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ABSTRACT

The visual world is vast and varied, but its variations divide into structured and
unstructured factors. We compose free-form filters and structured Gaussian filters,
optimized end-to-end, to factorize deep representations and learn both local features
and their degree of locality. In effect this optimizes over receptive field size and
shape, tuning locality to the data and task. Our semi-structured composition is
strictly more expressive than free-form filtering, and changes in its structured
parameters would require changes in architecture for standard networks. Dynamic
inference, in which the Gaussian structure varies with the input, adapts receptive
field size to compensate for local scale variation. Optimizing receptive field size
improves semantic segmentation accuracy on Cityscapes by 1-2 points for strong
dilated and skip architectures and by up to 10 points for suboptimal designs.
Adapting receptive fields by dynamic Gaussian structure further improves results,
equaling the accuracy of free-form deformation while improving efficiency.

1 INTRODUCTION

Although the visual world is varied, it nevertheless has ubiquitous structure. Structured factors,
such as scale, admit clear theories and efficient representation design. Unstructured factors, such
as what makes a cat look like a cat, are too complicated to model analytically, requiring free-form
representation learning. How can recognition harness structure without restraining the representation?

Free-form representations are structure-agnostic, making them general, but not exploiting structure
is computationally and statistically inefficient. Structured representations like steerable filtering
(Freeman & Adelsonl 1991} Simoncelli & Freeman, |1995; Jacobsen et al.,|2016), scattering (Bruna &
Mallat, |2013; |Sifre & Mallat, [2013)), and steerable networks (Cohen & Welling| 2017) are efficient
but constrained to the chosen structures. We propose a new, semi-structured compositional filtering
approach to blur the line between free-form and structured representations and learn both. Doing so
learns local features and the degree of locality.

Free-form filters, directly defined by the parameters, are general and able to cope with unknown
variations, but are parameter inefficient. Structured factors, such as scale and orientation, are
enumerated like any other variation, and require duplicated learning across different layers and
channels. Nonetheless, end-to-end learning of free-form parameters is commonly the most accurate
approach to complex visual recognition tasks when there is sufficient data.

Structured filters, indirectly defined as a function of the parameters, are theoretically clear and
parameter efficient, but constrained. Their effectiveness hinges on whether or not they encompass the
true structure of the data. If not, the representation is limiting, and subject to error. At least, this is a
danger when substituting structure to replace learning.

We compose free-form and structured filters, as shown in Figure|l} and learn both end-to-end. Free-
form filters are not constrained by our composition. This makes our approach more expressive, not
less, while still able to efficiently learn the chosen structured factors. In this way our semi-structured
networks can reduce to existing networks as a special case. At the same time, our composition can
learn different receptive fields that cannot be realized in the standard parameterization of free-form
filters. Adding more free-form parameters or dilating cannot learn the same family of filters. Figure 2]
offers one example of the impracticality of architectural alternatives.
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Figure 2: Our composition does not reduce to
dilation or more free-form parameters. Dilation
is sparse, causing artifacts, and cannot be learned.
More free-form parameters require more data to
learn and the maximum size is still bounded.

Figure 1: We compose free-form filters fy and
structured Gaussian filters gs; by convolution *
to define a more general family of filters than
either alone. Our composition makes filter size
differentiable for end-to-end learning.

Our contributions include: (1) composing Gaussian filtering and free-form filtering to bridge classic
ideas for scale-space representation design and current practices for representation learning, (2)
exploring a variety of receptive fields that our approach can learn, and (3) adapting receptive fields
during inference with accurate and efficient dynamic Gaussian structure.

2 RELATED WORK

Composing structured Gaussian filters with free-form learned filters draws on structured filter design
and representation learning. Our work is inspired by the transformation invariance of scale-space
(Lindeberg], [1994), the parsimony of steerable filtering (Freeman & Adelson, [1991}; [Peronal [1995;
Bruna & Mallat, 2013} |Cohen & Welling} [2017), and the adaptivity of dynamic inference (Olshausen
et al.l[1993; [Jaderberg et al.| [2013; [De Brabandere et al., 2016} 2017). Analysis that the
effective receptive field size of deep networks is limited (Luo et al.,2016), and is only a fraction of
the theoretical size, motivates our goal of learning and adapting unbounded receptive field sizes and
varied receptive field shapes.

