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ABSTRACT

Many tasks in natural language processing and related domains require high pre-
cision output that obeys dataset-specific constraints. This level of fine-grained
control can be difficult to obtain in large-scale neural network models. In this work,
we propose a structured latent-variable approach that adds discrete control states
within a standard autoregressive neural paradigm. Under this formulation, we can
include a range of rich, posterior constraints to enforce task-specific knowledge
that is effectively trained into the neural model. This approach allows us to provide
arbitrary grounding of internal model decisions, without sacrificing any representa-
tional power of neural models. Experiments consider applications of this approach
for text generation and part-of-speech induction. For natural language generation,
we find that this method improves over standard benchmarks, while also providing
fine-grained control.

1 INTRODUCTION

A continuing challenge in the deployment of deep learning models for natural language processing
is developing methods that ensure controlled outputs while maintaining the broad coverage of data-
driven methods. While this issue is less problematic in classification tasks, it has hampered the
deployment of systems for other tasks like conditional natural language generation (NLG), where
even the possibility of false outputs can make a system hard to use in realistic settings. While there
have been significant improvements in generation quality from automatic systems (Mei et al., 2016;
Dusek & Jurcicek, 2016; Lebret et al., 2016b), these methods are still far from being able to produce
consistent output (Wiseman et al., 2017).

The dominant modeling paradigm in NLP is the neural encoder-decoder model, either built with
RNNs or transformers (Vaswani et al., 2017). These models are unsurpassed in their ability to generate
fluent output as well as produce useful representations of their source content. However, utilizing
fully auto-regressive decoders prevents one from factoring out the concerns of a generation problem,
as each part of the model is fully dependent. This issue makes it difficult to achieve outputs that follow
their source conditioning while also incorporating domain constraints. Research into controllable
deep models aims to circumvent the all-or-nothing dependency trade-off of encoder-decoder systems
to allow for higher-precision systems.

There have been several proposals for controlling NLP models using deep generative models. One
line of research has looked at higher-level control of trying to inject properties into standard deep
decoders. For example, Hu et al. (2017) uses generative adversarial networks where the attributes
of the text (e.g., sentiment, tense) are manipulated. Another alternative line of work has aimed at
fine-grained properties but requires factoring the decoder to impose local constraints (Wiseman et al.,
2018).

This work targets the benefits of both blackbox generation models and fine-grained control. We
consider a fully autoregressive RNN model that can be used in a generic encoder-decoder system,
but train it with structured latent variables to inject control states. This backbone makes it easy to
incorporate external constraints at training time through posterior regularization to influence the
model’s decisions, while not requiring explicit factorization or test-time changes. These constraints
allow us to ground the decisions of a neural model with explicit semantic information about the
problem of interest, while not giving up any modeling power.

Technically, the approach utilizes recent advances in structured amortized variational inference
to make training efficient and accurate. We also introduce an approach to amortized posterior
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Clowns is a restaurantBritish

Figure 1: Model structure. (Middle) An inference network φ is used to parameterize a structured CRF qθ (z | x, y).
(Right) During training, samples from q are used to simulate the posterior control states of a blackbox generation
model p(y, z | x), shown by the colored circles. (Left) To ground the control states to represent problem-specific
semantics, posterior regularization is used to enforce distributional constraints fq(x, y). The whole system is
optimized end-to-end to learn latent properties (colors) of the final output tokens.

regularization to enforce additional constraints on the learned distribution. These constraints can be
enforced explicitly through efficient structured expectation calculations. Overall the approach is fast
to train, easy to deploy and can be added on to existing systems.

We demonstrate that the method can improve accuracy and control, utilizing a range of different
posterior constraints, on several synthetic and real-world tasks, including text generation and part-
of-speech inductions. In particular on two large-scale text generation datasets E2E (Novikova et al.,
2017) and WikiBio (Lebret et al., 2016a), our method increases the performance of benchmark
systems while also producing outputs that respect the grounded control states.

2 CONTROL STATES IN BLACKBOX GENERATION

We consider a generic sequence generation setting where the input consists of an arbitrary conditioning
context x and the output y1:T is a sequence of target tokens. We are interested in modeling latent
fine-grained, discrete control states z1:T each with a label in C. We assume that these states are
weakly-supervised at training through problem-specific constraints. The goal is to induce a model of
p(y | x) =

∑
z p(y, z | x).

As a running example, we will consider a table-to-text generation problem where x corresponds to a
table of data, and y1:T is a textual description. We hope to induce control states z that indicate which
part of the table is being described, where our weak supervision corresponds to direct textual overlap.

