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ABSTRACT

Model-based reinforcement learning (MBRL) has shown its advantages in sample-
efficiency over model-free reinforcement learning (MFRL). Despite the impres-
sive results it achieves, it still faces a trade-off between the ease of data generation
and model bias. In this paper, we propose a simple and elegant model-based
reinforcement learning algorithm called soft stochastic value gradient method
(S2VG). S2VG combines the merits of the maximum-entropy reinforcement
learning and MBRL, and exploits both real and imaginary data. In particular,
we embed the model in the policy training and learn Q and V functions from the
real (or imaginary) data set. Such embedding enables us to compute an analytic
policy gradient through the back-propagation rather than the likelihood-ratio esti-
mation, which can reduce the variance of the gradient estimation. We name our
algorithm Soft Stochastic Value Gradient method to indicate its connection with
the well-known stochastic value gradient method in (Heess et al., 2015).

1 INTRODUCTION

Reinforcement learning can be generally classified into two categories: model-free reinforcement
learning (MFRL) and model-based reinforcement learning (MBRL). The last several years have
witnessed the great success of MFRL especially in playing video games, robotic control and motion
animation (Mnih et al., 2015; Lillicrap et al., 2015; Schulman et al., 2017; Peng et al., 2018). How-
ever, even for some simple tasks, hundreds of millions of samples are required for an agent to learn
a good control policy. In many industry scenarios, such as health care and financial services, the
algorithm requiring tremendous interactions with the environment is not applicable or too expensive
to deploy. To this end, several recent works have advocated the model-based approach, where the
higher sample-efficiency is achieved by leveraging the learned dynamics and reward model (Buck-
man et al., 2018; Feinberg et al., 2018). It generally augments the real data with the data from
dynamics models, uses rollout to improve target for temporal difference learning, or directly incor-
porates the model into the Bellman equation (Luo et al., 2018; Heess et al., 2015). These works have
demonstrated promising results on several benchmarks with a small number of interactions with the
environment.

Despite its recent success, MBRL still faces a challenging problem, i.e., the model-bias, where the
imperfect dynamics model would degrade the performance of the algorithm (Kurutach et al., 2018).
Unfortunately, such things always happen when the environment is sufficiently complex. There are
a few efforts to mitigate such issue by combining model-based and model-free approaches. Heess
et al. (2015) compute the value gradient along real system trajectories instead of planned ones to
avoid the compounded error. Kalweit & Boedecker (2017) mix the real data and imaginary data
from the model and then train Q function. An ensemble of neural networks can be applied to model
the environment dynamics, which effectively reduces the error of the model (Kurutach et al., 2018;
Clavera et al., 2018; Chua et al., 2018).

We observe that most recent algorithms with promising results apply Dyna-style update (Sutton,
1990; Kurutach et al., 2018; Luo et al., 2018). They collect real data using current policy to train
the dynamics model. Then the policy is improved using state-of-the-art model-free reinforcement
learning algorithms with imagined data generated by the learned model. Our insight is that why
not directly embed the model into the policy improvement? To this end, we derive a model-based
reinforcement learning algorithm in the framework of the maximum entropy reinforcement learning
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(Ziebart et al., 2008). Dynamics model and reward model are trained with the real data set collected
from the environment. Then we simply train Q and V function using the real data set with the
update rule derived from the maximum entropy principle (several other advanced ways to include
the imaginary data can also be applied, see details in section 3). In the policy improvement step, the
stochastic actor samples an action with real state as the input, and then the state switches from s to s′
according to the learned dynamics model. We link the learned dynamics model, reward model, and
policy to compute an analytic policy gradient by the back-propagation. Comparing with likelihood-
ratio estimator usually used in MFRL method, such value gradient method would reduce the variance
of the policy gradient (Heess et al., 2015). The other merit of S2VG is its computational efficiency.
Several state-of-the-art MBRL algorithms generate hundreds of thousands imaginary data from the
model and a few real samples. Then the huge imaginary data set feeds into MFRL algorithms, which
may be sample-efficient in terms of real samples but not computational-friendly. On the contrary,
our algorithm embeds the model in the policy update. Thus we can implement it efficiently by
computing policy gradient several times in each iteration (see our algorithm 1) and do not need to
do calculation on the huge imaginary data set.