Transformation Invariance Gaussian scale-space and its affine extension connect covariance to
spatial structure for transformation invariance [1994). We jointly learn structured transfor-
mations via Gaussian covariance and features via free-form filtering. Enumerative methods cover
a set of transformations, rather than learning to select transformations: image pyramids
and feature pyramids (Kanazawa et al., 2014} [Shelhamer et al.} 2017 [Lin et al.,2017)
cover scale, scattering (Bruna & Mallat,[2013)) covers scales and rotations, and steerable networks
(Cohen & Welling| 2017) cover discrete groups. Our learning and inferring covariance relates to scale
selection (Lindeberg, |1998)), as exemplified by the scale invariant feature transform 2004).
Scale-adaptive convolution (Zhang et al.| 2017) likewise selects scales, but without our Gaussian
structure and smoothness.

Steering Steering indexes a continuous family of filters by linearly weighting a structured basis,
such as Gaussian derivatives. Steerable filters (Freeman & Adelson, [1991) index orientation and
deformable kernels [1995)) index orientation and scale. Such filters can be stacked into a deep,
structured network (Jacobsen et al.| [2016). These methods have elegant structure, but are constrained
to it. We make use of Gaussian structure, but keep generality by composing with free-form filters.

Dynamic Inference Dynamic inference adapts the model to each input. Dynamic routing (Olshausen

et al.l [1993), spatial transformers (Jaderberg et all 2015), dynamic filter nets (De Brabandere et al.,
201§), and deformable convolution (Dai et al., 2017) are all dynamic, but lack local structure. We

incorporate Gaussian structure to improve efficiency while preserving accuracy.

Proper signal processing, by blurring when downsampling, improves the shift-equivariance of learned
filtering [2019). We reinforce these results with our experiments on blurred dilation, to
complement their focus on blurred stride. While we likewise blur, and confirm the need for smoothing
to prevent aliasing, our focus is on how to jointly learn and compose structured and free-form filters.
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3 A CLEAR REVIEW OF BLURRING

We introduce our chosen structured filters first, and then compose them with free-form filters in the
next section. While the Gaussian and scale-space ideas here are classic, our end-to-end optimized
composition and its use for receptive field learning are novel.

3.1 GAUSSIAN STRUCTURE

The choice of Gaussian structure determines the filter characteristics that can be represented and
learned. For learning, it is differentiable, low-dimensional for parameter efficiency, and expressive
enough for different sizes and shapes. For signal processing, it is smooth and computationally
efficient. In particular, the Gaussian has these attractive properties for our purposes:

e shift-invariance for convolutional filtering,
e normalization to preserve input and gradient norms for stable optimization,
e separability to reduce computation by replacing a 2D filter with two 1D filters,

e and cascade smoothing from semi-group structure to decompose filtering into smaller,
cumulative steps.

In fact, the Gaussian is the unique filter satisfying these and further scale-space axioms (Koenderinkl,
1984; [Babaud et al.l 1986} Lindeberg), [1994).

. . . Ts—1 . . .
The Gaussian kernel in 2D is G(x; ) = me”‘ E77%/2 for input coordinates 2 and covari-

ance ¥ € R?*2, a symmetric positive-definite matrix.

The structure of the Gaussian is controlled by its covariance 3. Note that we are concerned with the
spatial covariance, where the coordinates are considered as random variables, and not the covariance
of the feature dimensions. Therefore the elements of the covariance matrix are 05, 05 for the y, x

coordinates and p for their correlation. The standard, isotropic Gaussian has identity covariance [{ ¢].
2 2
. . . . . 2 . oo 0 o
There is progressively richer structure in spherical {‘B 002 }, diagonal { o o2 }, and full { v P 2}
Uﬂ:‘ P Jm
covariances which can represent scale, aspect, and orientation in one, two, or three parameters.