Throughout, we will assume the generative model is a blackbox autoregressive (neural) decoder that
produces both y and z. Define this model as:

pθ (y, z | x) =
T∏
t=1

pθ (yt | x, y<t, z≤t ) · pθ (zt | x, y<t, z<t )

For example, let ht (y1:t−1, z1:t−1) be the hidden state at time-step t, e.g. of an RNN. We generate the
latent class zt and next token yt by a softmax,

pθ (zt | z<t, y<t ) = softmax(W0ht + b0) pθ (yt | z≤t, y<t ) = softmax(W1[ht, gθ (zt )] + b1)

where gθ is a parameterized embedding function and W, b are model parameters from θ. The
log-likelihood of the model is given by L(θ) = log pθ (y | x).

The key term of interest will be the posterior distribution pθ (z | x, y) which gives the probability
over the control states. The model parameterization makes this distribution intractable to compute.
To estimate this term, we use variational inference to define a parameterized variational posterior
distribution, qφ(z | x, y). This distribution is from a preselected family of possible distributions Q.1
To fit the parameters θ and variational parameters φ, we maximize a standard evidence lower bound.

L(θ) ≥ ELBO(θ, φ) = Ez∼qφ (z |x,y)[log pθ (y, z | x)] + H[qφ(z | x, y)] (1)

1Since our family is over a combinatorial set of z1:T , this corresponds to a structured variational inference
setting.
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While challenging to optimize, several works have shown methods for effectively fitting neural
models with structured variational inference (Johnson et al., 2016; Krishnan et al., 2017; Kim et al.,
2019) . We use this model as a backbone for enforcing problem-specific control by injecting weak
supervision into the model pθ through constraints on the variational posterior qφ .

3 POSTERIOR REGULARIZATION OF CONTROL STATES

Posterior regularization (PR) is an approach for enforcing soft constraints on the posterior distribution
of generative models (Ganchev et al., 2009). Traditionally this method used linear constraints with
exponential family parameterizations. Within algorithms such as expectation maximization, this leads
to convenient closed-form updates. However, this is infeasible with neural parameterizations. In this
section, we develop alternative gradient-based optimizations for amortized variational inference.

Consider the maximum-likelihood objective, maxθ L(θ). Posterior regularization modifies this
objective based on distributional constraints on the posterior. Assume that we have a user-defined
distributional property, fp(x, y), with target value b. The PR objective penalizes the maximum
likelihood if the latent feature expectations diverge from this target.

LPR(θ) = L(θ) −min
φ,ξ

KL[qφ(z | x, y) | | pθ (z | x, y)] + λ | |ξ | | such that fqφ (x, y) − b ≤ ξ

where to softly relax the target criteria, PR introduces two optimization terms: slack variables ξ,
corresponding to how far the feature constraint is from being satisfied, and a surrogate posterior
qφ(z | x, y), to use for computing f . Alternatively we can consider a lower bound of the PR objective
where we move the constraint to objective function.2

LPR(θ) ≥ PRLBO(θ, φ) = L(θ) − KL[qφ(z | x, y) | | pθ (z | x, y)] + λ | | fqφ (x, y) − b| |

Problem-specific properties are encoded through the soft constraints, fqφ (x, y). For example, if
we have partial information that the t’th control states takes on value k we can add a constraint
fq(x, y) = q(zt = k |x, y).3 We might also consider other distributional properties, for instance the
entropy of the marginal at position t, fq(x, y) = Hz′(zt = z′ |x, y). Note that these constraints do not
act on z directly but on the calculated posterior distribution. See §5 for more constraint examples.

Note that we can relate the q surrogate term in the PRLBO to the standard variational posterior in the
ELBO simply by expanding the KL and rearranging terms.

PRLBO(θ, φ) = Eqφ (z |x,y) log
pθ (y, z | x)
qφ(z | x, y)

+ λ | | fqφ (x, y) − b| | = ELBO(θ, φ) + λ | | fqφ (x, y) − b| |

To train, we maximize both terms of the PRLBO, maxθ,φ PRLBO(θ, φ) the model parameters θ and
the variational parameters φ (which control both bounds). We use an amortized formulation for φ
using a single inference network for all training examples. The key concern in computing PRLBO is
being able to compute the ELBO (samples form qφ and entropy) and the posterior constraint fqφ .

