functions like neural networks).

2.2 PREVIOUS UPPER BOUNDS

We divide previous algorithms (with provable guarantees) into three classes: those that utilize
uncertainty-based bonuses (e.g. UCB variants or Thompson sampling variants); approximate dynamic
programming variants (which often make assumptions with respect to concentrability coefficients);
and direct policy search-based methods (such as conserve policy iteration (CPI, see Kakade (2003)) or
policy gradient methods, which make assumptions with respect to distribution mismatch coefficients).
The first class of methods include those based on witness rank, Belman rank, and the Eluder dimension,
while the latter two classes of algorithms make assumptions either on concentrability coefficients or
on distribution mismatch coefficients (see Agarwal et al. (2019); Scherrer (2014) for discussions).

Uncertainty bonus-based algorithms. Now we discuss existing theoretical results on value-based
learning with function approximation. The most relevant work is Wen & Van Roy (2013) which
showed in deterministic systems, if the optimal Q-function is within a pre-specified function class
which has bounded Eluder dimension, for which the class of linear functions is a special case, then the
agent can learn the optimal policy using polynomial number of samples. This result has recently been
generalized by Du et al. (2019a) which can deal with stochastic reward and low variance transition
but requires strictly positive optimality gap. As we listed in Table 1, it is an open problem whether
the condition that the optimal Q-function is linear itself is sufficient for efficient RL.

Li et al. (2011) proposed a Q-learning algorithm which requires the Know-What-It-Knows oracle.
However, it is in general unknown how to implement such oracle in practice. Jiang et al. (2017)
proposed the concept of Bellman Rank to characterize the sample complexity of value-based learning
methods and gave an algorithm that has polynomial sample complexity in terms of the Bellman Rank,
though the proposed algorithm is not computationally efficient. Bellman rank is bounded for a wide
range of problems, including MDP with small number of hidden states, linear MDP, LQR, etc. Later
work gave computationally efficient algorithms for certain special cases (Dann et al., 2018; Du et al.,
2019a; Yang & Wang, 2019b; Jin et al., 2019). Recently, Witness rank, a generalization of Bellman
rank to model-based methods, is studied in Sun et al. (2019).

Approximate dynamic programming-based algorithms. We now discuss approximate dynamic
programming-based results characterized in terms of the concentrability coefficient. While classical
approximate dynamic programming results typically require `∞-bounded errors, the notion of
concentrability (originally due to (Munos, 2005)) permits sharper bounds in terms of average-case
function approximation error, provided that the concentrability coefficient is bounded (e.g. see
Munos (2005); Szepesvári & Munos (2005); Antos et al. (2008); Geist et al. (2019)). Under the
assumption that this problem-dependent parameter is bounded, Munos (2005); Szepesvári & Munos
(2005) and Antos et al. (2008) proved sample complexity and error bounds for approximate dynamic
programming methods when there is a data collection policy (under which value-function fitting
occurs) that induces a finite concentrability coefficient. The assumption that the concentrability
coefficient is finite is in fact quite limiting. See Chen & Jiang (2019) which provides a more detailed
discussion on this quantity.

Direct policy search-based algorithms. Stronger guarantees over approximate dynamic
programming-based algrithm can be obtained with direct policy search-based methods, where instead
of having a bounded concentrability coefficient, one only needs to have a bounded distribution
mismatch coefficient. The latter assumption requires the agent to have access to a “good” initial state
distribution (e.g. a measure which has coverage over where an optimal policy tends to visit); note
that this assumption does not make restrictions over the class of MDPs. There are two classes of algo-
rithms that fall into this category. First, there is Conservative Policy Iteration (Kakade & Langford,
2002), along with Policy Search by Dynamic Programming (PSDP) (Bagnell et al., 2004), and other
boosting-style of policy search-based methods Scherrer & Geist (2014); Scherrer (2014), which have
guarantees in terms of bounded distribution mismatch ratio. Second, more recently, Agarwal et al.
(2019) showed that policy gradient styles of algorithms also have comparable guarantees.
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3 PRELIMINARIES

Throughout this paper, for a given integer H , we use [H] to denote the set {0, 1, . . . ,H − 1}.

3.1 EPISODIC REINFORCEMENT LEARNING

Let M = (S,A, H, P,R) be an Markov Decision Process (MDP) where S is the state space,
A is the action space whose size is bounded by a constant, H ∈ Z+ is the planning horizon,
P : S×A → 4 (S) is the transition function which takes a state-action pair and returns a distribution
over states and R : S ×A → 4 (R) is the reward distribution. Without loss of generality, we assume
a fixed initial state s0

4. A policy π : S → 4(A) prescribes a distribution over actions for each
state. The policy π induces a (random) trajectory s0, a0, r0, s1, a1, r1, . . . , sH−1, aH−1, rH−1 where
a0 ∼ π(s0), r0 ∼ R(s0, a0), s1 ∼ P (s0, a0), a1 ∼ π(s1), etc. To streamline our analysis, for each
h ∈ [H], we use Sh ⊆ S to denote the set of states at level h, and we assume Sh do not intersect
with each other. We also assume

∑H−1
h=0 rh ∈ [0, 1] almost surely. Our goal is to find a policy π that

maximizes the expected total reward E
[∑H−1

h=0 rh | π
]
. We use π∗ to denote the optimal policy. We

say a policy π is ε-optimal if E
[∑H−1

h=0 rh | π
]
≥ E

[∑H−1
h=0 rh | π∗

]
− ε.

In this paper we prove lower bounds for deterministic systems, i.e., MDPs with deterministic
transition P , deterministic reward R. In this setting, P and R can be regarded as functions instead
of distributions. Since deterministic systems are special cases of general stochastic MDPs, lower
bounds proved in this paper still hold for more general MDPs.