Selecting the right covariance yields invariance to a given spatial transformation (Lindeberg, |1994).
We leverage this transformation property of Gaussians to learn receptive fields in Section 4. 1| and
dynamically adapt them for locally invariant filtering in Section4.2]

From the Gaussian kernel G(x, ) we instantiate a Gaussian filter g5 (-) in the standard way: (1)
evaluate the kernel at the coordinates of the filter coefficients and (2) renormalize by the sum to
correct for this discretization. We decide the filter size according to the covariance by setting the
half size = [207] in each dimension. This covers & 20 to include 95% of the true density no matter
the covariance. (We found that higher coverage did not improve our results.) Our filters are always
odd-sized to keep coordinates centered.

3.2 COVARIANCE PARAMETERIZATION & OPTIMIZATION

The covariance X is symmetric positive definite, requiring proper parameterization for unconstrained
optimization. We choose the log-Cholesky parameterization (Pinheiro & Bates|,|1996) for iterative
optimization because it is simple and quick to compute: 3 = U’U for upper-triangular U with positive
diagonal. We keep the diagonal positive by storing its log, hence log-Cholesky, and exponentiating
when forming X. (See Pinheiro & Bates|(1996) for a primer on covariance parameterization.)

Here is an example for full covariance ¥ with 03, o2 for the y, x coordinates and p for their
0'2 — — .
correlation: {py:z} — [F333] = [F3 53] [£6 13] = (log(1),—2,log(2)). Spherical and

diagonal covariance are parameterized by fixing p = 0 and tying/untying o, 0.
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Figure 3: Recovering an unknown blur by 0pt1m1zmg covariance. Gradient optimization of the
structured parameters X quickly converges to the true Gaussian. Although this is a simple example, it
shows how the Gaussian can represent scale, aspect, and orientation with variable filter size.

3.3 LEARNING TO BLUR

As a pedagogical example, consider the problem of optimizing covariance to reproduce an unknown
blur. That is, given a reference image and a blurred version of it, which Gaussian filter causes
this blur? Figure 3] shows such an optimization: from an identity-like initialization the covariance
parameters quickly converge to the true Gaussian.

Given the full covariance parameterization, optimization controls scale, aspect, and orientation. Each
degree of freedom can be seen across the iterates of this example. Had the true blur been simpler, for
instance spherical, it could still be swiftly recovered in the full parameterization.

Notice how the size and shape of the filter vary over the course of optimization: this is only possible
through structure. For a Gaussian filter, its covariance is the intrinsic structure, and its coefficients
follow from it. The filter size and shape change while the dimension of the covariance itself is
constant. Lacking structure, free-form parameterization couples the number of parameters and filter
size, and so cannot search over size and shape in this fashion.

4 COMPOSING FREE-FORM & GAUSSIAN FILTERING

Deep visual representations are made by composing convolutions to learn rich features and receptive
fields, which characterize the spatial extent of the features. Although each filter might be small,
and relatively simple, their composition can represent and learn large, complex receptive fields. For
instance, a stack of two 3 x 3 filters is effectively 5 x 5 but with fewer degrees of freedom (2 - 32
vs. 52). Composition therefore induces factorization of the representation, and this factorization
determines the generality and efficiency of the representation.

Our semi-structured composition factorizes the representation into spatial Gaussian receptive fields
and free-form features. This composition is a novel approach to making receptive fields differentiable,
low-dimensional, and decoupled from the number of parameters. Our approach jointly learns the
structured and free-form parameters while guaranteeing proper sampling for smooth signal processing.
Purely free-form filters cannot learn size and shape in this way: size is bounded by the number
of parameters and shape depends on all of the parameters. Purely structured filters, restricted to
Gaussians and their derivatives for instance, lack the generality of free-form filters. Our factorization
into structured and free-form filters is efficient for the representation, optimization, and inference of
receptive fields without sacrificing the generality of features.