4 INFERENCE WITH A STRUCTURED VARIATIONAL FAMILY

To efficiently calculate PRLBO, we pick a variational model class Q that form a structured (neural)
conditional random field (CRF). Define for potentials f and factorization into parts P,

qφ(z | x, y) =
φ(x, y, z)∑
z′ φ(x, y, z′)

where φ(x, y, z) =
∏
p∈P

φp(x, y, zp)

This formulation gives generic formulas for sampling, density calculation, entropy calculations,
and calculation of marginal values q(zp | x, y). These marginals are useful for imposing posterior
constraints in fq(x, y) on specific local decisions in the z. Furthermore for many classes of structured

2We need to consider the sign of the constraint, in particular, fqφ (x, y)−b ≥ 0 could guarantee the equivalence
between the two formulations.

3This style of first-order constraints has a convenient optimization form in exponential-family expectation
maximization.
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CRFs used in NLP, these terms can be computed efficiently through generic, semiring dynamic
programming.4 Consider two examples:

Example 1: (Linear-Chain) Consider first a model utilizing local first-order dependencies on the z
variables, and define our factorization to give potentials on these dependencies with first-order parts,

φ(x, y, z) =
T∏
t=1

φt−1,t (x, y, zt−1,t )

Under this model, all terms needed for PR and the PRLBO calculation can be computed efficiently
using a forward dynamic program (similar to HMM). We note as well that the φ potentials can be
parameterized by an arbitrary neural network over x, y. Constraints on fq(x, y) = q(zt | x, y) can
then be efficiently added.

Algorithm 1: Semi-markov Algorithm
Given φ. Set βT (i) = 1 ∀i ∈ {1, 2, · · · ,K};
for t = T − 1 down to 0 do

for i = 1 up to K do
β∗t (i) = ⊕

min(L,T−t)
d=1 βt+d(i) ⊗ φ(l)(d) ⊗

φ(e)(x, y, i, t, t + d);
for i = 1 up to K do

βt (i) = ⊕Kj=1β
∗
t ( j) ⊗ φ(t)(i, j);

return Z = ⊕K
i=1β

∗
0(i) ⊗ π(i)

Example 2: (Semi-Markov) A semi-Markov
(or segmental) CRF (Gales & Young, 1993;
Sarawagi & Cohen, 2005) is a richer sequence
model that allows for spans of z to cover mul-
tiple tokens. Given a span i (inclusive) to j
(exclusive) let zi:j = c indicate that the span has
label c. We define our part set P to be possible
consecutive spans i : j and j : k. We restrict
segments to a max length of L.

Semi-Markov CRFs give potentials factorized
into these neighboring spans, parametrized by
emission scores, φ(e); the transition scores, φ(t);
and length scores, φ(l).

φ(x, y, z) =
∏

i, j,k∈P

φ(e)(x, y, zi:j, i, j) · φ(t)(zi:j, zj:k) · φ(l)( j − i) =
∏

i, j,k∈P

φi, j,k(x, y, zi:j, zj:k)

Marginals qφ(zi:j | x, y) represent the expected occurrence count for each labeled span, so we can
easily penalize or reward each segment count to respect our prior knowledge. The generalized
semiring computation (Sarawagi & Cohen, 2005) for these terms is given in Algorithm 1. 5

Synthetic Experiment To demonstrate this appraoch, we generate data from a hidden semi-Markov
model p(y, z). Labels z are C = {1 . . . 5} with L = 5 and y is tuples of the form “a-b”, where first is
the latent state and the second is a distractor. For example if z = “0, 0, 0, 4, 4, 3, 3, 4”, and y =“0-1,
0-3, 0-5, 4-1, 4-4, 3-2, 3-3, 4-0”. Segment length varies, but the total number of segments is constant
at 4. A single PR constraint set fq to be the expected segment length of z and b = 4.

SM: L=5 Chain
PR X X

PPL ↓ 6.10 6.26 6.47 6.68
F1 ↑ 0.99 0.59 - -

Rec. ↓ 1.93 5.42 2.50 5.45

Table 1: Synthetic control experiment.

Table 1 shows the results for a linear chain and semi-
Markov CRF, whose max segment length is L = 5.
The semi-Markov model achieves the best perplexity
as it models the data. By itself, semi-Markov is not
able to learn the correct segments, but with PR, it
learns them nearly exactly (F1). We also measure the
reconstruction perplexity (Rec.), i.e., the perplexity
given a posterior sample. Results for PR indicate that
its control states are more useful for reconstruction
(lower perplexity) than a model with no PR.