We name our algorithm soft stochastic value gradient to indicate its connection with SVG (Heess
et al., 2015). Notice there are several differences between S2VG and SVG. Firstly, to alleviate the
issue of the compounded error, SVG proposes a relatively conservative algorithm where just real
data is used to evaluate policy gradients. Thus imaginary data is wasted, even the data from the
short rollouts from the model can be trusted to some extent. In our work, the policy is trained with
the model and imaginary dataset m times in each iteration of the algorithm. Secondly, we derive our
algorithm in the framework of the maximum entropy reinforcement learning. The maximum entropy
updates could improve the robustness under the model estimation error (Ziebart et al., 2010). In
addition, it encourages the exploration, prevents the early convergence to the sub-optimal policies,
and shows state-of-the-art performance in MFRL (Haarnoja et al., 2018). Thirdly, S2VG avoids the
importance sampling in the off-policy setting by sampling the action from π and transition from
f(s, a), which further reduces the variance of the gradient estimation.

CONTRIBUTIONS

We derive an elegant, sample-efficient, and computational-friendly Dyna-style MBRL algorithm in
the framework of the maximum entropy reinforcement learning with a principled way. Different
from the traditional MBRL algorithm, we directly embed the model in the policy improvement,
which could reduce the variance in the gradient estimation and avoid the computation on huge
imaginary dataset. In addition, since the algorithm is off-policy, it is sample-efficient. At the same
time, the maximum entropy principle encourages exploration and improves performance, which has
been observed in MFRL (Haarnoja et al., 2017). We test our algorithm on several benchmark tasks
in Mujoco simulation environment (Todorov et al., 2012) and demonstrate that our algorithm can
achieve state-of-the-art performance 1.

2 PRELIMINARIES

In this section, we first present some backgrounds on the Markov decision process. Then we in-
troduce the knowledge on the maximum entropy reinforcement learning (Ziebart et al., 2008) and
stochastic value gradient (Heess et al., 2015) since parts of them are the building blocks of our
algorithm.

2.1 MDP

Markov Decision Process (MDP) can be described by a 5-tuple (S,A,R,P, γ): S is the state
space, A is the action space, P = (P (s′|s, a))s,s′∈S,a∈A are the transition probabilities, R =
(r(s, a))s,s′∈S,a∈A are the real-valued immediate rewards, and γ ∈ (0, 1) is the discount factor.
A policy is used to select actions in the MDP. In general, the policy is stochastic and denoted by
π, where π(at|st) is the conditional probability density at at associated with the policy. The state
value evaluated on policy π could be represented by V π(s) = Eπ[

∑∞
t=0 γ

tr(st, at)|s0 = s] on
immediate reward return r = (R(s, a))s,s′∈S,a∈A with discount factor γ ∈ (0, 1) along the horizon

1Code is submitted anonymously at https://github.com/S2VG-anonymous1/S2VG
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t. The state-action value evaluated on policy π represent the expected return on the specific action
a: Qπ(s, a) = r(s0, a0) + Eπ[

∑∞
t=1 γ

tr(st, at)|s0 = s, a0 = a].

2.2 MAXIMUM ENTROPY REINFORCEMENT LEARNING

Maximum entropy reinforcement learning augments the reward with an entropy term, such that the
optimal policy aims to maximize the new reward function at each visited state :

max
π

J(π) =

T∑
t=0

E(st,at)∼ρπ [r(st, at) + αH(π(·|st))], (1)

where H(π(·|st)) is an entropy term scaled by α (Ziebart et al., 2008). The optimal policy in
equation 1 can be obtained by the following soft-Q update (Fox et al., 2016),

Q(st, at)←− r(st, at) + γEst+1∼p[V (st+1)] and V (st)←− α log(

∫
A

exp(
1

α
Q(st, at))dat).