Receptive field size is a key design choice in the architecture of fully convolutional networks for
local prediction tasks (Shelhamer et al.,2017). The problem of receptive field design is encountered
with each new architecture, dataset, or task. Trying candidate receptive fields by enumeration is
costly, in effort and computation, whether by manual or automated model search (Zoph & Le, 2017}
Kandasamy et al., 2018 [Liu et al.,|2019). By making this choice differentiable, we show that learning
can adjust to changes in the architecture and data in Section[5.2} Optimizing our semi-structured
filters in effect searchs over receptive fields. Our composition helps relieve the burden of architecture
design by relaxing the receptive field from a discrete decision into a continuous optimization.
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4.1 CONVOLUTIONAL COMPOSITION OF STATIC GAUSSIANS

Our composition fy o gs; combines a free-form fy with a structured Gaussian gx. This combination
reduces to convolution, and so it inherits the efficiency of aggressively tuned convolution routines.
Since convolution is associative, filtering of an input I decomposes into two steps of convolution by

I % (gs * fo) = I % gs * fo.

This decomposition has computational advantages. The Gaussian step can be done by specialized
filtering that harnesses separability, cascade smoothing, and other structure. Memory can be spared
by only keeping the covariance parameters and instantiating the filters as needed. Each compositional
filter can always be explicitly formed by gx, * fy for visualization (see Figure|I)) or other analysis.

Both # and ¥ are differentiable for end-to-end learning.

There are useful special cases of the Gaussian
when considering covariance optimization as
differentiable model search. Figure []illustrates
covariances for the identity, initialization, and
pooling. Because the identity is included in the
limit, our models can recover standard networks Figure 4: The identity is recovered by a delta as
that lack our composition. By initializing near variance goes to zero. Small variance gives a good
the identity, we are able to augment pre-trained initialization near the identity. Average pooling is
networks without interference, and let learning approximated as variance goes to infinity.

decide whether or not to make use of structure.

o—0 o<l oc—

Blurring for Smooth Signal Processing Even without
learning the covariance, blurring can improve dilation by
avoiding aliasing. Figure [5|shows the effect of blurring
dilation. Smoothing when subsampling is a fundamental
technique in signal processing (Oppenheim & Schafer]
2009), so we merely note this fix as a simple alternative Figure 5: Blurring prevents aliasing by
to the careful re-engineering of dilated architectures (Yu| smoothing dilated filters to respect the
et al.l 2017; Wang et al., 2018)). sampling theorem.

input filter output  with blur

Compound Gaussian Structure Gaussian filters have a

special compositional structure: cascade smoothing. Composing a Gaussian gy, with a Gaussian
gs is still Gaussian with covariance X + X', This lets us efficiently assemble compound receptive
fields made of multiple Gaussians. Center-surround (Kuffler, [1953)) receptive fields, which boost
contrast, can be realized by such a combination as Difference-of-Gaussian (Rodieck & Stone} |1965)
(DoG) filters, which subtract a larger Gaussian from a smaller Gaussian. Our joint learning of their
covariances tunes the contrastive context of the receptive field, extending (Ding et al.,|2018]) which
learns contrastive filters with fixed receptive field sizes.

Design Choices We cover the design choices involved in the application of our composition. As a
convolutional composition, it can augment any convolution layer in the architecture. We focus on
including our composition in late, deep layers to show the effect without much further processing. We
add compositional filtering to the output and decoder layers of fully convolutional networks because
the local tasks they address rely on the choice of receptive fields.

Having decided where to compose, we must decide how much structure to include. We explore
minimal structure, where one Gaussian is shared across the free-form filters of a layer, and spatially
dynamic structure, where the receptive field at each location varies with the input.