4Assume we have an algorithm for computing the partitional Z =
∑

z′ φ(x, y, z′) over the (+,×) semir-
ing (Goodman, 1999; Li & Eisner, 2009). When this holds, other distributional terms can be computed by
using the same algorithm with alternative semirings and backpropagation. These include (a) log-partition
log∑z′ φ(x, y, z′): (logsumexp,+) log semiring and marginals q(z | x, y) by backpropagation; (b) max score
maxz φ(x, y, z): (max,+) max semiring and argmax arg maxz φ(x, y, z) by (subgradient) backpropagation, (c)
entropy through an expectation semiring 〈p1, r1〉 ⊗ 〈p2, r2〉 = 〈p1p2, p1r2 + p2r1〉, and 〈p1, r1〉 ⊕ 〈p2, r2〉 =
〈p1 + p2, r1 + r2〉, with 1 = 〈1, 0〉. To initialize, all the emission, transition and length scores takes the form
〈φ,− log φ〉. The algorithm returns 〈Z, R〉, and the true entropy is R

Z + log Z . (d) exact sampling through one
backward pass and one forward filtering backward sampling, where forward uses the log-partition semiring and
backpropagation is by categorical sampling.

5 The time complexity to compute the posterior moments of the full semi-Markov CRF is O(|C|2nL). It is
O(|C|2n) for linear-chain CRF.
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Source Table: name[Clowns] eatType[coffee shop]
food[Chinese] customer-rating[1 out of 5]
area[riverside] near[Clare Hall]

Ref.1: Clowns is a coffee shop in the riverside area
near Clare Hall that has a rating 1 out of 5 .
They serve Chinese food .

Ref.2: The Chinese coffee shop by the riverside near
Clare Hall that only has a customer rating of
1 out of 5 is called Clowns .

Ref.3: There is a Chinese coffee shop near Clare Hall
in the riverside area called Clowns its not got
a good rating though .

Frederick Parker-Rhodes
(21 March 1914 – 21
November 1987) was an
English linguist, plant
pathologist, computer
scientist, mathematician,
mystic, and mycologist.

Figure 2: Table-to-text generation. Model is given a table x consisting of semantic fields and is tasked with
generating a description y1:T of this data. Two example datasets are shown. Left: E2E, Right: WikiBio.

5 POSTERIOR CONSTRAINTS FOR NATURAL LANGAUGE TASKS

We now consider two very different example problems and propose a set of posterior constraints. The
first table-to-text uses constraints that relate a sentence to its conditioning. The second part-of-speech
induction uses a global parameter to enforce model-wide constraints.

Table-to-Text Assume that we are tasked with describing a table x consisting of fields F each with
a text value. For example, a field might be of type “Restaurant Name” with field value “Tony’s”.
We would like control states to indicate when each field is used. Our weak-supervision is that often
these fields will be expressed using the same text as in the table. To enforce this, we will assume a
predefined mapping σ : F → C from table fields to class labels (which may or may not be unique).
Our source of weak supervision will be when text in the generation overlaps directly with text in the
data table. We use the notation (i, j, c) ∈ F(x, y) to indicate a span in the training text y with class
label c = σ( f ) overlaps directly with value in in x.

Name Constraint

Inclusion For all (i, j, c) ∈ F(x, y),
q(zi:j = c | x, y) ≈ 1

Exclusion For all valid (i, j, c) < F(x, y),
q(zi:j = c | x, y) ≈ 0

Coverage For all f ∈ F with c = σ( f ),∑
(i, j)

q(zi:j = c | x, y)−1( f ∈ x) ≈ 0

We define a set of three PR constraint types
under a semi-Markov model to encode this weak
supervision: i) if a span matches a field value f ,
then label that span σ( f ); ii) If a span has label
σ( f ), then it should match a field value of type
f ; iii) The usage count of state σ( f ) should be
1 if f in x.

Part-of-Speech Induction To demonstrate the versatility of this approach, we also consider a
part-of-speech (POS) induction setting using a linear chain neural CRF with global constraints. We
are given only a sentence y1:T with no conditioning. The weak supervision is that each word type
should correspond to a sparse set of tags. For example, consider the word type “run”. It can be
used as a verb or a noun token, but it can never be used as an adjective, adverb or preposition, etc.
In the unsupervised setting of POS induction, we regularize for sparsity of possible POS classes.
Additionally, we want to avoid the degenerate case where all the word types are mapped to the same
tag.