3.2 Q-FUNCTION AND OPTIMALITY GAP

An important concept in RL is the Q-function. Given a policy π, a level h ∈ [H] and a state-action
pair (s, a) ∈ Sh ×A, the Q-function is defined as Qπh(s, a) = E

[∑H−1
h′=h rh′ | sh = s, ah = a, π

]
.

For simplicity, we denote Q∗h(s, a) = Qπ
∗

h (s, a). In addition to these definitions, we list below an
important assumption, the optimality gap assumption, which is widely used in reinforcement learning
and bandit literature. To state the assumption, we first define the function gap : S × A → R as
gap(s, a) = arg maxa′∈AQ

∗(s, a′)−Q∗(s, a). Now we formally state the assumption.
Assumption 3.1 (Optimality Gap). There exists ρ > 0 such that ρ ≤ gap(s, a) for all (s, a) ∈ S×A
with gap(s, a) > 0.

Here, ρ is the smallest reward-to-go difference between the best set of actions and the rest. Recently,
Du et al. (2019b) gave a provably efficient Q-learning algorithm based on this assumption and
Simchowitz & Jamieson (2019) showed that with this condition, the agent only incurs logarithmic
regret in the tabular setting.

3.3 QUERY MODELS

Here we discuss three possible query oracles interacting with the MDP.

• RL: The most basic and weakest query oracle for MDP is the standard reinforcement learning
query oracle where the agent can only interact with the MDP by choosing actions and observe the
next state and the reward.

• Generative Model: A stronger query model assumes the agent can transit to any state (Kearns &
Singh, 2002; Kakade, 2003; Sidford et al., 2018). This query model is available in certain robotic
applications where one can control the robot to reach the target state.

• Known Transition: The strongest query model considered is that the agent can not only transit to
any state, but it also knows the whole transition. In this model, only the reward is unknown.

In this paper, we will prove lower bounds for the strongest Known Transition query oracle. Therefore,
our lower bounds also apply to RL and Generative Model query oracles.

4Some papers assume the initial state is sampled from a distribution P1. Note this is equivalent to assuming
a fixed initial state s0, by setting P (s0, a) = P1 for all a ∈ A and now our state s1 is equivalent to the initial
state in their assumption.
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4 MAIN RESULTS

In this section we formally present our lower bounds. We also discuss proof ideas in Section 4.3.

4.1 LOWER BOUND FOR VALUE-BASED LEARNING

We first present our lower bound for value-based learning. A common assumption is that the Q-
function can be predicted well by a linear function of the given features (representation) (Bertsekas
& Tsitsiklis, 1996). Formally, the agent is given a feature extractor φ : S ×A → Rd which can be
hand-crafted or a pre-trained neural network that transforms a state-action pair to a d-dimensional
embedding. The following assumption states that the given feature extractor can be used to predict
the Q-function with approximation error at most δ using a linear function.

Assumption 4.1. There exists δ > 0 and θ0, θ1, . . . , θH−1 ∈ Rd such that for any h ∈ [H] and any
(s, a) ∈ Sh ×A, |Q∗h (s, a)− 〈θh, φ (s, a)〉| ≤ δ.

Here δ is the approximation error, which indicates the quality of the representation. If δ = 0, then
Q-function can be perfectly predicted by a linear function of φ (·, ·). In general, δ becomes smaller as
we increase the dimension of φ, since larger dimension usually has more expressive power. When the
feature extractor is strong enough, previous papers (Chen & Jiang, 2019; Farahmand, 2011) assume
that linear functions of φ can approximate the Q-function of any policy.

Assumption 4.2 (Policy Completeness). There exists δ > 0, such that for any h ∈ [H] and any
policy π, there exists θπh ∈ Rd such that for any (s, a) ∈ Sh ×A, |Qπh (s, a)− 〈θh, φ (s, a)〉| ≤ δ.

In the theoretical reinforcement learning literature, Assumption 4.2 is often called the (approximate)
policy completeness assumption. This assumption is crucial in proving polynomial sample complexity
guarantee for value iteration type of algorithms (Chen & Jiang, 2019; Farahmand, 2011).

The following theorem shows when δ = Ω
(√

H
d

)
, the agent needs to sample exponential number of

trajectories to find a near-optimal policy.

Theorem 4.1 (Exponential Lower Bound for Value-based Learning). There exists a family of MDPs
and a feature extractor φ that satisfy Assumption 4.2 with d = 2 · d8 ln 2H/δ2e, such that any
algorithm that returns a 1/2-optimal policy with probability 0.9 needs to sample Ω

(
2H
)

trajectories.

Note this lower bound also applies to MDPs that satisfy Assumption 4.1, since Assumption 4.2 is a
strictly stronger assumption. We would like to emphasize that since linear functions is a subclass
of more complicated function classes, e.g., neural networks, our lower bound also holds for these
function classes.

4.2 LOWER BOUND FOR POLICY-BASED LEARNING

Next we present our lower bound for policy-based learning. This class of methods use function
approximation on the policy and use optimization techniques, e.g., policy gradient, to find the optimal
policy. In this paper, we focus on linear policies on top of a given representation. A linear policy
π is a policy of the form π(sh) = arg maxa∈A 〈θh, φ(sh, a)〉 where sh ∈ Sh, φ (·, ·) is a given
feature extractor and θh ∈ Rd is the linear coefficient. Note that applying policy gradient on softmax
parameterization of the policy is indeed trying to find the optimal policy among linear policies.