4.2 DEFORMABLE COMPOSITION OF DYNAMIC GAUSSIANS

Dynamic inference replaces static, global parameters with local parameters, inferred from the input,
to adapt to these variations. There are two routes to dynamic Gaussian structure: local filtering and
deformable sampling. Local filtering has a different filter kernel for each position, as done by dynamic
filter networks (De Brabandere et al.,|2016). This ensures exact filtering for dynamic Gaussians, but
is too computationally demanding for large-scale recognition networks. Deformable sampling adjusts
the position of filter taps by dynamic offsets, as done by deformable convolution (Dai et al.,|2017).
We exploit deformable sampling for the sparse approximation of dynamic Gaussians.
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We constrain deformable sampling to Gaussian structure .

by setting the sampling points according to covariance. el o hoe el

Figure E] illustrates Gaussian deformations. Our default 2L . . et

deformation approximates the standard Gaussian. We con- i

sider the same progression of spherical, diagonal, and full

covariance for dynamic structure. This low-dimensional (a) (b) ©

structure differs from the high degrees of freedom in a 3 x 3filter ~ deformable standard

dynamic filter network, which sets free-form filter param- Gauss.

eters, and deformable convolution, which sets free-form . . e

offsets. Our Gaussian deformation requires only a small, ST . . b f

constant number of covariance parameters independent of '. : .° gt ] : .

the sampling resolution and the kernel size k, while de- * : e

formable convolution has constant resolution and requires

2k? offset parameters for a k x k filter. © 0
spherical diagonal full Gauss.

To infer the local covariances we learn a convolutional Gauss. Gauss.

regressor, which is simply a convolutional filter. The in-  Fjoure 6: Gaussian deformation (c-f)
ferred covariances then determine the receptive fields of  gyycures dynamic receptive fields by
the the following free-form filters. The low-dimensional controlling the sampling points (blue)
structure of our dynamic parameters makes this regressor  yccording to the covariance. Its low-
more efficient than the regressor for free-form deforma- gimensionality is less general but more
tion, as it only has three outputs for each full covariance, officient for learning and inference than
or even just one for each spherical covariance. Since the  free_form deformation (b) by [Dai et al.
covariance is differentiable, the regression is learned end-  (3017), which requires more parameters.
to-end from the task loss without further supervision.

5 EXPERIMENTS

We experiment with the local recognition task of semantic segmentation, because our method learns
local receptive fields. As a recognition task, semantic segmentation requires a balance between local
scope, to infer where, and global scope, to infer what.

Data CityScapes (Cordts et al., [2016) is a challenging dataset of varied urban scenes from the
perspective of a car-mounted camera. We follow the standard training and evaluation protocols and
train/validation splits, with 2, 975 finely-annotated training images and 500 validation images. We
score results by the common intersection-over-union metric on the validation set. We evaluate the
network itself without post-processing, test-time augmentation, or other accessories to isolate the
effect of receptive field learning.

Architecture and Optimization For backbones we choose strong fully convolutional networks
derived from residual networks (He et al.l |2016). Dilated residual nets (DRN) (Yu et al., 2017)
have high resolution and receptive field size through dilation. Deep layer aggregation (DLA) (Yu
et al.,[2018)) fuses layers by hierarchical and iterative skip connections. We also define a ResNet-34
backbone as a simple alternative for ablations and exploratory experiments. These are representative
of common architectural patterns in state-of-the-art fully convolutional networks.

We train our models by stochastic gradient descent for 240 epochs with momentum 0.9, batch size
16, and weight decay 10~*. Training follows the “poly” learning rate schedule (Chen et al.,[2018};
Zhao et al.| |2017) with initial rate 0.01. The input images are cropped to 800 x 800 and augmented
by random scaling, random rotation, and random color distortions as in (Howard, 2013). We train
with synchronized, in-place batch normalization (Rota Bulo et al., 2018)). For fair comparison, we
reproduce the DRN and DLA baselines in our same setting, which improves on their reported results.