Above iterations define the soft Q operator, which is a contraction. The optimal policy π∗(a|s) can
be recovered by π?(at|st) =

exp( 1
αQ
∗(st,at))∫

A exp( 1
αQ
∗(st,at))dat

, whereQ∗ is the fixed point of the soft-Q update.
We refer readers to the work (Ziebart et al., 2008; Haarnoja et al., 2017) for more discussions. In
soft actor-critic (Haarnoja et al., 2018), the optimal policy π∗(at|st) is approximated by a neural
network πθ(at|st), which is solved by the following optimization problem

max
πθ(at|st)

Est∼p(st)Eat∼πθ(at|st)[Q(st, at)− α log πθ(at|st))].

2.3 STOCHASTIC VALUE GRADIENT

Stochastic value gradient method is a model-based algorithm which is designed to avoid the com-
pounded model errors by only using the real-world observation and gradient information from the
model (Heess et al., 2015). The algorithm directly substitutes the dynamics model and reward model
in the Bellman equation and calculates the gradient. To perform the backpropagation in the stochas-
tic Bellman equation, re-parameterization trick is applied to evaluate the gradient on real-world data.
The stochastic policy π(a|s; θ) with parameter θ could be optimized by the policy gradient in the
following way

∂V (s)

∂θ
≈ Eη,ζ [

∂r̂(s, a)

∂a

∂π(a|s)
∂θ

+ γ(
∂V ′(s′)

∂s′
∂f(s, a)

∂a

∂π(a|s)
∂θ

)], (2)

where η and ζ are the policy and environment re-parameterization noise which could be directly
sampled from a prior distribution or inferred from a generative model g(η, ζ|s, a, s′). The f(s, a)
and r̂(s, a) are dynamics model and reward model respectively.

3 SOFT STOCHASTIC VALUE GRADIENT METHOD

In this section, we introduce our algorithm soft stochastic value gradient (S2VG) method. Our ob-
jective is to design an off-policy MBRL algorithm under the maximum entropy framework, which
could improve the exploration, enhance the training robustness through entropy maximization. Par-
ticularly, we optimize the following equation

J(θ) =

T∑
t=0

Eρ̂π(τ)[r̂(st, at) +H(π(at|st))], (3)

where we omit the regularizer parameter α of the entropy term in the following discussion to ease
the exposition. ρ̂π = p(s0)

∏T
t=0 f(st, at)π(at|st), f(st, at) is the learned dynamics model, and

r̂ is the reward model. We then derive the update rule following the similar step in the probabilis-
tic reinforcement learning (Levine, 2018), which generally includes policy evaluation and policy
improvement steps.

3



Under review as a conference paper at ICLR 2020

Similar to the policy evaluation without the entropy term, we have the soft value function update
V (st) = Eπ(at|st)[r̂(st, at) − log π(at|st) + γEs∼fV (st+1)]. For convenience, we define the Q
function in the following,

Q(st, at) = r̂(st, at) + γEst+1∼f [V (st+1)]. (4)

The value function update can be reformulated as

V (st) = Eπ(at|st)[Q(st, at)− log π(at|st)]. (5)

The optimal policy (policy improvement step) at each step t is π(at, st) = exp(Q(st,at))∫
a

exp(Q(st,at)dat
.

The derivation is almost the same with (Levine, 2018; Haarnoja et al., 2018), expect
that we use learned dynamics model and reward function here. Notice this optimal
policy can be approximated by a parametric function πθ(at|st) and obtained by solving
maxπθ(at|st) Est∼p(st)Eat∼πθ(at|st)[Q(st, at) − log πθ(at|st))]. However such way used in the
MFRL can not leverage the model information. We leave the our derivation and discussion on
the policy improvement in section 3.3.

3.1 MODEL LEARNING

The transition dynamics and rewards could be modeled by non-linear function approximations as
two independent regression tasks which have the same input but different output. Particularly, we
train two independent deep neural networks with parameter ω and ϕ to represent the dynamics
model f and reward model r̂ respectively. To better represent the stochastic nature of the dynamic
transitions and rewards, we implement re-parameterization trick on both f and r̂ with input noises
ζω and ζϕ sampled from Gaussian distribution N (0, 1). Hence, networks would generate mean:
µω , µϕ, and variance: σω , σϕ separately and compute the result by µω + σωζω and µϕ + σϕζϕ,
respectively.

