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ABSTRACT

Deep neural networks (DNNs) have achieved great success in various applications
due to their strong expressive power. However, recent studies have shown that
DNNs are vulnerable to adversarial examples which are manipulated instances
targeting to mislead DNNs to make incorrect predictions. Currently, most such
adversarial examples try to guarantee “subtle perturbation" by limiting the Lp norm
of the perturbation. In this paper, we aim to explore the impact of semantic manipu-
lation on DNNs predictions by manipulating the semantic attributes of images and
generate “unrestricted adversarial examples". Such semantic based perturbation
is more practical compared with the Lp bounded perturbation. In particular, we
propose an algorithm SemanticAdv which leverages disentangled semantic factors
to generate adversarial perturbation by altering controlled semantic attributes to
fool the learner towards various “adversarial" targets. We conduct extensive ex-
periments to show that the semantic based adversarial examples can not only fool
different learning tasks such as face verification and landmark detection, but also
achieve high targeted attack success rate against real-world black-box services such
as Azure face verification service based on transferability. To further demonstrate
the applicability of SemanticAdv beyond face recognition domain, we also generate
semantic perturbations on street-view images. Such adversarial examples with
controlled semantic manipulation can shed light on further understanding about
vulnerabilities of DNNs as well as potential defensive approaches.

1 INTRODUCTION

Deep neural networks (DNNs) have demonstrated great successes in advancing the state-of-the-art
performance of discriminative tasks (Krizhevsky et al., 2012; Goodfellow et al., 2016; He et al., 2016;
Collobert & Weston, 2008; Deng et al., 2013; Silver et al., 2016). However, recent research found
that DNNs are vulnerable to adversarial examples which are carefully crafted instances aiming to
induce arbitrary prediction errors for learning systems. Such adversarial examples containing small
magnitude of perturbation have shed light on understanding and discovering potential vulnerabilities
of DNNs (Szegedy et al., 2013; Goodfellow et al., 2014b; Moosavi-Dezfooli et al., 2016; Papernot
et al., 2016; Carlini & Wagner, 2017; Xiao et al., 2018b;c;a; 2019). Most existing work focused
on constructing adversarial examples by adding Lp bounded pixel-wise perturbations (Goodfellow
et al., 2014b) or spatially transforming the image (Xiao et al., 2018c; Engstrom et al., 2017) (e.g.,
in-plane rotation or out-of-plane rotation). Generating unrestricted perturbations with semantically
meaningful patterns is an important yet under-explored field.

At the same time, deep generative models have demonstrated impressive performance in learning
disentangled semantic factors through data generation in an unsupervised (Radford et al., 2015; Karras
et al., 2018; Brock et al., 2019) or weakly-supervised manner based on semantic attributes (Yan et al.,
2016; Choi et al., 2018). Empirical findings in (Yan et al., 2016; Zhu et al., 2016a; Radford et al.,
2015) demonstrated that a simple linear interpolation on the learned image manifold can produce
smooth visual transitions between a pair of input images.

In this paper, we introduce a novel attack SemanticAdv which generates unrestricted perturbations
with semantically meaningful patterns. Motivated by the findings mentioned above, we leverage an
attribute-conditional image editing model (Choi et al., 2018) to synthesize adversarial examples by
interpolating between source and target images in the feature-map space. Here, we focus on changing
a single attribute dimension to achieve adversarial goals while keeping the generated adversarial
image reasonably-looking (e.g., see Figure 1). To validate the effectiveness of the proposed attack
method, we consider two tasks, namely, face verification and landmark detection, as face recognition
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Figure 1: Left: Overview of the proposed SemanticAdv. Right: Illustration of our SemanticAdv in the
real world face verification platform. Note that the confidence denotes the likelihood that two faces
belong to the same person.

field has been extensively explored and the commercially used face models are relatively robust
since they require a low false positive rate. We conduct both qualitative and quantitative evaluations
on CelebA dataset (Liu et al., 2015). To demonstrate the applicability of SemanticAdv beyond
face domain, we further extend SemanticAdv to generate adversarial street-view images. We treat
semantic layouts as input attributes and use the image editing model (Hong et al., 2018) pre-trained
on Cityscape dataset (Cordts et al., 2016). Please find more visualization results on the anonymous
website: https://sites.google.com/view/generate-semantic-adv-example.

The contributions of the proposed SemanticAdv are three-folds. First, we propose a novel semantic-
based attack method to generate unrestricted adversarial examples by feature-space interpolation.
Second, the proposed method is able to generate semantically-controllable perturbations due to the
attribute-conditioned modeling. This allows us to analyze the robustness of a recognition system
against different types of semantic attacks. Third, as a side benefit, the proposed attack exhibits
high transferability and leads to a 65% query-free black-box attack success rate on a real-world face
verification platform, which outperforms the pixel-wise perturbations in attacking existing defense
methods.
2 RELATED WORK

Semantic image editing. Semantic image synthesis and manipulation is a popular research topic in
machine learning, graphics and vision. Thanks to recent advances in deep generative models (Kingma
& Welling, 2014; Goodfellow et al., 2014a; Oord et al., 2016) and the empirical analysis of deep
classification networks (Krizhevsky et al., 2012; Simonyan & Zisserman, 2014; Szegedy et al., 2015),
past few years have witnessed tremendous breakthroughs towards high-fidelity pure image genera-
tion (Radford et al., 2015; Karras et al., 2018; Brock et al., 2019), attribute-to-image generation (Yan
et al., 2016; Choi et al., 2018), text-to-image generation (Mansimov et al., 2015; Reed et al., 2016;
Van den Oord et al., 2016; Odena et al., 2017; Zhang et al., 2017; Johnson et al., 2018), and image-
to-image translation (Isola et al., 2017; Zhu et al., 2017; Liu et al., 2017; Wang et al., 2018b; Hong
et al., 2018).