Baselines The chosen DRN and DLA architectures are strong methods on their own, but they can
be further equipped for learning global spatial transformations and local deformations. Spatial
transformer networks (Jaderberg et al., [2015]) and deformable convolution (Dai et al.} 2017 learn
dynamic global/local transformations respectively. Spatial transformers serve as a baseline for
structure, because they are restricted to a parametric class of transformations. Deformable convolution
serves as a baseline for local, dynamic inference without structure. For comparison in the static
setting, we simplify both methods to instead learn static transformations.
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method | TU

DRN-A 72.4 method [ U

+ Extra Conv. 72.9 ResNet-34 64.8 “method | TU
+ STN (stati 70.5 + Blur 66.3 SRNA 34
Deformable atie) | 723 +PlrRounple |81 DyvA {738
+ SOC?pOSition (ours) ;g? + DoG Blur-Resample 71:4 % ;2?
+ . W, .

+ DoG (ours) 74.1 ?}EﬁrA ;;; + Blur 74.3
DLA-34 76.1 + Blur-Resample 73.5 ] .

+ Composition (ours) | 78.2 Table 3: Blurring

Table 2: It is better to compose dilation helps slightly.
Table 1: Learning our composition im- With resampling than without.
proves the accuracy of careful designs.

5.1 LEARNING SEMI-STRUCTURED FILTERS

Augmenting Existing Architectures See Table|l|for the accuracies of the architectures, baselines,
and our filtering. We augment the last output stage of DRN-A with a single instance of our compo-
sition. We augment the decoder of DLA with ten instances of our composition, one at each merge
layer. Optimization is end-to-end. Our composition by convolution improves by 1-2 points.

Note that these architectures are already agressively-tuned, which required significant model search
and engineering effort. Our composition is still able to deliver improvement through learning without
further engineering. In the next subsection, we show that joint optimization of our composition assists
model search when the chosen architecture is suboptimal.

How to Compose We can compose with a Gaussian structured filter by blurring alone or blurring
and resampling. Blurring and resampling first blurs with the Gaussian, and then transforms the
sampling points for the following filtering according to the covariance. Blurring and resampling by
Gaussian covariance can be interpreted as a smooth, circular extension of dilated convolution (Chen
et al.L 2015; Yu & Koltun, [2016)) or as a smooth, affine restriction of deformable convolution (Dai
et al.,[2017)). As either can be learned end-to-end, we experiment with both in Table @ From this
comparison we choose blurring and resampling for the remainder of our experiments.

Blurred Dilation To isolate the effect of blurring without learning, we smooth dilation with a blur
proportional to the dilation rate. CCL (Ding et al.,|2018)) and ASPP (Chen et al.,[2018) are carefully
designed dilation architectures for context modeling, but neither blurs before dilating. Improvements
from blurred dilation are reported in Table 3] Although the gains are small, this establishes that
smoothing can help. This effect should only increase with dilation rate.

5.2 DIFFERENTIABLE RECEPTIVE FIELD SEARCH

Our composition turns choosing receptive fields into a task for optimization, instead of design. Table
M) shows how optimization counteracts the reduction of the architectural receptive field size and the
enlargement of the input. These controlled experiments, while simple, reflect a realistic lack of
knowledge in practice: for a new architecture or dataset, the right design is unknown.

For these experiments we include our composition in the last stage of the network. We compare
fine-tuning only the last stage and end-to-end optimization. End-to-end optimization of our difference
of Gaussians significantly reduces the drop in accuracy across scale shifts.

In the extreme, we can do structural fine-tuning by including our composition in a pre-trained network
and only optimizing the covariance. When fine-tuning the structure alone, optimization either reduces
the Gaussian to a delta, doing no harm, or slightly enlarges the receptive field, giving a one point
boost. Therefore the special case of the identity, as explained in Figure d] is learnable in practice.