Name Constraint

Sparsity For all t ∈ 1 . . .T
H[q′(c | yt )] ≈ 0

Fit For all t ∈ 1 . . .T
H[q′(c | yt ), q(z | yt )] ≈ H[q′(c | yt )]

Diversity Let agg(ẑ) ∝
∑T

t=1 q(zt = ẑ | y)
H[agg(ẑ)] ≈ H[Unif(ẑ)]

In order to enforce this constraint we intro-
duce another amortized variational distribution
q′M (c | w) = softmax(Mw) which gives the
probability that word type w takes on tag c, i.e.
a probabilistic tag dictionary. We define three
constraints that regularize the local q with re-
spect to the global q′: i) Each vocabulary entry
in q′ should have low entropy; ii) The global q′
should represent the POS distribution posterior
of each word token by minimizing the cross entropy between types q′(c | w) and tokens q(z | y); iii)
the aggregate POS distribution over all the token in a sentence should have high entropy.

5



Under review as a conference paper at ICLR 2020

6 RELATED WORK

In addition to previously mentioned work, many other researchers have noted the lack of control of
deep neural networks and proposed methods for controlled generation at sentence-level, word-level,
and phrase-level. For example Peng et al. (2018) and Luo et al. (2019) control the sentiment in
longer-form story generation. Others aim for sentence-level properties such as sentiment, style, tense,
and specificity in generative neural models (Hu et al., 2017; Oraby et al., 2018; Zhang et al., 2018;
Shen et al., 2017). Closest to this work is that of Wiseman et al. (2018) who control phrase-level
content by using a neuralized hidden semi-Markov model for generation itself. Our work differs in
that it makes no independence assumption on the decoder model, uses a faster training algorithm, and
proposes a specific method for adding constraints. Finally, there is a line of work that manipulates
the syntactic structure of generated texts, by using some labeled syntactic attribute (e.g., parses)
or an exemplar (Deriu & Cieliebak, 2018; Colin & Gardent, 2018; Iyyer et al., 2018; Chen et al.,
2019). While our work uses control states, there is no inherent assumption of compositional syntax
or grammar.

Posterior Regularization (PR) is mostly used in the non-neural structured prediction setting to impose
constraints on the posterior distribution that would otherwise be intractable (or computationally hard)
in the prior. Ganchev et al. (2009) applies posterior regularization to word alignment, dependency
parsing, and part-of-speech tagging. Combining powerful deep neural networks with structured
knowledge has been a popular area of study: Xu et al. (2019) applies PR to multi-object generation to
limit object overlap; Bilen et al. (2014) focuses on object detection, and uses PR features to exploit
mutual exclusion. In natural language processing; Hu et al. (2016a;b) propose an iterative distillation
procedure that transfers logic rules into the weights of neural networks, as a regularization to improve
accuracy and interpretability.

Finally, the core of this work is the use of amortized inference/variation autoencoder (VAE) to
approximate variational posterior (Kingma & Welling, 2014; Mnih & Gregor, 2014; Rezende et al.,
2014). We rely heavily on a structure distribution, either linear chain or semi-Markov, which was
introduced as a structured VAEs (Johnson et al., 2016; Krishnan et al., 2017; Ammar et al., 2014).
Our setting and optimization are based heavily on Kim et al. (2019), who introduce a latent tree
variable in a variational autoencoding model with a CRF as the inference network, and on Yin et al.
(2018) who use a seq2seq model as the inference network.

7 DATA AND METHODS

We experiment with two different classes of tasks. Our main experiments are on conditional text
generation in a table-to-text setting. We also consider unconditional induction of part-of-speech tags.

Data and Metrics For table-to-text, we use the E2E (Novikova et al., 2017) and WikiBio (Lebret
et al., 2016a) datasets, with examples shown in Figure 1. The E2E dataset contains approximately 50K
examples with 8 distinct table fields and 945 distinct word types; it contains multiple references for
one source table. We evaluate in terms of BLEU (Papineni et al., 2002), NIST (Belz & Reiter, 2006),
ROUGE-L (Lin, 2004), CIDEr (Vedantam et al., 2015) and METEOR (Lavie & Agarwal, 2007),
using the official scoring scripts6. The WikiBio dataset contains approximately 700K examples, 6K
distinct table field types and 400K word types approximately; it contains one reference for one source
table. We follow the metrics from Lebret et al. (2016a) and evaluate the BLEU, NIST, and ROUGE-4
scores.7