Adversarial examples. Generating Lp bounded adversarial perturbation has been extensively
studied recently (Szegedy et al., 2013; Goodfellow et al., 2014b; Moosavi-Dezfooli et al., 2016;
Papernot et al., 2016; Carlini & Wagner, 2017; Xiao et al., 2018b). To further explore diverse
adversarial attacks and potentially help inspire defense mechanisms, it is important to generate the so-
called “unrestricted" adversarial examples which contain unrestricted magnitude of perturbation while
still preserve perceptual realism Brown et al. (2018). Recently, Xiao et al. (2018c); Engstrom et al.
(2017) propose to spatially transform the image patches instead of adding pixel-wise perturbation,
while such spatial transformation does not consider semantic information. Our proposed semanticAdv
focuses on generating unrestricted perturbation with semantically meaningful patterns guided by
visual attributes.

Relevant to our work, Song et al. (2018) proposed to synthesize adversarial examples with an
unconditional generative model. Bhattad et al. (2019) studied semantic transformation in only
the color or texture space. Compared to these works, semanticAdv is able to generate adversarial
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examples in a controllable fashion using specific visual attributes by performing manipulation in the
feature space. We further analyze the robustness of the recognition system by generating adversarial
examples guided by different visual attributes. Concurrent to our work, Joshi et al. (2019) proposed to
generate semantic-based attacks against a restricted binary classifier while we can fool the model into
arbitrary targets. They conduct the manipulation within the attribution space which is less flexible
and effective than our proposed feature-space interpolation.

3 SEMANTIC ADVERSARIAL EXAMPLES

3.1 PROBLEM DEFINITION

LetM be a machine learning model trained on a dataset D = {(x,y)} consisting of image-label
pairs, where x ∈ RH×W×DI and y ∈ RDL denote the image and the ground-truth label, respectively.
Here, H , W , DI , andDL denote the image height, image width, number of image channels, and label
dimensions, respectively. For each image x, our modelM makes a prediction ŷ =M(x) ∈ RDL .
To simplify the notations in our presentation, we assume the machine learning modelM is oracle
such that y = ŷ holds for every image in the dataset. Given a target image-label pair (xtgt,ytgt) and
y 6= ytgt, a traditional attacker aims to synthesize adversarial examples {xadv} by adding pixel-wise
perturbations to or spatially transforming the original image x such thatM(xadv) = ytgt.

In this work, we introduce the concept of semantic attacker that aims at generating adversarial
examples by adding semantically meaningful perturbation with a conditional generative model G.
Compared to traditional attacker that usually produces pixel-wise perturbations, the proposed method
is able to produce semantically meaningful perturbations.

Semantic image editing. For simplicity, we start with the formulation where the input attribute is
represented as a compact vector. This formulation can be directly extended to other input attribute
formats including semantic layouts. Let c ∈ RDC be an attribute representation reflecting the
semantic factors (e.g., expression or hair color of a portrait image) of image x, where DC indicates
the attribute dimension and ci ∈ {0, 1} indicates the appearance of i-th attribute. Here, our goal is to
use the conditional generator for semantic image editing. For example, given a portrait image of a
girl with black hair and blonde hair as the new attribute, our generator is supposed to synthesize a
new image that turns the girl’s hair from black to blonde. More specifically, we denote the augmented
(new) attribute as cnew ∈ RDC such that the synthesized image is given by xnew = G(x, cnew). In
the special case when there is no attribute change (c = cnew), the generator simply reconstructs
the input: x = G(x, c). Supported by the findings mentioned in (Bengio et al., 2013; Reed et al.,
2014), our synthesized image xnew should fall close to the data manifold if we constrain the change
of attribute values to be sufficiently small (e.g., we only update one semantic attribute at a time).
In addition, we can potentially generate many such images by linearly interpolating between the
semantic embeddings of the conditional generator G using original image x and the synthesized
image xnew with the augmented attribute.

Attribute-space interpolation. We start with a simple solution (detailed in Eq. 1) assuming the
adversarial example can be found by directly interpolating in the attribute-space. Let cadv ∈ RDC

be the adversarial attribute vector that used as input to the attribute-conditioned generator. This is
also supported by the empirical results on attribute-conditioned image progression (Yan et al., 2016;
Radford et al., 2015) that a well-trained generative model has the capability to synthesize a sequence
of images with smooth attribute transitions.

xadv = G(x, cadv)

cadv = α · c + (1− α) · cnew, where α ∈ (0, 1) (1)

Feature-map interpolation. Alternatively, we propose to interpolate using the feature map pro-
duced by the generator G = Gdec ◦ Genc. Here, Genc is the encoder module that takes the image as
input and outputs the feature map. Similarly, Gdec is the decoder module that takes the feature map
as input and outputs the synthesized image. Let f = Genc(x, c) ∈ RHF×WF×CF be the feature map
of an intermediate layer in the generator, where HF , WF and CF indicate the height, width, and
number of channels in the feature map.

xadv = Gdec(f
adv) (2)

f adv = ααα� Genc(x, c) + (1−ααα)� Genc(x, c
new)
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Compared to attribute-space interpolation which is parameterized by a scalar, we parameterize
feature-map interpolation by a tensor ααα ∈ RHF×WF×CF (αh,w,k ∈ (0, 1), where 1 ≤ h ≤ HF ,
1 ≤ w ≤ WF , and 1 ≤ k ≤ CF ) with the same shape as the feature map. Compared to linear
interpolation over attribute-space, such design introduces more flexibility when interpolating between
the original image and the synthesized image. Empirical results in Section 4.2 show our design is
critical to the adversarial attack success rate.