5.3 DYNAMIC GAUSSIAN STRUCTURE

Dynamic inference of the covariance adaptively adjusts receptive fields to vary with the input. In
these experiments we choose spherical covariance with a single degree of freedom for scale.
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Cityscapes Validation

method [ params epoch TU A method dyn.? dyn. U
DRN-A [ many 240 724 0 params

No Dilation: Smaller Receptive Field DRN-A B 724
ResNet34 many 240 648 16 + Gauss. Def. (ours) | v/ L 766
+ Composition | some  +20 68.1 -4.6 + Free-form Def. v 2k 76.6
+DoG some 420 689 -3.5 ResNet-34 - 648
...End-to-End | many 240 714 08 + Gauss. Def. (ours) | v/ 1 74.2
and 2 Enlarged Input + Free-form Def. v 2k2  75.1
ResNet.34 many 240 562 -162 Cityscapes Test

+ Composition | some +20 57.8 -14.6 DRN-A - 71.2
+ DoG some +20 627 9.7 + Gauss. Def. (ours) v 1 74.3
...End-to-End | many 240 665 -59 + Free-form Def. Ve 2%2 73.6

Table 4: Optimizing receptive fields with our com- Table 5: Gaussian deformation improves compu-
position helps adjust to the architecture and data. tational efficiency and rivals free-form accuracy.

Figure 7: Qualitative results for dynamic scale inference: (a) inputs, (b) truths, (c) outputs, and
(d) scale estimates where small is blue/dark and large is yellow/bright. The scale estimates exhibit
structure: coherent segments and boundaries between them can be seen.

Qualitative results for dynamic Gaussian structure are shown in Figure[7] The local covariances
reflect scale structure in the input and the output segmentation. Quantitative results compare with
free-form deformation in Table[5] Gaussian structure improves efficiency while preserving accuracy.

Our results show spherical Gaussian deformation can suffice to achieve equal accuracy as general,
free-form deformation. Including further degrees of freedom by diagonal and full covariance does
not give further improvement on this task and data. As scale is a ubiquitous transformation in the
distribution of natural images, dynamic scale inference might suffice to cope with many variations.

6 CONCLUSION

Composing structured Gaussian and free-form filters makes receptive fields differentiable for direct
optimization of the degree of locality. Through receptive field learning, our semi-structured parameters
do by gradient optimization what current free-form architectures have done by discrete design. That is,
in our parameterization changes in structured weights would require changes in free-form architecture.

Our method learns local receptive fields. While we have focused on locality in space, the principle is
more general, and extends to locality in time and other dimensions.

Factorization of this sort points to a reconciliation of structure and learning, through which known
structure is respected and unknown detail is learned freely.



Under review as a conference paper at ICLR 2020

REFERENCES

J Babaud, A P Witkin, M Baudin, and R O Duda. Uniqueness of the gaussian kernel for scale-space
filtering. TPAMI, 1986.

Joan Bruna and Stéphane Mallat. Invariant scattering convolution networks. TPAMI, 2013.

P. Burt and E. Adelson. The laplacian pyramid as a compact image code. Communications, IEEE
Transactions on, 31(4):532-540, 1983.

Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L Yuille.
Semantic image segmentation with deep convolutional nets and fully connected CRFs. In ICLR,
2015.

Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L Yuille.
Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully
connected crfs. TPAMI, 2018.

Taco S Cohen and Max Welling. Steerable cnns. In ICLR, 2017.

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic urban
scene understanding. In CVPR, 2016.

Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang, Han Hu, and Yichen Wei. Deformable
convolutional networks. In ICCV, 2017.

Bert De Brabandere, Xu Jia, Tinne Tuytelaars, and Luc Van Gool. Dynamic filter networks. In NIPS,
2016.

Henghui Ding, Xudong Jiang, Bing Shuai, Ai Qun Liu, and Gang Wang. Context contrasted feature
and gated multi-scale aggregation for scene segmentation. In CVPR, 2018.

William T. Freeman and Edward H Adelson. The design and use of steerable filters. TPAMI, 1991.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016.

Andrew G Howard. Some improvements on deep convolutional neural network based image classifi-
cation. arXiv preprint arXiv:1312.5402, 2013.

Jorn-Henrik Jacobsen, Jan van Gemert, Zhongyu Lou, and Arnold WM Smeulders. Structured
Receptive Fields in CNNs. In CVPR, 2016.

Max Jaderberg, Karen Simonyan, Andrew Zisserman, and Koray Kavukcuoglu. Spatial transformer
networks. In NIPS, 2015.