For part-of-speech (POS) induction, we use the Penn Treebank (Marcus et al., 1993), with
train/valid/test splits from Dyer et al. (2016). Our preprocessing keeps the punctuation and a
vocabulary size of 20K. Penn Treebank uses 36 distinct classes of POS tags for non-punctuation
tokens and 8 classes for punctuation tokens. In preprocessing, we group the punctuation tokens to
share one POS label “PUNCT.” We use the gold POS tags from labeled Penn Treebank to evaluate
parts-of-speech induction. The quality of part-of-speech induction is measured by V-measure (Rosen-
berg & Hirschberg, 2007). We also consider the perplexity of the decoder as well as its Reconstruction

6Official E2E evaluation scripts available at https://github.com/tuetschek/e2e-metrics
7Scripts from file2rouge https://github.com/pltrdy/files2rouge

6

https://github.com/tuetschek/e2e-metrics
https://github.com/pltrdy/files2rouge


Under review as a conference paper at ICLR 2020

E2E
BLEU NIST ROUGE CIDEr MET

validation

Benchmark 69.25 8.48 72.6 2.40 47.0
NTemp 64.53 7.66 68.6 1.82 42.5
NTemp+AR 67.70 7.98 69.5 2.29 43.1
RNN 70.63 8.09 71.9 2.21 45.7
Ours+Force 70.62 8.18 72.4 2.23 47.4
Ours−PR 71.45 8.18 73.0 2.30 48.0
Ours 73.58 8.31 76.2 2.43 50.1

test

Benchmark 65.93 8.59 68.5 2.23 44.8
NTemp 55.17 7.14 65.7 1.70 41.9
NTemp+AR 59.80 7.56 65.0 1.95 38.8
Ours 71.78 8.20 72.2 2.20 46.2

WikiBio
BLEU NIST R-4

test

NTemp 34.2 7.94 35.9
NTemp+AR 34.8 7.59 38.6
NNLM 34.7 7.98 25.8
Liu et al. (2018) 44.9 - 41.2
Ours 46.1 9.21 41.4

Table 2: Automatic metrics for text generation. (Left) E2E. Comparison of systems from Dušek & Jurčı́ček
(2016), Wiseman et al. (2018), our model and ablations. (Right) WikiBio. Comparison of Wiseman et al. (2018)
Liu et al. (2018), Lebret et al. (2016a) and our full model.

perplexity, which is the perplexity under a sample from qφ , indicating how well the model learns to
use the control states.

Architecture and Hyperparameters For all tasks, we use an encoder-decoder LSTM for genera-
tion. We follow recent state-of-the-art work in designing our encoder and attention mechanisms (Gu
et al., 2016; Gulcehre et al., 2016; Liu et al., 2018). Details are in the appendix. Automatic evaluation
results from p are given using beam search by jointly generating the control states as well as the
sentence.

The inference network is computed using a BiLSTM. We compute φ(e) using the span method (Wang
& Chang, 2016; Kitaev & Klein, 2018; Stern et al., 2017); φ(t) by dot product between embedding
vectors for the class labels. For φ(l), we adapt the practice in Wiseman et al. (2018) to keep the
length score uniform. Additional details are in the appendix. We use a rate for alleviating posterior
collapse in the ELBO: warm-up the ELBO objective by linearly annealing the coefficient on the
term

∑T
t=1 log pθ (zt | z<t, y<t ) and H[qφ(z | x, y)] from 0 to 1, as implemented in Kim et al. (2019).

We use a sample size of 5 for Monte Carlo estimation of the stochastic gradient and estimate the
stochastic gradient by using the REINFORCE algorithm with a control variate computed as the mean
of the samples (Mnih & Rezende, 2016).

Baselines For generation on E2E, we compare against several baselines: Benchmark (Dušek &
Jurčı́ček, 2016), the task benchmark system of an encoder-decoder followed by a reranker; RNN: our
encoder-decoder trained without latents; Ours+Force: our model with with hard constraints on the
posterior instead of regularization. Ours−PR is an ablation study that drops PR from the full model.
We compare with baselines from Wiseman et al. (2018): NTemp, a neuralized hidden semi-Markov
model; NTemp+AR, the product of experts of both a NTemp model and an autoregressive LSTM
network. Finally for WikiBio we compare against two encoder-decoder style models: NNLM (field
& word) uses copy attention (Lebret et al., 2016a) and Liu et al. (2018) uses dual attention.