Similar to value-based learning, a natural assumption for policy-based learning is that the optimal
policy is realizable. 5

Assumption 4.3. For any h ∈ [H], there exists θh ∈ Rd that satisfies for any s ∈ Sh, we have
π∗ (s) ∈ arg maxa 〈θh, φ (s, a)〉 .

Here we discuss another assumption. For learning a linear classifier in the supervised learning setting,
one can reduce the sample complexity significantly if the optimal linear classifier has a margin.

5 Unlike value-based learning, it is hard to define completeness on the policy-based learning with function
approximation, since not all policy has the argmax form.
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Assumption 4.4. We assume φ (s, a) ∈ Rd satisfies ‖φ(s, a)‖2 = 1 for any (s, a) ∈ S ×A. For any
h ∈ [H], there exists θh ∈ Rd with ‖θh‖2 = 1 and4 > 0 such that for any s ∈ Sh, there is a unique
optimal action π∗(s), and for any a 6= π∗(s), 〈θh, φ (s, π∗(s))〉 − 〈θh, φ (s, a)〉 ≥ 4.

Here we restrict the linear coefficients and features to have unit norm for normalization. Note that
Assumption 4.4 is strictly stronger than Assumption 4.3. Now we present our result for linear policy.
Theorem 4.2 (Exponential Lower Bound for Policy-based Learning). There exists an absolute
constant40, such that for any4 ≤ 40, there exists a family of MDPs and a feature extractor φ that
satisfy Assumption 3.1 with ρ = 1

2H and Assumption 4.4 with d = H , such that any algorithm that
returns a 1/4-optimal policy with probability at least 0.9 needs to sample Ω

(
2H
)

trajectories.

Compared with Theorem 4.1, Theorem 4.2 is even more pessimistic, in the sense that even with
perfect representation with benign properties (gap and margin), the agent still needs to sample
exponential number of samples. It also suggests that policy-based learning could be very different
from supervised learning.

4.3 PROOF IDEAS

The binary tree hard instance. All our lower bound are proved based on reductions from the
following hard instance. In this instance, both the transition P and the reward R are deterministic.
There are H levels of states, which form a full binary tree of depth H . There are 2h states in level h,
and thus 2H − 1 states in total. Among all the 2H−1 states in level H − 1, there is only one state with
reward R = 1, and for all other states in the MDP, the corresponding reward value R = 0. Intuitively,
to find a 1/2-optimal policy for such MDPs, the agent must enumerate all possible states in level
H − 1 to find the state with reward R = 1. Doing so intrinsically induces a sample complexity of
Ω(2H). This intuition is formalized in Theorem A.1 using Yao’s minimax principle (Yao, 1977).

Lower bound for value-based learning We now show how to construct a set of features so that
Assumption 4.1-4.2 hold. Our main idea is to the utilize the following fact regarding the identity
matrix: ε-rank(I2H ) ≤ O(H/ε2). Here for a matrix A ∈ Rn×n, its ε-rank (a.k.a approximate
rank) is defined to be min{rank(B) : B ∈ Rn×n, ‖A−B‖∞ ≤ ε}, where we use ‖ · ‖∞ to denote
the entry-wise `∞ norm of a matrix. The upper bound ε-rank(In) ≤ O(log n/ε2) was first proved
in Alon (2009) using the Johnson-Lindenstrauss Lemma (Johnson & Lindenstrauss, 1984), and we
also provide a proof in Lemma A.1. The concept of ε-rank has wide applications in theoretical
computer science (Alon, 2009; Barak et al., 2011; Alon et al., 2013; 2014; Chen & Wang, 2019), but
to our knowledge, this is the first time that it appears in reinforcement learning.

This fact can be alternatively stated as follow: there exists Φ ∈ R2H×O(H/ε2) such that ‖I2H −
ΦΦ>‖∞ ≤ ε. We interpret each row of Φ as the feature of a state in the binary tree. By construction
of Φ, now features of states in the binary tree have a nice property that (i) each feature vector has
approximately unit norm and (ii) different feature vector are nearly orthogonal. Using this set of
features, we can now show that Assumption 4.1 and 4.2 hold. Here we prove Assumption 4.1 holds
as an example and prove other assumptions also hold in the appendix. To prove Assumption 4.1, we
note that in the binary tree hard instance, for each level h, only a single state satisfies Q∗ = 1, and all
other states satisfy Q∗ = 0. We simply take θh to be the feature of the state with Q∗ = 1. Since all
feature vectors are nearly orthogonal, Assumption 4.1 holds.

Since the above fact regarding the ε-rank of the identity matrix can be proved by simply taking each
row of Φ to be a random unit vector, our lower bound reveals another intriguing (yet pessimistic)
aspect of Assumption 4.1 and 4.2: for the binary tree instance, almost all feature extractors induce a
hard MDP instance. This again suggests that a good representation itself may not necessarily lead to
efficient RL and additional assumptions (e.g. on the reward distribution) could be crucial.

Lower bound for policy-based learning. It is straightfoward to construct a set of feature vectors
for the binary tree instance so that Assumption 4.3 holds, even if d = 1. We set φ(s, a) to be +1 if
a = a1 and −1 if a = a2. For each level h, for the unique state s in level h with Q∗ = 1, we set θh
to be 1 if π∗(s) = a1 and −1 if π∗(s) = a2. With this construction, Assumption 4.3 holds.