3.2 ADVERSARIAL OPTIMIZATION OBJECTIVES

As we see in Eq. 3, we obtain the adversarial image xadv by minimizing the objective L(·) with respect
to the synthesized image x∗. Here, each synthesized image x∗ is produced by the interpolation using
the conditional generator G. In our objective function, the first term is the adversarial metric, the
second term is a smoothness constraint, and λ is used to control the balance between the two terms.
The adversarial metric is minimized once the modelM has been successfully attacked towards the
target image-label pair (xtgt,ytgt). For identify verification, ytgt is the identity representation of the
target image; For structured prediction tasks in our paper, ytgt either represents certain coordinates
(landmark detection) or semantic label maps (semantic segmentation).

xadv = argminx∗L(x∗), by Eq.(1) and Eq.(2)

L(x∗) = Ladv(x∗;M,ytgt) + λ · Lsmooth(x∗) (3)

Identity verification. In the identity verification task, two images are considered to be the same
identity if the corresponding identity embeddings from the verification modelM are reasonably
close.

Ladv(x∗;M,ytgt) = max
(
κ,Φid

M(x∗,xtgt)
)
, assumingM(xtgt) = ytgt (4)

As we see in Eq. 4, Φid
M(·, ·) measures the distance between two identity embeddings from the model

M, where the normalized L2 distance is used in our setting. In addition, we introduce the parameter
κ representing the constant related to the false positive rate (FPR) threshold computed from the
development set.

Structured prediction. For structured prediction tasks such as landmark detection and semantic
segmentation, we use Houdini objective proposed in Cisse et al. (2017) as our adversarial metric and
select the target landmark (semantic segmentation) target as ytgt. In addition, ΦM(·, ·) is a scoring
function for each image-label pair and γ is the threshold.

Ladv(x∗;M,ytgt) = Pγ∼N (0,1)[ΦM(x∗,y)− ΦM(x∗,ytgt) < γ] · l(y∗,ytgt) (5)

where l(y∗,ytgt) is task loss decided by the specific adversarial target.

Interpolation smoothness Lsmooth. As the tensor to be interpolated in the feature-map space has
far more parameters compared to the attribute itself, we propose to enforce a smoothness constraint
on the tensorααα used in feature-map interpolation. As we see in Eq. 6, the smoothness loss encourages
the interpolation tensors to consist of piece-wise constant patches spatially, which has been widely
used as a pixel-wise de-noising objective for natural image processing (Mahendran & Vedaldi, 2015;
Johnson et al., 2016).

Lsmooth =

HF−1∑
h=1

WF∑
w=1

‖αααh+1,w −αααh,w‖22 +

HF∑
h=1

WF−1∑
w=1

‖αααh,w+1 −αααh,w‖22 (6)

4 EXPERIMENTS

In the experimental section, we mainly focus on analyzing the proposed SemanticAdv in attacking
state-of-the-art face recognition systems on CelebA (Liu et al., 2015) due to its wide applicability
(e.g., identification for mobile payment) in the real world. In addition, we extend our attack to urban
street scenes with semantic label maps as the condition. We attack the semantic segmentation model
DRN-D-22 (Yu et al., 2017) previously trained on Cityscape (Cordts et al., 2016) by generating
adversarial examples with dynamic objects manipulated (e.g., insert a car into the scene).

The experimental section is organized as follows. First, we analyze the quality of generated adversarial
examples and qualitatively compare our method with Lp bounded pixel-wise optimization-based
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method (Carlini & Wagner, 2017; Dong et al., 2018; Xie et al., 2019). Second, we provide both
qualitative and quantitative results by controlling each of the semantic attributes at a time. In terms
of attack transferability, we evaluate our proposed SemanticAdv on various settings and further
demonstrate the effectiveness of our method via query-free black-box attacks against online face
verification platforms. Third, we compare our method with the baseline against different defense
methods on the face verification task. Fourth, we demonstrate that the proposed SemanticAdv also
applies to the face landmark detection and street-view semantic segmentation.

4.1 EXPERIMENTAL SETUP

Face identity verification. We select ResNet-50 and ResNet-101 (He et al., 2016) trained
on MS-Celeb-1M (Guo et al., 2016) as our face verification models. The models are trained using
two different objectives, namely, softmax loss (Sun et al., 2014; Zhang et al., 2018) and cosine
loss (Wang et al., 2018a). For simplicity, we use the notation “R-N-S” to indicate the model with
N -layer residual blocks as backbone trained using softmax loss, while “R-N-C” indicates the same
backbone trained using cosine loss. The distance between face features is measured by normalized
L2 distance. For R-101-S model, we decide the parameter κ based on the false positive rate (FPR)
for the identity verification task. Three different FPRs have been used: 10−3 (with κ = 1.24),
3× 10−4 (with κ = 1.05), and 10−4 (with κ = 0.60). The distance metrics and selected thresholds
are commonly used when evaluating the performance of face recognition model Klare et al. (2015);
Kemelmacher-Shlizerman et al. (2016). Please check the Appendix (see Table B) for more details.
To distinguish between the FPR we used in generating adversarial examples and the other FPR used
in evaluation, we introduce two notations “Generating FPR (G-FPR)” and “Test FPR (T-FPR)”. For
the experiment with query-free black-box API attacks, we use the online face verification services
provided by Face++ (fac) and AliYun (ali).