For the POS induction, our full model (Ours) is compared in perplexity against RNNLM, a standard
LSTM language model with the same size as our model’s autoregressive generative model. We do
ablation studies on Ours−PR, the same model but drops PR; and Ours+sup, whose PR is supervised
on gold POS tags.

8 EXPERIMENTS

Generation Table 2 (left) shows the main results for E2E. On E2E, our model outperforms the
benchmark system on all validation metrics and improves by 6 points of BLEU and 4 points of

7



Under review as a conference paper at ICLR 2020

Source: name[Clowns] eatType[coffee shop] food[English]
customerrating[5 out of 5] area[riverside] near[Clare Hall]

(1) Clowns is a 5 star coffee shop located near Clare Hall .
(2) Clowns is a coffee shop that serves English food and is near Clare Hall . It is in riverside
and has a 5 out of 5 customer rating .
(3) Near Clare Hall in Riverside is coffee shop , Clowns . It serves English food , and has
received a customer rating of 5 out of 5 .
(4) Near the riverside , Clare Hall is a coffee shop called Clowns that serves English food
and has a customer rating of 5 - stars .
(5) Near Clare Hall , Clowns coffee shop has a five star rating and English food .
(6) Clare Hall is a 5 star coffee shop near to Clowns that serves British food .
(7) Clowns coffee shop is near Clare Hall in Riverside . It serves English food and has an
excellent customer rating .
(8) 5 star rated restaurant , Clowns coffee shop is located near Clare Hall .

Metric Model Valid Test

PPL ↓

RNNLM 76.42 83.67
Ours−PR 76.79 81.16
Ours 76.59 80.83
Ours+sup 82.55 85.87

Rec. ↓
Ours−PR 36.91 38.95
Ours 13.36 14.07
Ours+sup 21.54 22.33

V ↑
Ours−PR 0.245 0.249
Ours 0.314 0.311
Ours+sup 0.720 0.721

Table 3: (Left) Example of controlled generation pθ (y | x, z) on the source entity “Clowns”. The color
represents the class label of the token z. (Right) POS induction results. Language modeling perplexity (PPL)
upper bounds using Monte Carlo sampling, reconstruction perplexity by conditioning on a latent states (Rec.),
and V-measurement (V).

ROUGE on test while being slightly worse in NIST and CIDEr. Similarly, it outperforms the
controllable NTemp and NTemp+AR in all metrics on both validation and test. This demonstrates
that in addition to providing constraints, PR can improve the accuracy of the model. We also consider
alternatives approaches, including hard supervised training and training without PR. The empirical
result suggests that forcing hard constraints does not preserve the generation performance as well
as soft posterior regularization does. Anecdotally, we find that if two fields have the same value,
then the hard coding system is often forced into the wrong decision. Similarly removing posterior
regularization altogether leads to a slightly weaker performance than our controlled model.

Table 2 (right) gives results for the larger WikiBio dataset. Again our model significantly outperforms
both NTemp and NTemp+AR baselines in all three metrics. It also slightly outperforms Liu et al.
(2018)’s encoder-decoder style model. The promising result from WikiBio dataset suggests that the
method scales to larger datasets and the PR style works well in handling large field spaces.

Table 3 (left) qualitatively demonstrates output of the system. We particularly note how the final
system is trained to associate control states with field types. Here we fix the prior on z to 8 different
sequences of class labels shown in different colors, and do constrained beam search on the generative
model by holding z fixed, and decoding from the model pθ (y | x, z).

P R

Ours+Force 0.996 0.913
Ours 0.960 0.980

Table 4: Control metrics on E2E dataset.

Table 4 considers a quantitive experiment on model con-
trol. We define two metrics on how well the model aligns
states with fields in x. Precision evaluates how well y’s
content matches the table content and recall evaluates how
much table content is also mentioned in y. For example,
(i, j, c) ∈ z spans from i to j and labeled with c. We define
a new operation for lookup, LU (c, x): this operation takes
in a class label c and a table x, maps c to the corresponding
field type in the table, and query the table to return the value of that field.

Precision(x, y, z) = mean
(i, j,c)∈z

LU(c,x),φ

|yi:j ∩ c |
j − i

Recall(x, y, z) = mean
c such that
LU(c,x),φ

∑
(i, j,k)∈z:k=c

|yi:j ∩ LU(c, x) |

|LU(c, x)|

Our full model achieves a high level of control for both datasets. Hard coding ablation has a slightly
better precision score but much lower recall. This is unsurprising by the design of hard-coding and
its limitations.