To prove that the lower bound under Assumption 4.4, we use a new reward function for states in
level H − 1 in the binary tree instance above so that there exists a unique optimal action for each
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state in the MDP. See Figure 2 for an example with H = 3 levels of states. Another nice property
of the new reward function is that for all states s we always have π∗(s) = a1. Now, we define
2H−1 different new MDPs as follow: for each state in level H − 1, we change its original reward
(defined in Figure 2) to 1. An exponential sample complexity lower bound for these MDPs can be
proved using the same argument as the original binary tree hard instance, and now we show this set
of MDPs satisfy Assumption 4.4. We first show in Lemma A.2 that there exists a set N ⊆ Sd−1 with
|N | = (1/4)Ω(d), so that for each p ∈ N , there exists a hyperplane L that separates p and N \ {p},
and all vectors inN have distance at least4 to L. Equivalently, for each p ∈ N ,we can always define
a linear function fp so that fp(p) ≥ 4 and fp(q) ≤ −4 for all q ∈ N \ {p}. This can be proved
using standard lower bounds on the size of ε-nets. Now we simply use vectors in N as features of
states. By construction of the reward function, for each level h, there could only be two possible
cases for the optimal policy π∗. I.e., either π∗(s) = a1 for all states in level h, or π∗(s) = a2 for a
unique state s and π∗(s′) = a1 for all s 6= s′. In both cases, we can easily define a linear function
with margin4 to implement the optimal policy π∗, and thus Assumption 4.4 holds. Notice that in
this proof, we critically relies on d = Θ(H), so that we can utilize the curse of dimensionality to
construct a large set of vectors as features.

5 DISCUSSION

5.1 SEPARATIONS

Perfect representation vs. good-but-not-perfect representation. For value-based learning in
deterministic systems, Wen & Van Roy (2013) showed polynomial sample complexity upper bound
when the representation can perfectly predict the Q-function. In contrast, if the representation is only
able to approximate the Q-function, then the agent requires exponential number of trajectories. This
exponential separation demonstrates a provable exponential benefit of better representation.

Value-based learning vs. policy-based learning. Note that if the optimal Q-function can be
perfectly predicted by the provided representation, then the optimal policy can also be perfectly
predicted using the same representation. Since Wen & Van Roy (2013) showed polynomial sample
complexity upper bound when the representation can perfectly predict the Q-function, our lower
bound on policy-based learning thus demonstrates that the ability of predicting the Q-function is
much stronger than that of predicting the optimal policy.

Supervised learning vs. reinforcement learning. For policy-based learning, if the planning horizon
H = 1, the problem becomes learning a linear classifier, for which there are polynomial sample
complexity upper bounds. For policy-based learning, the agent needs to learn H linear classifiers
sequentially. Our lower bound on policy-based learning shows the sample complexity dependency on
H is exponential.

Imitation learning vs. reinforcement learning. In imitation learning (IL), the agent can observe
trajectories induced by the optimal policy (expert). If the optimal policy is linear in the given
representation, it can be shown that the simple behavior cloning algorithm only requires polynomial
number of samples to find a near-optimal policy (Ross et al., 2011). Our Theorem 4.2 shows if the
agent cannot observe expert’s behavior, then it requires exponential number of samples. Therefore,
our lower bound shows there is an exponential separation between policy-based RL and IL when
function approximation is used.

5.2 LOWER BOUNDS FOR MODEL-BASED LEARNING

Finally, we remark that using the technique for proving the lower bound for value-based learning,
we can obtain a lower bound for a “linear MDP” in which the transition probability matrix can
be approximated by a linear function of the representation. Section D shows that if the transition
matrix is only approximated in the `∞ sense, then the agent still requires an exponential number
of samples. We do note that an `∞ approximation for a transition matrix may be a weak condition.
Under the stronger condition that the transition matrix can be approximated well under the total
variational distance, then there exists polynomial sample complexity upper bounds that can tolerate
approximation error (Yang & Wang, 2019b;a; Jin et al., 2019).
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A PROOFS OF LOWER BOUNDS

In this section we present our lower bounds. It will also be useful to define the value function of a
given state s ∈ Sh as V πh (s) = E

[∑H−1
h′=h rh′ | sh = s, π

]
. For simplicity, we denote V ∗h = V π

∗

h (s).
Throughout the appendix, for the Q-function Qπh and Q∗h and the value function V πh and V ∗h , we may
omit h from the subscript when it is clear from the context.

We first introduce the INDEX-QUERY problem, which will be useful in our lower bound arguments.
Definition A.1 (INDEX-QUERY). In the INDQn problem, there is an underlying integer i∗ ∈ [n].
The algorithm sequentially (and adaptively) outputs guesses i ∈ [n] and queries whether i = i∗. The
goal is to output i∗, using as few queries as possible.
Definition A.2 (δ-correct algorithms). For a real number δ ∈ (0, 1), we say a randomized algorithm
A is δ-correct for INDQn, if for any underlying integer i∗ ∈ [n], with probability at least 1− δ, A
outputs i∗.

The following theorem states the query complexity of INDQn for 0.1-correct algorithms, whose proof
is provided in Section B.1.
Theorem A.1. Any 0.1-correct algorithm A for INDQn requires at least 0.9n queries in the worst
case.

A.1 PROOF OF LOWER BOUND FOR Q-LEARNING LEARNING

In this section we prove Theorem 4.1. We need the following existential result, whose proof is
provided in Section B.2.
Lemma A.1. For any n > 2, there exists a set of vectors P = {p0, p1, . . . , pn−1} ⊂ Rd with
d = d8 lnn/ε2e such that

1. ‖pi‖2 = 1 for all 0 ≤ i ≤ n− 1;

2. |〈pi, pj〉| ≤ ε for any 0 ≤ i, j ≤ n− 1 with i 6= j.