Face landmark detection. We select Face Alignment Network (FAN) (Bulat & Tzimiropoulos,
2017b) trained on 300W-LP (Zhu et al., 2016b) and fine-tuned on 300-W (Sagonas et al., 2013) for
2D landmark detection. The network is constructed by stacking Hour-Glass network (Newell et al.,
2016) with hierarchical block (Bulat & Tzimiropoulos, 2017a). Given a portrait image as input, FAN
outputs 2D heatmaps which can be subsequently leveraged to yield 68 2D landmarks.

Semantic attacks on face images. In our experiments, we randomly sample 1, 280 distinct identi-
ties form CelebA (Liu et al., 2015). To reduce the reconstruction error brought by the generator (e.g.,
x 6= G(x, c)) in practice, we take one more step to obtain the updated feature map f ′ = Genc(x

′, c),
where x′ = argminx′ ‖G(x′, c) − x‖ in feature-map interpolation. In our experiments, we use
the last conv layer before upsampling in the generator as our as feature-map f given by the
attack effectiveness. We also fix the parameter λ (e.g., balances the adversarial loss and smoothness
constraint in Eq. 3) to be 0.01 for both face verification and landmark detection.

We used the StarGAN (Choi et al., 2018) for attribute-conditional image editing. In particular, we
re-trained model on CelebA dataset (Liu et al., 2015) by aligning the face landmarks and then resizing
images to resolution 112× 112. In addition, we select 17 identity-preserving attributes as our input
condition, as such attributes related to facial expression and hair color.

For each distinct identity pair (x,xtgt), we perform semanticAdv guided by each of the 17 attributes
(e.g., we intentionally add or remove one specific attribute while keeping the rest unchanged). In
total, for each image x, we generate 17 adversarial images with different augmented attributes. In the
experiments, we select a pixel-wise adversarial attack method (Carlini & Wagner, 2017) (referred
as CW) as our baseline for comparison. Compared to our proposed method, CW does not require
visual attributes as part of the system, as it only generates one adversarial example for each instance.
We refer the corresponding attack success rate as the instance-wise success rate in which the attack
success rate is calculated for each instance. For each instance with 17 adversarial images using
different augmented attributes, if one of the 17 resulting images can attack successfully, we count the
attack of this instance as one success, vice verse.

Semantic attacks on street-view images. We select DRN-D-22 (Yu et al., 2017) as our semantic
segmentation model and fine-tune the model on image regions with resolution 256× 256. To synthe-
size semantic adversarial perturbations, we consider semantic label maps as the input attribute and
leverage a generative image manipulation model (Hong et al., 2018) pre-trained on CityScape (Cordts
et al., 2016) dataset. Given an input semantic label map at resolution 256× 256, we select a target
object instance (e.g., a pedestrian) to attack. Then, we create a manipulated semantic label map
by inserting another object instance (e.g., a car) in the vicinity of the target object. Similar to the
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experiments in the face domain, for both semantic label maps, we used the image manipulation
encoder to extract features (with 1, 024 channels at spatial resolution 16× 16) and conducted feature-
space interpolation. We synthesized the final image by feeding the interpolated features to the image
manipulation decoder. By searching the interpolation coefficient that maximizes the attack rate, we
are able to fool the segmentation model with the synthesized final image.

4.2 SemanticAdv ON FACE IDENTITY VERIFICATION

Attribute-space vs. feature-space interpolation. First, we found that both attribute-space and
feature-space interpolation could generate reasonable samples (see Figure I in Appendix). Compared
to attribute-space interpolation, generating adversarial examples with feature-space interpolation
produced much better quantitative results (see Table E in Appendix). We measured the attack success
rate of attribute-space interpolation (with G-FPR = T-FPR = 10−3): 0.08% on R-101-S, 0.31% on
R-101-C, and 0.16% on both R-50-S and R-50-C. While feature-space interpolation achieves almost
100% success rate on all those models (see Figure 3). We conjecture that this is because the high
dimensional feature space can provide more manipulation freedom.

Semantic Adversarial 
Examples

-young -wearing lipsticks

+smiling +receding hairline

Source 
Image

Target
Image

+arched eyebrows

Adversarial Examples 
using CW

-bushy eyebrows +rosy cheeks

+eyeglasses

+bangs +mouth slightly open

-smiling

Source 
Image

Target
Image

+bags under eyes

Semantic Adversarial 
Examples

Adversarial Examples 
using CW

Figure 2: Qualitative comparisons between our proposed SemanticAdv and pixel-wise adversarial
examples generated by CW (Carlini & Wagner, 2017). Along with the adversarial examples, we
also provide the corresponding perturbations (residual) on the right. Perturbations generated by our
SemanticAdv (G-FPR = 10−3) are unrestricted with semantically meaningful patterns. More results
are shown in Appendix (see Figure N).
Overall analysis. Figure 2 shows the generated adversarial images and corresponding perturbations
against R-101-S of SemanticAdv and CW respectively. The text below each figure is the name of
augmented attribute, the sign before the name represents “adding” (in red) or “removing” (in blue)
the corresponding attribute from the original image. We see that SemanticAdv is able to generate
perceptually reasonable examples guided by the corresponding attribute. In particular, SemanticAdv
is able to generate perturbations on the corresponding regions correlated with the augmented attribute,
while the perturbations of CW have no specific pattern and are evenly distributed across the image.