Above two models could be optimized by sampling the data from the (real data) replay bufferD and
minimizing the mean square error:

J(ω) =
1

2
ED,ζω [(f(s, a)− s′)2], J(ϕ) =

1

2
ED,ζϕ [(r̂(s, a)− r)2]. (6)

This supervised learning problem could be solved by off-the-shelf optimizers such as Adam opti-
mizer (Kingma & Ba, 2014). Other techniques could also be leveraged to reduce the risk of over-
fitting in the limited data set such as adding dropout layers, performing early stopping, and training
through ensemble models.

3.2 VALUE FUNCTION LEARNING

Equation 4 and equation 5 define model-based and model-free policy evaluation steps respectively.
Equation 4 would introduce the model error from the model dynamics into the value estimation and
produce biased results. To avoid this model error, we update Q with the real transition (s, a, r, s′)
from the real data replay buffer. Such update is non-biased but may suffer from high variance under
the low-data regime. Therefore, we leverage the value expansion (Feinberg et al., 2018) to balance
the bias and variance by using both real-world data and imaginary rollout. If Q function and V
function are parameterized by φ and ψ respectively, they could be updated by minimizing the new
objective function with the value expansion on imaginary rollout:

J(φ) =
1

H

H−1∑
t=0

(
Qφ(ŝt, ât)− (

H−1∑
k=t

γk−tr̂k + γH−tVψ(ŝH))
)2
, (7)

where only the initial tuple τ0 = (ŝ0, â0, r̂0, ŝ1) is sampled from replay buffer D with real-world
data, and later transitions are sampled from the imaginary rollout from the model. Note that when
H = 1, it reduces to the case where just real data is used.

The V function is learned by minimizing the following error

J(ψ) = Est∼D[
1

2
(Vψ(st)− Eat∼π[Qφ(st, at)− log π(at|st)])2]. (8)
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Notice the training of V function is only on the real data set D. In our experimental section, we
do ablation study on H . Interestingly, we find that the case with H = 1 has the best result. One
possible explanation is that we have already embedded model in the policy update. Hence, including
the imaginary data in value function learning would mislead directions of policy gradients.

3.3 POLICY LEARNING

Then we consider the policy improvement step, i.e., to calculate the optimal policy at each time step.
One naive way is to optimize the following problem maxπ(at|st) Est∼p(st)Eat∼π(at|st)[Q(st, at)−
log π(at|st))] as that in MFRL (Levine, 2018; Haarnoja et al., 2018). However, such way cannot
leverage the learned dynamics model and reward model. To incorporate the model information,
notice that V (st) = Ea∼π(at|st)[Q(st, at)− log π(at|st)], thus the policy improvement step is equal
to

max
π(at|st)

Est∼p(st)V (st). (9)

In the following, we connect the dynamics model, reward model, and value function together by
the soft Bellman equation. To begin with, we re-parameterize the dynamics model and policy.
Particularly, we set a = π(s, η; θ) and the dynamics model s′ = f(s, a, ζ) for noise variables
η ∼ ρ(η) and ζ ∼ ρ(ζ), respectively. Now we can write the soft Bellman equation in the following
way.

V (s) = Eη[r̂(s, π(s, η; θ))− log π(a|s) + γEζV ′(f(s, π(s, η; θ), ζ))] (10)
To optimize equation 9 and leverage gradient information of the model, we sample s from the real
data replay buffer D and take the gradient of V (s) w.r.t. θ

Es∼D
∂V (s)

∂θ
= Es∼D,η,ζ [

∂r̂

∂a

∂π

∂θ
− 1

π

∂π

∂θ
+ γ(

∂V ′(s′)

∂s′
∂f

∂a

∂π

∂θ
)]. (11)

The equation 11 demonstrates an interesting connection between our algorithm and SVG. Compared
with the policy gradient step taken by SVG(1) algorithm (Heess et al., 2015), equation 11 includes
one extra term −(1/π)(∂π/∂θ) to maximize the entropy of policy. We drop importance sampling
weights by sampling from the current policy. Also notice that the transition from (s, a) to s′ is
sampled from the learned dynamics model f , while the SVG(1) just utilizes the real data. Thus in
the algorithm we can update policy several times in each iteration to fully utilized the model rather
than just use the real transition once.