Now we give the construction of the hard MDP instances. We first define the transitions and the
reward functions. In the hard instances, both the rewards and the transitions are deterministic. There
are H levels of states, and level h ∈ [H] contains 2h distinct states. Thus, there are 2H − 1 states in
the MDPs. We use s0, s1, . . . , s2H−2 to name these states. Here, s0 is the unique state in level h = 0,
s1 and s2 are the two states in level h = 1, s3, s4, s5 and s6 are the four states in level h = 2, etc.
There are two different actions, a1 and a2, in the MDPs. For a state si in level h with h < H − 1,
playing action a1 transits state si to state s2i+1 and playing action a2 transits state si to state s2i+2,
where s2i+1 and s2i+2 are both states in level h+ 1. See Figure 1 for an example with H = 3.

In our hard instances, r(s, a) = 0 for all (s, a) pairs except for a unique state s in level H − 2 and a
unique action a ∈ {a1, a2}. It is convenient to define r(s′) = r(s, a), if playing action a transits s to
s′. For our hard instances, we have r(s) = 1 for a unique node s in level H − 1 and r(s) = 0 for all
other nodes.

Now we define the features map φ(·, ·). We first invoke Lemma A.1 to get a set P =
{p0, p1, . . . , p2H−1} ⊂ Rd/2 with d = 2 · d8 ln 2H/δ2e. For each state si, φ(si, a1) ∈ Rd is
defined to be [pi; 0], and φ(si, a2) ∈ Rd is defined to be [0; pi]. This finishes the definition of the
MDPs. We now show that no matter which state s in level H − 1 satisfies r(s) = 1, the resulting
MDP always satisfies Assumption 4.2.

Verifying Assumption 4.2. By construction, for each level h ∈ [H], there is a unique state sh
in level h and action ah ∈ {a1, a2}, such that Q∗(sh, ah) = 1. For all other (s, a) pairs such that
s 6= sh or a 6= ah, it is satisfied that Q∗(s, a) = 0. For a given level h and policy π, we take θπh to be
Qπ(sh, ah) · φ(sh, ah). Now we show that |Qπ(s, a)− 〈θπh , φ(s, a)〉| ≤ δ for all states s in level h
and a ∈ {a1, a2}.

Case I: a 6= ah. In this case, we have Qπ(s, a) = 0 and 〈θπh , φ(s, a)〉 = 0, since θπh and φ(s, a) do
not have a common non-zero coordinate.
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s0

s1

s3

Q∗(s1, a1) = 0

s4

Q∗(s1, a2) = 0

Q∗(s0, a1) = 0

s2

s5

Q∗(s2, a1) = 1

s6

Q∗(s2, a2) = 0

Q∗(s0, a2) = 1

Figure 1: An example with H = 3. For this example, we have r(s5) = 1 and r(s) = 0 for all other
states s. The unique state s5 which satisfies r(s) = 1 is marked as dash in the figure. The induced
Q∗ function is marked on the edges.

Case II: a = ah and s 6= sh. In this case, by the second property of P in Lemma A.1 and the fact
that Qπ(sh, ah) ≤ 1, we have |〈θπh , φ(s, a)〉| ≤ δ. Meanwhile, we have Qπ(s, a) = 0.

Case III: a = ah and s = sh. In this case, we have 〈θπh , φ(s, a)〉 = Qπ(sh, ah).

Finally, we prove any algorithm that solves these MDP instances and succeeds with probability
at least 0.9 needs to sample at least 9

20 · 2
H trajectories. We do so by providing a reduction from

INDQ2H−1 to solving MDPs. Suppose we have an algorithm for solving these MDPs, we show that
such an algorithm can be transformed to solve INDQ2H−1 . For a specific choice of i∗ in INDQ2H−1 ,
there is a corresponding MDP instance with

r(s) =

{
1 if s = si∗+2H−1−1

0 otherwise
.

Notice that for all MDPs that we are considering, the transition and features are always the same.
Thus, the only thing that the learner needs to learn by interacting with the environment is the reward
value. Since the reward value is non-zero only for states in level H − 1, each time the algorithm for
solving MDP samples a trajectory that ends at state si where si is a state in level H − 1, we query
whether i∗ = i − 2H−1 + 1 or not in INDQ2H−1 , and return reward value 1 if i∗ = i − 2H−1 + 1
and 0 otherwise. If the algorithm is guaranteed to return a 1/2-optimal policy, then it must be able to
find i∗.

A.2 PROOF OF LOWER BOUND FOR POLICY BASED LEARNING

In this section, we present our hardness results for linear policy learning. We first prove a weaker
lower bound which only satisfies Assumption 4.3, and then prove Theoerem 4.2.

Warmup: Lower Bound for Linear Policy without Margin. To present the hardness results, we
first give the construction of the hard instances. The transitions and rewards functions of these MDP
instances are exactly the same as those in Section A.1. The main difference is in the definition of the
feature map φ(·, ·). For this lower bound, we define φ(s, a) = 1 ∈ R if a = a1 and φ(s, a) = −1
if a = a2. By construction, these MDPs satisfy Assumption 3.1 with ρ = 1. We now show that
no matter which state s in level H − 1 satisfies r(s) = 16, the resulting MDP always satisfies
Assumption 4.3.

6Recall that r(s′) = r(s, a), if playing action a transits s to s′. Moreover, for the instances in Section A.1,
we have r(s) = 1 for a unique node s in level H − 1 and r(s) = 0 for all other nodes.
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V ∗(s0) = 1/2

V ∗(s1) = 1/2

r(s3) = 1/2 r(s4) = 1/3

V ∗(s2) = 1/3

r(s5) = 1/3 r(s6) = 1/6

Figure 2: An example with H = 3.

Verifying Assumption 4.3. Recall that for each level h ∈ [H], there is a unique state sh in level h
and action ah ∈ {a1, a2}, such that Q∗(sh, ah) = 1. For all other (s, a) pairs such that s 6= sh or
a 6= ah, it is satisfied that Q∗(s, a) = 0. We simply take θh to be 1 if ah = a1, and take θh to be −1
if ah = a2.