Analysis: controlling single attribute. One of the key advantages of SemanticAdv is that we can
generate adversarial perturbations in a more controllable fashion guided by the semantic attributes.
This allows analyzing the robustness of a recognition system against different types of semantic
attacks. We group the adversarial examples by augmented attributes in various settings. In Figure 3,
we present the attack success rate against two face verification models, namely, R-101-S and R-101-C,
guided by different attributes. We highlight the bar with light blue for G-FPR equals to 10−3 and
blue for G-FPR equals to 10−4, respectively. As we see in this figure, with a larger T-FPR 10−3, our
SemanticAdv can achieve almost 100% attack success rate across different attributes. With a smaller
T-FPR 10−4, we find that SemanticAdv guided by some attributes such as Mouth Slightly
Open and Arched Eyebrows achieve less than 50% attack success rate, while the other attributes
such as Pale Skin and Eyeglasses are relatively less affected. In summary, we found that
SemanticAdv guided by attributes describing the local shape (e.g., mouth, earrings) achieve a relatively
lower attack success rate compared to attributes relevant to the color (e.g., hair color) or entire face
region (e.g., skin). This suggests that the face verification models used in our experiments are more
robustly trained in terms of detecting local shapes compared to colors. Please note that in practice
we have the flexibility to select attributes for attacking an image based on the perceptual quality and
attack success rate.

Figure 4 shows the adversarial examples with augmented semantic attributes against R-101-S model.
The attribute names are shown in the bottom. The upper images are G(x, cnew) generated by StarGAN
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with augmented attribute cnew where the lower images are the corresponding adversarial images with
the same augmented attribute.
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Figure 3: Quantitative analysis on the attack success rate with different single-attribute attacks. In
each figure, we show the results correspond to a larger FPR (G-FPR = T-FPR = 10−3) in skyblue
and the results correspond to a smaller FPR (G-FPR = T-FPR = 10−4) in blue, respectively.
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Figure 4: Qualitative analysis on single-attribute adversarial attack (G-FPR = 10−3). More results are
shown in Appendix (see Figure K, Figure L and Figure M).
Analysis: semantic attack transferability. To further understand the property of SemanticAdv,
we analyze the transferability of SemanticAdv on various settings. For each model with different
FPRs, we select the successfully attacked adversarial examples from Section 4.1 to construct our
evaluation dataset and evaluate these adversarial samples across different models. Table 1a illustrates
the transferability of SemanticAdv among different models by using the same FPRs (G-FPR = T-FPR
= 10−3). Table 1b illustrates the result with different FPRs (G-FPR = 10−4 and T-FPR = 10−3) for
generation and evaluation. As shown in Table 1a, adversarial examples generated against models
trained with softmax loss exhibit certain transferability compared to models trained with cosine
loss. We conduct the same experiment by generating adversarial examples with CW and found it has
weaker transferability compared to our SemanticAdv (results in brackets of Table 1).

As Table 1b illustrates, the adversarial examples generated against the model with smaller G-FPR
= 10−4 exhibit strong attack success rate when evaluating on the model with larger T-FPR = 10−3.
Especially, we found the adversarial examples generated against R-101-S have the best attack
performance on other models. These findings motivate the analysis of query-free black-box API
attack detailed in the following paragraph.

Mtest /Mopt R-50-S R-101-S R-50-C R-101-C
R-50-S 1.000 (1.000) 0.108 (0.007) 0.023 (0.002) 0.018 (0.002)
R-101-S 0.169 (0.006) 1.000 (1.000) 0.030 (0.002) 0.032 (0.003)
R-50-C 0.166 (0.019) 0.202 (0.025) 1.000 (1.000) 0.048 (0.007)
R-101-C 0.120 (0.015) 0.236 (0.029) 0.040 (0.006) 1.000 (1.000)

(a)

Mtest /Mopt R-50-S R-101-S
R-50-S 1.000 (1.000) 0.862 (0.530)
R-101-S 0.874 (0.422) 1.000 (1.000)
R-50-C 0.693 (0.347) 0.837 (0.579)
R-101-C 0.617 (0.218) 0.888 (0.617)

(b)

Table 1: Transferrablity of SemanticAdv: cell (i, j) shows attack success rate of adversarial examples
generated against j-th model and evaluate on i-th model. Results of CW are listed in brackets. Left:
Results generated with G-FPR = 10−3 and T-FPR = 10−3; Right: Results generated with G-FPR =
10−4 and T-FPR = 10−3.
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Query-free black-box API attack. In this experiment, we generate adversarial examples against R-
101-S with G-FPR = 10−3(κ = 1.24), G-FPR = 10−4(κ = 0.60), and G-FPR < 10−4(κ = 0.20),
respectively. We evaluate our algorithm on two industry level APIs, namely, Face++ and AliYun face
verification platform. Since attack transferability has never been explored in concurrent work that
generates semantic adversarial examples, we use Lp bounded pixel-wise methods (Carlini & Wagner,
2017; Dong et al., 2018; Xie et al., 2019) as our baselines. As we see Table 2, which shows the best
performance of each method, our SemanticAdv achieves much higher attack success rate than CW in
both APIs with all FPR thresholds (e.g., our adversarial examples generated with G-FPR < 10−4

achieves 64.63% attack success rate on Face++ platform with T-FPR = 10−3). In addition, we found
that lower G-FPR can achieve higher attack success rate on APIs within the same T-FPR (see Table G
in Appendix).