Angjoo Kanazawa, Abhishek Sharma, and David Jacobs. Locally scale-invariant convolutional neural
networks. arXiv preprint arXiv:1412.5104, 2014.

Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider, Barnabas Poczos, and Eric P Xing.
Neural architecture search with bayesian optimisation and optimal transport. In NIPS, 2018.

Jan J Koenderink. The structure of images. Biological cybernetics, 50(5):363-370, 1984.

Stephen W Kuffler. Discharge patterns and functional organization of mammalian retina. Journal of
neurophysiology, 16(1):37-68, 1953.

Tsung-Yi Lin, Piotr Dollér, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie.
Feature pyramid networks for object detection. In CVPR, 2017.

Tony Lindeberg. Scale-space theory in computer vision, volume 256. Springer Science & Business
Media, 1994.

Tony Lindeberg. Feature detection with automatic scale selection. International journal of computer
vision, 30(2):79-116, 1998.



Under review as a conference paper at ICLR 2020

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. In ICLR,
2019.

D.G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 2004.

Wenjie Luo, Yujia Li, Raquel Urtasun, and Richard Zemel. Understanding the effective receptive
field in deep convolutional neural networks. In NIPS, 2016.

Bruno A Olshausen, Charles H Anderson, and David C Van Essen. A neurobiological model of visual
attention and invariant pattern recognition based on dynamic routing of information. Journal of
Neuroscience, 13(11):4700-4719, 1993.

Alan V. Oppenheim and Ronald W. Schafer. Discrete-Time Signal Processing. Prentice Hall Press,
Upper Saddle River, NJ, USA, 3rd edition, 2009.

Pietro Perona. Deformable kernels for early vision. TPAMI, 1995.

José C Pinheiro and Douglas M Bates. Unconstrained parametrizations for variance-covariance
matrices. Statistics and computing, 6(3):289-296, 1996.

Robert W Rodieck and Jonathan Stone. Analysis of receptive fields of cat retinal ganglion cells.
Journal of neurophysiology, 28(5):833-849, 1965.

Samuel Rota Buld, Lorenzo Porzi, and Peter Kontschieder. In-place activated batchnorm for memory-
optimized training of dnns. In CVPR, 2018.

Evan Shelhamer, Jonathan Long, and Trevor Darrell. Fully convolutional networks for semantic
segmentation. TPAMI, 2017.

Laurent Sifre and Stéphane Mallat. Rotation, scaling and deformation invariant scattering for texture
discrimination. In CVPR, 2013.

Eero P Simoncelli and William T Freeman. The steerable pyramid: A flexible architecture for
multi-scale derivative computation. In ICIP, 1995.

Panqu Wang, Pengfei Chen, Ye Yuan, Ding Liu, Zehua Huang, Xiaodi Hou, and Garrison Cottrell.
Understanding convolution for semantic segmentation. In WACV, 2018.

Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated convolutions. In /ICLR,
2016.

Fisher Yu, Vladlen Koltun, and Thomas Funkhouser. Dilated residual networks. In CVPR, 2017.

Fisher Yu, Dequan Wang, Evan Shelhamer, and Trevor Darrell. Deep layer aggregation. In CVPR,
2018.

Richard Zhang. Making convolutional networks shift-invariant again. In /CML, 2019.

Rui Zhang, Sheng Tang, Yongdong Zhang, Jintao Li, and Shuicheng Yan. Scale-adaptive convolutions
for scene parsing. In ICCV, pp. 2031-2039, 2017.

Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia. Pyramid scene parsing
network. In CVPR, 2017.

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. In /CLR, 2017.

10



	Introduction
	Related Work
	A Clear Review of Blurring
	Gaussian Structure
	Covariance Parameterization & Optimization
	Learning to Blur

	Composing Free-form & Gaussian Filtering
	Convolutional Composition of Static Gaussians
	Deformable Composition of Dynamic Gaussians

	Experiments
	Learning Semi-Structured Filters
	Differentiable Receptive Field Search
	Dynamic Gaussian Structure

	Conclusion