Using the same lower bound argument (by reducing INDEX-QUERY to MDPs), we have the
following theorem.
Theorem A.2. There exists a family of MDPs and a feature map φ (·, ·) that satisfy Assumption 4.3
with d = 1 and Assumption 3.1 with ρ = 1, such that any algorithm that returns a 1/2-optimal policy
with probability at least 0.9 needs to sample Ω

(
2H
)

trajectories.

Proof of Theoerem 4.2 Now we prove Theoerem 4.2. In order to prove Theoerem 4.2, we need
the following geometric lemma whose proof is provided in Section B.3.
Lemma A.2. Let d ∈ N+ be a positive integer and ε ∈ (0, 1) be a real number. Then there exists a
set of points N ⊂ Sd−1 with size |N | = Ω(1/εd/2) such that for every point x ∈ N ,

inf
y∈conv(N\{x})

‖x− y‖2 ≥ ε/2. (1)

Now we are ready to prove Theorem 4.2.

Proof of Theorem 4.2. We define a set of 2H−1 deterministic MDPs. The transitions of these hard
instances are exactly the same as those in Section A.1. The main difference is in the definition of the
feature map φ(·, ·) and the reward function. Again in the hard instances, r(s, a) = 0 for all s in the
first H − 2 levels. Using the terminology in Section A.1, we have r(s) = 0 for all states in the first
H − 1 levels. Now we define r(s) for states s in level H − 1. We do so by recursively defining the
optimal value function V ∗(·). The initial state s0 in level 0 satisfies V ∗(s0) = 1/2. For each state si
in the first H − 2 levels, we have V ∗(s2i+1) = V ∗(si) and V ∗(s2i+2) = V ∗(si)− 1/2H . For each
state si in the level h = H − 2, we have r(s2i+1) = V ∗(si) and r(s2i+2) = V ∗(si)− 1/2H . This
implies that ρ = 1/2H . In fact, this implies a stronger property that each state has a unique optimal
action. See Figure 2 for an example with H = 3.

To define 2H−1 different MDPs, for each state s in levelH−1 of the MDP defined above, we define a
new MDP by changing r(s) from its original value to 1. This also affects the definition of the optimal
V function for states in the first H − 1 levels. In particular, for each level i ∈ {0, 1, 2, . . . ,H − 2},
we have changed the V value of a unique state in level i from its original value (at most 1/2) to 1. By
doing so we have defined 2H−1 different MDPs. See Figure 3 for an example with H = 3.

Now we define the feature function φ(·, ·). We invoke Lemma A.2 with ε = 84 and d = H/2− 1.
Since4 is sufficiently small, we have |N | ≥ 2H . We use P = {p0, p2, . . . , p2H−1} ⊂ RH/2−1 to
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V ∗(s0) = 1

V ∗(s1) = 1/2

r(s3) = 1/2 r(s4) = 1/3

V ∗(s2) = 1

r(s5) = 1 r(s6) = 1/6

Figure 3: An example with H = 3. Here we define a new MDP by changing r(s5) from its original
value 1/3 to 1. This also affects the value of V (s2) and V (s0).

denote an arbitrary subset of N with cardinality 2H . By Lemma A.2, for any p ∈ P , the distance
between p and the convex hull of P \ {p} is at least 44. Thus, there exists a hyperplane L which
separates p and P \ {p}, and for all points q ∈ P , the distance between q and L is at least 24.
Equivalently, for each point p ∈ P , there exists np ∈ RH/2−1 and op ∈ R such that ‖np‖2 = 1,
|op| ≤ 1 and the linear function fp(q) = 〈q, np〉 + op satisfies fp(p) ≥ 24 and fp(q) ≤ −24
for all q ∈ P \ {p}. Given the set P = {p0, p2, . . . , p2H−1} ⊂ RH/2−1, we construct a new set
P = {p0, p2, . . . , p2H−1} ⊂ RH/2, where pi = [pi; 1] ∈ RH/2. Thus ‖pi‖2 =

√
2 for all pi ∈ P .

Clearly, for each p ∈ P , there exists a vector ωp ∈ RH/2 such that 〈ωp, p〉 ≥ 24 and 〈ωp, q〉 ≤ −24
for all q ∈ P \ {p}. It is also clear that ‖ωp‖2 ≤

√
2. We take φ(si, a1) = [0; pi] ∈ RH and

φ(si, a2) = [pi; 0] ∈ RH .

We now show that all the 2H−1 MDPs constructed above satisfy the linear policy assumption. Namely,
we show that for any state s in levelH−1, after changing r(s) to be 1, the resulting MDP satisfies the
linear policy assumption. As in Section A.1, for each level h ∈ [H], there is a unique state sh in level
h and action ah ∈ {a1, a2}, such that Q∗(sh, ah) = 1. For all other (s, a) pairs such that s 6= sh or
a 6= ah, it is satisfied that Q∗(s, a) = 0. For each level h, if ah = a1, then we take (θh)H/2 = 1 and
(θh)H = −1, and all other entries in θh are zeros. If ah = a2, we use p to denote the vector formed
by the first H/2 coordinates of φ(sh, a2). By construction, we have p ∈ P . We take θh = [ωp; 0] in
this case. In any case, we have ‖θh‖2 ≤

√
2. Now for each level h, if ah = a1, then for all states s in

level h, we have π∗(s) = a1. In this case, 〈φ(s, a1), θh〉 = 1 and 〈φ(s, a2), θh〉 = −1 for all states
in level h, and thus Assumption 4.4 is satisfied. If ah = a2, then π∗(sh) = a2 and π∗(s) = a1 for
all states s 6= sh in level h. By construction, we have 〈θh, φ(s, a1)〉 = 0 for all states s in level h,
since θh and φ(s, a1) do not have a common non-zero entry. We also have 〈θh, φ(sh, a2)〉 ≥ 24
and 〈θh, φ(s, a2)〉 ≤ −24 for all states s 6= sh in level h. Finally, we normalize all θh and φ(s, a)

so that they all have unit norm. Since ‖φ(s, a)‖2 =
√

2 for all (s, a) pairs before normalization,
Assumption 4.4 is still satisfied after normalization.