3.4 S2VG ALGORITHM

We summarize our S2VG in Algorithm 1. At the beginning of each step, we train dynamics model f
and reward model r̂ by minimizing the L2 loss shown in equation 6. Then the agent interacts with the
environment and stores the data in the real data replay bufferD. Actor samples sk fromD and collect
sk+1 according to the dynamics model f(sk, ak). Such imaginary transition is stored in Dimg .
Then we train Q, V and π according to the update rule in section 3. Similar to other value-based
RL algorithms, our algorithm also utilizes two Q functions to further reduce the overestimation
error by training them simultaneously with the same data but only selecting the minimum target in
value updates (Fujimoto et al., 2018). We use the target function for V like that in deep Q-learning
algorithm (Mnih et al., 2015), and update it with an exponential moving average. We train policy
using the gradient in equation 11. Remark that our s′ is sampled from the dynamic model f(s, a),
while in SVG, it uses the true transition. Indeed there is a bias and variance trade-off. True transition
is unbiased but may have high variance due to the small scale of the data set. Here we claim that
one-step rollout of the model is still accurate. Some remarks on the algorithm are in the order. In
our implementation, we choose H = 1 in equation 7 generally, since we find S2VG with H = 1
has the best result in our ablation study (see section 5.3) . In each iteration, we update policy several
times, so that the algorithm can utilize the data generated from the model.

4 RELATED WORK

There are a plethora of works on MBRL. They can be classified into several categories depending
on the way to utilize the model, to search the optimal policy or the function approximator of the
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Algorithm 1 Soft Stochastic Value Gradient method

Inputs: Replay bufferD, imaginary replay bufferDimg , policy πθ, value function Vψ , target value
function Vψ̄ . Two Q functions with parameters φ0 and φ1, dynamic model f with parameter ω,
and reward model r̂ with parameter ϕ
for each iteration do

1. Train the dynamics model and reward model
Calculate the gradients∇ωJ(ω),∇ϕJ(ϕ) using equation 6 with D, update ω and ϕ
2. Interact with environment
Sample at ∼ π(at|st), get reward rt, and observe the next state st+1

Append the tuple (st, at, rt, st+1) into D
3. Update the actor, critics m (typically 3 to 5) times
Empty Dimg
Sample (s0, a0, r0, s

′
1) ∼ D

for each imaginary rollout step k do
Sample ak ∼ π(ak|sk), get reward rk = r̂(sk, ak), and sample sk+1 ∼ f(sk, ak)
Append the tuple (sk, ak, rk, sk+1) into Dimg

end for
Calculate the gradient∇φJ(φ) using equation 7 with ψ̄ and Dimg
Calculate the gradient∇ψJ(ψ) using equation 8 with D
Calculate the gradient∇θV (s) using equation 11 with D.
Update φ, ψ, and θ, update ψ̄ with Polyak averaging