API name Face++ AliYun
Attacker / Evaluation Metric T-FPR = 10−3 T-FPR = 10−4 T-FPR = 10−3 T-FPR = 10−4

Dong et al. (2018) 30.77 21.03 18.00 6.50
Xie et al. (2019) 37.95 25.64 21.50 11.00
CW (G-FPR < 10−4) 41.62 24.37 19.00 12.00
SemanticAdv (G-FPR < 10−4) 64.63 42.69 35.50 22.17

Table 2: Quantitative analysis on query-free black-box attack. We use ResNet-101 optimized with
softmax loss for evaluation and report the attack success rate(%) on two online face verification
platforms. Note that for PGD-based attacks, we adopt MI-FGSM (ε = 8) in Dong et al. (2018) and
M-DI2-FGSM (ε = 8) in Xie et al. (2019), respectively.

User study. To measure the perceptual quality of the adversarial images generated by SemanticAdv,
we conduct a user study on Amazon Mechanical Turk (AMT). We use the adversarial examples
generated with G-FPR < 10−4, which is the most strict setting in our experiment, to conduct the user
study for both CW and SemanticAdv. In total, we collect 2, 620 annotations from 77 participants. In
39.14±1.96% (close to random guess 50%) of trials the adversarial images generated by SemanticAdv
are selected as reasonably-looking images and in 30.27 ± 1.96% of trials, the adversarial images
generated by CW are selected as reasonably-looking. It indicates that SemanticAdv can generate
more reasonable-looking adversarial examples compared with CW under the most strict setting with
G-FPR < 10−4. Qualitative comparisons are shown in Appendix (see Figure H).
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Figure 5: Quantitative analysis on attacking several defense methods including JPEG (Dziugaite
et al., 2016), Blurring (Li & Li, 2017), and Feature Squeezing (Xu et al., 2017).

SemanticAdv against defense methods. We evaluate the strength of the proposed attack by test-
ing against four existing defense methods, namely, Feature squeezing (Xu et al., 2017),
Blurring (Li & Li, 2017), JPEG (Dziugaite et al., 2016) and AMI (Tao et al., 2018). For AMI (Tao
et al., 2018), we first extract attribute witnesses with our aligned face images and then leverage them
to construct attribute-steered model. We use fc7 of pretrained VGG (Parkhi et al., 2015) as the face
representation. AMI yields a consistency score for each face image to indicate whether it is a benign
image. The score is measured by the cosine similarity between the representations from original
model and attribute-steered model. With 10% false positives on benign inputs, it only achieves 8%
detection accuracy for SemanticAdv and 12% detection accuracy for CW.

Figure 5 illustrates SemanticAdv is more robust against these defense methods comparing with CW.
The same G-FPR and T-FPR are used for evaluation. Under the condition that T-FPR is 10−3, both
SemanticAdv and CW achieve high attack success rate, while SemanticAdv marginally outperforms
CW when FPR goes down to 10−4. While defense methods have proven to be effective against CW
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Figure 6: Qualitative results on attacking face landmark detection model.
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Figure 7: Qualitative results on attacking street-view semantic segmentation model.

attacks on classifiers trained with ImageNet (Krizhevsky et al., 2012), our results indicate that these
methods are still vulnerable in face verification system with small T-FPR.

4.3 SemanticAdv ON FACE LANDMARK DETECTION

We also evaluate the effectiveness of SemanticAdv on face landmark detection. We select two attack
tasks, namely, “Rotating Eyes” and “Out of Region”. For the “Rotating Eyes” task, we rotate the
coordinates of the eyes in the image counter-clockwise by 90◦. For the “Out of Region” task, we set
a target bounding box and attempt to push all points out of the box. We summarize the experimental
setup and quantitative results in the Appendix (see Table D). As we see in Figure 6, our method is
applicable to attack landmark detection models.

4.4 SemanticAdv ON STREET-VIEW SEMANTIC SEGMENTATION

We further demonstrate the applicability of our SemanticAdv beyond face domain by generating
adversarial perturbations on street-view images. Figure 7 illustrates the adversarial examples on
semantic segmentation. In the first example, we select the leftmost the pedestrian as the target
object instance and insert another car into the scene to attack it. The segmentation model has been
successfully attacked to neglect the pedestrian (see last column), while it does exist in the scene
(see second-to-last column). In the second example, we insert an adversarial car in the scene by
SemanticAdv and the cyclist has been recognized as a pedestrian by the segmentation model.