Finally, we prove any algorithm that solves these MDP instances and succeeds with probability
at least 0.9 needs to sample at least Ω(2H) trajectories. We do so by providing a reduction from
INDQ2H−1 to solving MDPs. Suppose we have an algorithm for solving these MDPs, we show that
such an algorithm can be transformed to solve INDQ2H−1 . For a specific choice of i∗ in INDQ2H−1 ,
there is a corresponding MDP instance with

r(s) =

{
1 if s = si∗+2H−1−1

the original (recursively defined) value otherwise
.

Notice that for all MDPs that we are considering, the transition and features are always the same.
Thus, the only thing that the learner needs to learn by interacting with the environment is the reward
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value. Since the reward value is non-zero only for states in level H − 1, each time the algorithm for
solving MDP samples a trajectory that ends at state si where si is a state in level H − 1, we query
whether i∗ = i − 2H−1 + 1 or not in INDQ2H−1 , and return reward value 1 if i∗ = i − 2H−1 + 1
and it original reward value otherwise. If the algorithm is guaranteed to return a 1/4-optimal policy,
then it must be able to find i∗.

B TECHNICAL PROOFS

B.1 PROOF OF THEOREM A.1

Proof. The proof is a straightforward application of Yao’s minimax principle Yao (1977). We provide
the full proof for completeness.

Consider an input distribution where i∗ is drawn uniformly at random from [n]. Suppose there is
a 0.1-correct algorithm for INDQn with worst case query complexity T such that T < 0.9n. By
averaging, there is a deterministic algorithm A′ with worst case query complexity T , such that

Pr
i∼[n]

[A′ correctly outputs i when i∗ = i] ≥ 0.9.

We may assume that the sequence of queries made byA′ is fixed. This is because (i)A′ is deterministic
and (ii) before A′ correctly guesses i∗, all responses that A′ receives are the same (i.e., all guesses
are incorrect). We use S = {s1, s2, . . . , sm} to denote the sequence of queries made by A′. Notice
that m is the worst case query complexity of A′. Suppose m < 0.9n, there exist 0.1n distinct i ∈ [n]
such that A′ will never guess i, and will be incorrect if i∗ equals i, which implies

Pr
i∼[n]

[A′ correctly outputs i when i∗ = i] < 0.9.

B.2 PROOF OF LEMMA A.1

We need the following tail inequality for random unit vectors, which will be useful for the proof of
Lemma A.1.

Lemma B.1 (Lemma 2.2 in Dasgupta & Gupta (2003)). For a random unit vector u in Rd and β > 1,
we have

Pr
[
u2

1 ≥ β/d
]
≤ exp((1 + lnβ − β)/2).

In particular, when β ≥ 6,we have

Pr
[
u2

1 > β/d
]
≤ exp(−β/4).

Proof of Lemma A.1. Let Q = {q1, q2, . . . , qn} be a set of n independent random unit vectors in Rd
with d = d8 lnn/ε2e. We will prove that with probability at least 1/2, Q satisfies the two desired
properties as stated in Lemma A.1. This implies the existence of such set P .

It is clear that ‖qi‖2 = 1 for all i ∈ [n], since each qi is drawn from the unit sphere. We now prove
that for any i, j ∈ [n] with i 6= j, with probability at least 1− 1

n2 , we have |〈qi, qj〉| ≤ ε. Notice that
this is sufficient to prove the lemma, since by a union bound over all the

(
n
2

)
= n(n− 1)/2 possible

pairs of (i, j), this implies that Q satisfies the two desired properties with probability at least 1/2.

Now, we prove that for two independent random unit vectors u and v in Rd with d = d8 lnn/ε2e,
with probability at least 1− 1

n2 , |〈u, v〉| ≤ ε. By rotational invariance, we assume that v is a standard
basis vector. I.e., we assume v1 = 1 and vi = 0 for all 1 < i ≤ d. Notice that now 〈u, v〉 is the
magnitude of the first coordinate of u. We finish the proof by invoking Lemma B.1 and taking
β = 8 lnn > 6.
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B.3 PROOF OF LEMMA A.2

Proof of Lemma A.2. Consider a
√
ε-packing N with size Ω(1/εd/2) on the d-dimensional unit

sphere Sd−1 (for the existence of such a packing, see, e.g., Lorentz (1966)). Let o be the origin. For
two points x, x′ ∈ Rd, we denote |xx′| := ‖x− x′‖2 the length of the line segment between x, x′.
Note that every two points x, x′ ∈ N satisfy |xx′| ≥

√
ε.

To prove the lemma, it suffices to show that N satisfies the property equation 1. Consider a point
x ∈ N , let A be a hyperplane that is perpendicular to x (notice that x is a also a vector) and separates
x and every other points in N . We let the distance between x and A be the largest possible, i.e., A
contains a point in N\{x}. Since x is on the unit sphere and N is a

√
ε-packing, we have that x is at

least
√
ε away from every point on the spherical cap not containing x, defined by the cutting plane A.