end for

dynamics model. Iterative Linear Quadratic-Gaussian (iLQG) (Tassa et al., 2012) assumes that the
true dynamics are known to the agent. It approximates the dynamics with linear functions and the
reward function with quadratic functions. Hence the problem can be transferred into the classic
LQR problem. In Guided Policy Search (Levine & Koltun, 2013; Levine & Abbeel, 2014; Finn
et al., 2016), the system dynamics are modeled with the time-varying Gaussian-linear model. It
approximated the policy with a neural network π by minimizing the KL divergence between iLQG
and π. A regularization term is augmented into the reward function to avoid the over-confidence on
the policy optimization. Nonlinear function approximator can be leveraged to model more compli-
cated dynamics. Deisenroth & Rasmussen (2011) use Gaussian processes to model the dynamics
of the environment. The policy gradient can be computed analytically along the training trajectory.
However, it may suffer from the curse of dimensionality which hinders its applicability in the real
problem. Recently, more and more works incorporate the deep neural network into MBRL. Heess
et al. (2015) model the dynamics and reward with neural networks, and compute the gradient with
the true data. Richards (2005); Nagabandi et al. (2018) optimize the action sequence to maximize
the expected planning reward along with the learned dynamics model and then the policy is fine-
tuned with TRPO. Luo et al. (2018); Chua et al. (2018); Kurutach et al. (2018) use the current policy
to gather the data from the interaction with the environment and then learn the dynamics model. In
the next step, the policy is improved (trained by the model-free reinforcement learning algorithm)
with a large amount of imaginary data generated by the learned model. Ensemble learning can also
be applied to further reduce the model error.

5 EXPERIMENTAL RESULTS

In this section, we would like to answer two questions: (1) How does S2VG perform on some bench-
mark reinforcement learning tasks comparing with other state-of-the-art model-based and model-
free reinforcement learning algorithms? (2) How many imaginary data we should use in the value
function update?

5.1 ENVIRONMENT

To answer these two questions, we do experiment in Mujoco simulation environment (Todorov et al.,
2012): InvertedPendulum-v2, HalfCheetah-v2, Hopper-v2, Walker2d-v2. The details of the tasks
and experiment implementations can be found in appendix A.
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(c) Hopper
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(d) Walker2d

Figure 1: Performance of S2VG with H = 1 and other baselines in benchmark tasks. The x-axis
is the training step (epoch or step). For a simple task, i.e., InvertedPendulum, we limit the training
steps at 40 epochs. For the other three complex tasks, the total training steps are 200K or 300K. The
solid line is the mean of the average return. The shaded region represents the standard deviation.
On the first three tasks, S2VG outperforms the other baselines significantly. In the task Walker2d,
SLBO is slightly better than S2VG. They both surpass other algorithms.

5.2 COMPARISON TO STATE-OF-THE-ART

We compare our algorithm with state-of-the-art model-free and model-based reinforcement learn-
ing algorithms in terms of sample complexity and performance. DDPG (Lillicrap et al., 2015) and
Soft actor-critic (Haarnoja et al., 2018) are two model-free reinforcement learning algorithms on
continuous action tasks. Soft actor-critic has shown its reliable performance and robustness on sev-
eral benchmark tasks. Our algorithm also builds on the maximum entropy reinforcement learning
framework and benefits from incorporating the model in the policy update. Two model-based rein-
forcement learning baselines are SVG (Heess et al., 2015) and SLBO (Luo et al., 2018). Comparing
with SVG, our work avoids the importance sampling and utilizes the maximum entropy principle.
Notice in SVG, the algorithm just computes the gradient in the real trajectory, while our S2VG up-
dates policy using the imaginary data m times generated from the model. SLBO is a model-base
algorithm with performance guarantees that applies TRPO (Schulman et al., 2015) on the data set
generated from the rollout of the model.

Notice that in our implementation, we do not use any ensemble learning (Chua et al., 2018) or
uncertainty estimation (Malik et al., 2019) on the model. These techniques are known to reduce
the model biased. We do not use distributed RL either to accelerate the training. We believe that
above-mentioned skills are orthogonal to our work and could be integrated into the future work to
further improve the performance. Also for the fairness, we just compare this pure version of S2VG
with other baselines. We also notice that some recent works in MBRL modify the benchmarks to
shorten the task horizons and simplify the model problem (Kurutach et al., 2018). On the contrary,
we test our algorithm in the full-length tasks. In all experiment, we implement S2VG with H = 1
and will do ablation study on H in the next section.

We present experimental results in Figure 1. In a simple task, invertedPendulum, S2VG achieves
the asymptotic result just using 16 epochs. In HalfCheetah, S2VG’s performance is at around 8000
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Figure 2: S2VG with value expansion. We do the ablation study on (a) Pendulum and (b) HalfChee-
tah problem where the x-axis is the training step and the y-axis is the reward. (c) reflects the bias of
the value function in the training procedure.

at 200k steps, while all the other baselines’ performance is below 2500. In Hopper, the final perfor-
mance of S2VG is around 3300. The runner-up is SAC whose final performance is around 2000. In
walker2d, SLBO is slighter better than S2VG. Both of them achieve the average return 2900 at 300k
timesteps.