5 CONCLUSIONS

Overall we presented a novel attack method SemanticAdv, which is capable of generating unrestricted
adversarial perturbations guided by semantic attributes edition. Compared to existing methods,
SemanticAdv works in a more controllable fashion. Experimental evaluations on face verification
and landmark detection demonstrate several unique properties including attack transferability. We
believe this work would open up new research opportunities and challenges in the field of adversarial
learning. For instance, how to leverage semantic information to defend against such attacks will lead
to potential new discussion.
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A FACE IDENTITY VERIFICATION

Benchmark performance. First, we provide additional information about the ResNet models we
used in the experiments. We summarize in Table A the performance on several face identity verifica-
tion benchmarks including Labeled Face in the Wild (LFW) dataset (Huang et al., 2008), AgeDB-30
dataset (Moschoglou et al., 2017), and Celebrities in Frontal-Profile (CFP) dataset (Sengupta et al.,
2016).

M / benchmarks LFW AgeDB-30 CFP-FF CFP-FP
R-50-S 99.27 94.15 99.26 91.49

R-101-S 99.42 95.93 99.57 95.07
R-50-C 99.38 95.08 99.24 90.24

R-101-C 99.67 95.58 99.57 92.71

Table A: The performnace of ResNet models on several benchmark datasets.

Identity verification thresholds. Table B shows the threshold values used in our experiments
when determining whether two portrait images belong to the same identity or not. The selected FPR
thresholds and normalized L2 distance between face features are commonly used when evaluating the
performance of face recognition model Klare et al. (2015); Kemelmacher-Shlizerman et al. (2016).

FPR/M R-50-S R-101-S R-50-C R-101-C
10−3 1.181 1.244 1.447 1.469

3× 10−4 1.058 1.048 1.293 1.242
10−4 0.657 0.597 0.864 0.809

Table B: The threshold values for face identity verification.

Implementation details. We use Adam (Kingma & Ba, 2015) as the optimizer to generate ad-
versarial examples for both our SemanticAdv and CW. More specifically, we run optimization for
up to 200 steps with a fixed learning rate 0.05 for cases when G-FPR ≤ 10−4. Otherwise, we run
optimization for up to 500 steps with a fixed learning rate 0.01. For pixel-wise attack method CW,
we use additional pixel reconstruction loss with corresponding loss weight to 5. We run optimization
for up to 1, 000 steps with a fixed learning rate 10−3.

Evaluation metrics. To evaluate the performance of semanticAdv under different attributes, we
consider three metrics as follows:

• Best: if there is one attribute among 17 attributes that can be successfully attacked, we count
the attack success rate for this face identity as 1;

• Average: we calculate the average attack success rate among 17 attributes for the same face
identity;

• Worst: only when all of 17 attributes can be successfully attacked, we count the attack
success rate for this person as 1;

For a fair comparison with CW, we use the Best metric for our SemanticAdv, as CW is the traditional
pixel-wise attack method works regardless of the attribute. Table C shows the overall performance
(accuracy) of face verification model and attack success rate of SemanticAdv and CW. As we can
see from Table C, although the face model trained with cosine loss achieves higher face recognition
performance, it is more vulnerable to adversarial attack compared with the model trained with softmax
loss.

Defense methods. Feature squeezing (Xu et al., 2017) is a simple but effective method by
reducing color bit depth to remove the adversarial effects. We compress the image represented by
8 bits for each channel to 4 bits for each channel to evaluate the effectiveness. For Blurring (Li
& Li, 2017), we use a 3 × 3 Gaussian kernel with standard deviation 1 to smooth the adversarial
perturbations. For JPEG Dziugaite et al. (2016), it leverages the compression and decompression to
remove the adversarial perturbation. We set the compression ratio as 0.75 in our experiment.
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G-FPR Metrics /M R-50-S R-101-S R-50-C R-101-C

10−3

Verification Accuracy 98.36 98.78 98.63 98.84
x′ 0.00 0.00 0.08 0.00
G(x′, c) 0.00 0.00 0.00 0.23
G(x′, cnew)(Best) 0.16 0.08 0.16 0.31
SemanticAdv (Best) 100.00 100.00 100.00 100.00
SemanticAdv (Worst) 91.95 93.98 99.53 99.77
SemanticAdv (Average) 98.98 99.29 99.97 99.99
CW 100.00 100.00 100.00 100.00

3× 10−4

Verification Accuracy 97.73 97.97 97.91 97.85
x′ 0.00 0.00 0.00 0.00
G(x′, c) 0.00 0.00 0.00 0.00
G(x′, cnew)(Best) 0.00 0.00 0.00 0.00
SemanticAdv (Best) 100.00 100.00 100.00 100.00
SemanticAdv (Worst) 83.75 79.06 98.98 96.64
SemanticAdv (Average) 97.72 97.35 99.92 99.72
CW 100.00 100.00 100.00 100.00

10−4

Verification Accuracy 93.25 92.80 93.43 92.98
x′ 0.00 0.00 0.00 0.00
G(x′, c) 0.00 0.00 0.00 0.00
G(x′, cnew)(Best) 0.00 0.00 0.00 0.00
SemanticAdv (Best) 100.00 100.00 100.00 100.00
SemanticAdv (Worst) 33.59 19.84 67.03 48.67
SemanticAdv (Average) 83.53 76.64 95.57 91.13
CW 100.00 100.00 100.00 100.00

Table C: Quantitative result of identity verification (%). It shows accuracy of face verification model
and attack success rate of SemanticAdv and CW. x′, G(x′, c) and G(x′, cnew) are the intermediate
results of our method before adversarial perturbation.

B FACE LANDMARK DETECTION

Implementation details. To perform attack on the face landmark detection model, we run opti-
mization for up to 2, 000 steps with a fixed learning rate 0.05. We set the balancing factor λ (see Eq.
3) to value 0.01 for this experiment.