More formally, let b be the intersection point of the line segment ox and A. Then

∀y ∈
{
y′ ∈ Sd−s : 〈b, y′〉 ≤ ‖b‖22

}
: ‖x− y‖2 ≥

√
ε.

Indeed, by symmetry, ∀y ∈ {y′ ∈ Sd−1 : 〈b, y′〉 ≤ ‖b‖22
}

,

‖x− y‖2 ≥ ‖x− z‖2 ≥
√
ε.

where z ∈ N ∩ A. Notice that the distance between x and the convex hull of N\{x} is lower
bounded by the distance between x and A, which is given by |bx|. Consider the triangles defined by
x, z, o, b. We have bz ⊥ ox (note that bz lies inside A). By Pythagorean theorem, we have

|bz|2 + |bx|2 = |xz|2;

|bx|+ |bo| = |xo| = 1;

|bz|2 + |bo|2 = |oz|2 = 1.

Solve the above three equations for |bx|, we have

|bx| = |xz|2/2 ≥ ε/2
as desired.

C EXACT LINEAR Q∗ + GAP IN GENERATIVE MODEL

In this section we present and prove the following theorem.
Theorem C.1. Under Assumption 3.1, Assumption 4.2 and Generative Model query model, the
agent can find the optimal π∗ with poly

(
d,H, 1

ρ , log
(

1
δ

))
queries with probability 1− δ for a given

failure probability δ > 0,

Proof of Theorem C.1. We first describe the algorithm. For each level, the agent first construct
a barycentric spanner Λh ,

{
φ(s1

h, a
1
h), . . . φ(sdh, a

d
h)
}
⊂ Φh , {φ (s, a)}s∈Sh,a∈A (Awerbuch

& Kleinberg, 2008). We have the property that any φ(s, a) with sh ∈ Sh, a ∈ A, we have
c1s,a, . . . , c

d
s,a ∈ [−1, 1] such that φ(s, a) =

∑d
i=1 c

i
s,aφ(sih, a

i
h).

The algorithm learns the optimal policy from h = H − 1, . . . , 0. At any level h, we assume the agent
has learned the optimal policy π∗h′ at level h′ = h+ 1, . . . ,H − 1.

Now we present a procedure to show how to learn the optimal policy at level h. At level h, the
agent queries every vector φ(sih, a

i
h) in Λh for poly(d, 1

ρ , log
(
H
δ

)
) times and uses π∗h+1, . . . , π

∗
H

as the roll-out to get the on-the-go reward. Note by the definition of π∗ and Q∗, the on-the-go
reward is an unbiased sample of Q∗(sih, a

i
h). We denote Q̂(sih, a

i
h) the average of these on-the-go

rewards. By Hoeffding inequality, it is easy to show with probability 1 − δ
H , for all i = 1, . . . , d,∣∣∣Q̂(sih, a

i
h)−Q∗(sih, aih)

∣∣∣ ≤ poly
(

1
d , ρ
)
. Now we define our estimated Q∗ at level h as follow: for

any (s, a) ∈ Sh × A, Q̂ (s, a) =
∑d
i=1 c

i
s,aQ̂(sih, a

i
h). By the boundedness property of cs,a, we

know for any (s, a) ∈ Sh ×A, Q̂ (s, a)−Q∗ (s, a) < ρ
2 . Note this implies the policy induced by Q̂

is the same as π∗. Therefore by induction we finish the proof.
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D LOWER BOUND FOR MODEL-BASED LEARNING

Here we present our lower bound for model-based learning. Recently, Yang & Wang (2019b)
proposed the linear transition assumption which was later studied in Yang & Wang (2019a); Jin et al.
(2019). Under this assumption, Yang & Wang (2019b;a); Jin et al. (2019) developed algorithms
with polynomial sample complexity. Again, we assume the agent is given a feature extractor
φ : S ×A → Rd, and now we state the assumption formally as follow.
Assumption D.1 (Approximate Linear MDP). There exists δ > 0, β0, β1, . . . , βH−1 ∈ Rd
and ψ : S → Rd such that for any h ∈ [H − 1], (s, a) ∈ Sh × A and s′ ∈ Sh+1,
|P (s′ | s, a)− 〈ψ(s′), φ (s, a)〉| ≤ δ and |E[R(s, a)]− 〈βh, φ(s, a)〉| ≤ δ.

It has been shown in Yang & Wang (2019b;a); Jin et al. (2019) if ‖P (· | s, a)− 〈ψ(·), φ (s, a)〉‖1 is
bounded, then the problem admits an algorithm with polynomial sample complexity. Now we show

that when δ = Ω
(√

H
d

)
in Assumption D.1, the agent needs exponential number of samples to find

a near-optimal policy.
Theorem D.1 (Exponential Lower Bound for Linear Transition Model). There exists a family of
MDPs and a feature extractor φ that satisfy Assumption D.1 with d = 2 · d8 ln 2H/δ2e, such that any
algorithm that returns a 1/2-optimal policy with probability 0.9 needs to sample Ω

(
2H
)

trajectories.

Proof of Theorem D.1. We use the same construction in the proof of Theorem 4.1. Note we just need
to verify the construction satisfies Assumption D.1. By construction, for all h ∈ {1, 2, . . . ,H − 1},
for each state s′ in level h, there exists a unique (s, a) pair such that playing action a transits s
to s′, and we take ψ(s′) = φ(s, a). We also take βh = 0 for h ∈ {0, 1, . . . ,H − 4, H − 3} and
βH−2 = φ(s, a) where (s, a) is the unique pair with R(s, a) = 1. Now, according to the design of
φ(·, ·) and Lemma A.1, Assumption D.1 is satisfied.
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