5.3 DESIGN EVALUATION

In this section, we make the ablation study to understand how much imaginary data we should
include in the algorithm. Remark that in our algorithm, the model is embedded in Soft Bellman
equation in the policy update step, which means we fully trust the model to compute the policy
gradient. While in the value function update, we can either train Q and V using the true data or
the data from imaginary rollout in equation 7. In section 5.2, we apply a relatively conservative
way, i.e., train Q and V with true data set, i.e., H = 1 in equation 7. In the following experiment,
we test the algorithm with value expansion, particularly with horizon H = 2 and H = 5. Our
conclusion is that including the imaginary data to train the value function in our algorithm would
hurt the performance, especially in complex tasks.

We demonstrate the performance of S2VG with value expansion in Figure 2. We first test the al-
gorithm on a simple task pendulum from OpenAI gym (Brockman et al., 2016) and show the result
in Figure 2a. S2VG with H = 1 converges to the optimal policy within several epochs. When we
increase the value of H , the performance decreases. The agent with H = 5 just starts to learn the
optimal policy at 50 epochs. Then we evaluate the performance of value expansion in a complex
task HalfCheetach from Mujoco environment (Todorov et al., 2012). In this task, value expansion
with H = 2 and H = 5 does not work at all. The reason would be that the dynamics model of
HalfCheetah introduces more significant model bias comparing to the simple task pendulum. Thus
training both policy and value function in the imaginary data set may cause a large error in policy
gradient. In Figure 2c, we plot the bias of the value function in the training procedure of Figure 2a.
We evaluate the value estimation by averaging the estimated value along 100 states sampled from
the replay buffer. Then, we perform Monte Carlo sampling starting from each sampled states with
50 trials and average the discounted return as the true value estimation. We compared the value
estimation results of our proposed methods with or without utilizing value expansion. Comparing
with the S2VG with H = 1, S2VG with H = 2 and H = 5 introduce more value estimation bias in
the learning procedure.

6 CONCLUSION AND FUTURE WORKS

In this paper, we propose a new model-based algorithm to directly incorporate models in the policy
improvement step. Comparing with the existing method, our algorithm is both sample-efficient and
computational-friendly. We test our S2VG on several benchmark tasks and achieve state-of-the-art
performance. We can integrate the existing techniques such as ensemble learning and distributed
reinforcement learning to further improve the learning speed of S2VG in the future work, since they
are orthogonal to our core idea.
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A ENVIRONMENT OVERVIEW AND HYPERPARAMETER SETTING

In this section, we provide an overview of simulation environment in Table 1. The hyperparameter
setting for each environment is shown in Table 2.

Environment Name Observation Space Dimension Action Space Dimension Horizon
Pendulum 3 1 200

InvertedPendulum 4 1 1000
HalfCheetah 17 6 1000

Hopper 11 3 1000
Walker2D 17 6 1000

Table 1: The observation space dimension, action space dimension, and horizon for each simulation
environment implemented in the experiment and ablation study.

Pendulum InvertedPendulum HalfCheetah Hopper Walker2D
Epoch 50 40 200 300

Policy Learning Rate 0.0003
Value Learning Rate 0.0003 0.001 0.001 0.0003

Model
Learning Rate 0.0003 0.0001

Alpha value
(in entropy term) 0.2 0.1 0.4

environment steps
per epoch 1000

Value and Policy
Network Architecture (256,256)

Model
Network Architecture (32,16) (256,128) (256,256)

Train Actor-critic
Times (m) 5 1 5 3

Table 2: The hyperparameter used in training S2VG algorithm for each simulation environment.
The number in policy, value, and model network architecture indicate the size of hidden units in
each layer of MLP. The ReLu activation function is implemented in all architecture.
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