Part-of-Speech Induction Table 3 (right) shows experiments on part-of-speech induction which
is used to demonstrate the ability to include global posterior constraints. To begin, we find that our
full model and Ours−PR are both comparable (slightly worse on validation and better on test) to
RNNLM in perplexity. Adding direct supervision from the gold POS tags actually further harms
LM perplexity, indicating that explicitly modeling the POS tags may actually hurt auto-regressive
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language modeling in this setting. However, we do find that modeling tags changes other properties.
Adding PR significantly reduces reconstruction perplexity — perplexity of p(y | z), as shown by the
Rec. part of the table. This indicates that the z learned from PR are more useful codes than the z
model without PR. In fact, the reconstruction perplexity of PR is even lower than with supervision,
indicating that the induced latent labels are more informative than standard POS tags.

The main result is that adding PR significantly improves the POS induction results on V-measure
when compared with the base model without PR. We see that the global PR constraints can effectively
move the model toward a better tag usage than the standard model. Ours+sup, being trained with
supervision, scores much higher as an upper bound on the performance on this task.

Limitations Given the promise of PR as a technique for inducing control states, it is worth noting
some of the current limitations to this method. Currently, our current approach does not generalize
well to paraphrase. Our weak supervision relies on direct overlap to align states and fails on aligning
phrases like less then 10 dollars that are expressed as cheap. Additionally, while at test
time, our method is comparable to a standard decoder model, it does require longer to train due to
both the dynamic program and the requirement to compute multiple samples. Both of these could
potentially be addressed in future work.

9 CONCLUSION

This work introduces a method for controlling the output of a blackbox neural decoder model to
follow weak supervision. The methodology utilizes posterior regularization within an amortized
structured variational framework. We show that this approach can induce a fully autoregressive neural
model that is identical standard neural decoders but utilizes meaningful discrete control states. We
show this decoder is effective for text generation and can also be used in induction settings such as
unsupervised tagging. There are many possible future directions for this work. One direction is to
improve the sources of weak supervision and make it trivial to specify new constraints. Another is
to reduce the reliance on hard sampling through better relaxations of structured models. Finally, it
would be interesting to try this approach for other blackbox neural models or develop general-purpose
controlled modules.
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APPENDIX

The generative model is an LSTM with two layers with hidden dimension equals 500, input dimension
equals 400, and dropout of 0.2. The inference network uses a one-layer Bi-LSTM with hidden size of
500 and input size of 400 to encode the sentence. We use large max segment length, L = 8 (segmental
for data-to-text) and L = 1 (linear chain for POS induction) and 0.2 dropout in the inference network.
The Bi-LSTM used for encoding the source table is has hidden dimension of 300. Both the generative
model and the inference network share word embeddings.

The batch size is 10 for WikiBio and 20 for PTB and E2E. The generative model and the inference
network are optimized by Adam (Kingma & Ba, 2014) gradient clipping at 1, with learning rate of
0.002 and 0.001 respectively. Parameters are all initialized from a standard Gaussian distribution.
The learning rate decays by a factor of two for any epoch without improvement of loss function on
validation set, and this decay condition is not triggered until the eighth epoch for sufficient training.
Training is done for max of 30 epochs and allows for early stopping.

For data-to-text problem, we need to encode the data table. We encode the E2E source table by directly
concatenating word embeddings and field embeddings and indices for each token, for example, if
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the word w is the ith token from left and jth token from right under field type f , then we represent
the token using a concatenation [emb(w) · emb( f ) · emb(i) · emb( j)]. We encode the WikiBio table
by passing a bidirectional-LSTM through the tokens in the table, where each token has similar
embedding by concatenation as above. The encoding of the table is denoted as c. We use copy
attention (Gu et al., 2016; Gulcehre et al., 2016) in the generative model, and the attention vector α at
a time step is parametrized by the class label z at that time step. Recall the contextual representation
is
∑

i αi · ci , where αi = softmax(score(ht, ci)) and score(ht, ci) = (Wz(ht ) + bz) · (W2(ci) + b2), the
parametrization from z happens during the feedforward network indexed by z. For the WikiBio data,
we use a dual attention mechanism described in Liu et al. (2018), where the first attention is the
same as above and the second attention uses a different encoder context c′i , the c′i only looks at the
concatenation of field type and field index, but not the field value itself, i.e. [emb( f ) · emb(i) · emb( j)].
Then the two attention forms two different sets of αi and they are multiplied together and renormalized
to form an attention.
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