Evaluation Metrics. We apply two different metrics for two adversarial attack tasks respectively.
For “Rotating Eyes” task, we use a well-adopted metric Normalized Mean Error (NME) (Bulat &
Tzimiropoulos, 2017b) for experimental evaluation.

rNME =
1

N

N∑
k=1

||pk − p̂k||2√
WB ∗HB

, (7)

where pk denotes the k-th ground-truth landmark, p̂k denotes the k-th predicted landmark and√
WB ∗HB is the square-root area of ground-truth bounding box, where WB and HB represents the

width and height of the box.

For “Out of Region” task, we consider the attack is successful if the landmark predictions fall outside
a pre-defined centering region on the portrait image. Thus, we introduce a metric that reflects the
portion of landmarks outside of the pre-defined centering region: rOUT = Nout

Ntotal
, where Nout denotes

the number of predicted landmarks outside the pre-defined bounding box and Ntotal denotes the total
number of landmarks.

Tasks (Metrics) Pristine Augmented Attributes
Blond
Hair Young Eyeglasses Rosy

Cheeks Smiling Arched
Eyebrows Bangs Pale

Skin

Rotating eyes (rNME) ↓ 28.04 14.03 17.28 8.58 13.24 19.21 23.42 15.99 10.72
Out-of-region (rOUT) ↓ 45.98 17.42 23.04 7.51 16.65 25.44 33.85 20.03 13.51

Table D: Quantitative results on face landmark detection (%) The two row shows the measured ratios
(lower is better) for “Rotating Eyes” and “Out Of Region” task, respectively.
We present the quantitative results of SemanticAdv on face landmark detection model in Table D
including two adversarial tasks, namely, “Out of Region” and “Rotating Eyes”. We observe that our
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method is efficient to perform attacking on landmark detection models. For certain attributes such as
“Eyeglasses”, “Plae Skin”, SemanticAdv is able to achieve reasonably-good performance.

C USER STUDY

We conducted a user study on the adversarial images of SemanticAdv and CW used in the experiment
of API-attack and the original images. The adversarial images are generated with G-FPR< 10−4

for both methods. We present a pair of original image and adversarial image to participants and
ask them to rank the two options. The order of these two images is randomized and the images are
displayed for 2 seconds in the screen during each trial. After the images disappear, the participants
have unlimited time to select the more reasonably-looking image according to their perception. For
each participant, one could only conduct at most 50 trials, and each adversarial image was shown to
5 different participants. Some qualitative results are shown in Figure H. In total, we collect 2, 620
annotations from 77 participants. In 39.14 ± 1.96% of trials the adversarial images generated by
SemanticAdv are selected as reasonably-looking images and in 30.27±1.96% of trails, the adversarial
images generated by CW are selected as reasonably-looking images. It indicates that our semantic
adversarial examples are more perceptual reasonably-looking than CW. Additionally, we also conduct
the user study with larger G-FPR= 10−3. In 45.42±1.96% of trials, the adversarial images generated
by SemanticAdv are selected as reasonably-looking images, which is very close to the random guess
(50%).

Id:31, 
+Rosy Cheeks

Id:129, 
+Rosy Cheeks

Id:83, 
+Rosy Cheeks

Id:55, 
+Rosy Cheeks

Id:20, 
+Rosy Cheeks

Id:28, (middle column) 
+Smiling

Id:13, 
+Smiling

Id:118, 
+Smiling

Id:122, 
+Smiling

Id:92, 
+Smiling

Id:141, 
+Pale Skin

Id:30, 
+Pale Skin

Id:165, 
+Pale Skin

Id:86, 
+Pale Skin

Id:134,, 
+Pale Skin

GT | CW | our SemanticAdv

GT CW SemanticAdv GT CW SemanticAdv GT CW SemanticAdv

+Rosy Cheeks +Smiling +Pale Skin

Figure H: Qualitative comparisons among ground truth, pixel-wise adversarial examples generated
by CW, and our proposed SemanticAdv. Here, we present the results from G-FPR < 10−4 so that
perturbations are visible.

D ABLATION STUDY: FEATURE-SPACE INTERPOLATION

We conduct an ablation study on feature-space interpolation by analyzing attack success rates with
different feature-maps in the StarGAN network. Table E shows the attack success rate on R-101-S.
Here, we use fi to represent the feature-map after i-th up-sampling operation. f0 denotes the feature-
map before applying up-sampling operation. The result demonstrates that samples generated by
interpolating on f0 achieve the highest success rate. Since f0 is the feature-map before decoder, it
still well embeds semantic information in the feature space. We adopt f0 for interpolation in our
experiments.
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We also conduct a qualitative comparison between attribute-space and feature-space interpolation.
As shown in Figure I, images generated by attribute-space and feature-space interpolation are both
reasonably-looking.

T-FPR (G-FPR) 10−3 (10−3) 3× 10−4 (3× 10−4) 10−4 (10−4)
Layer (f) f0 f1 f2 f0 f1 f2 f0 f1 f2
Attack Success Rate 99.29 98.32 75.62 97.35 94.10 57.15 76.64 67.40 19.63

Table E: Attack success rate by selecting different layer’s feature-map for interpolation on R-101-S(%).
fi indicates the feature-map after i-th up-sampling operation.

Attribute-space
Interpolation

Feature-space
Interpolation

+mouth slightly open

Original image 0.0 0.2 0.4 0.6 0.8 1.0

+bangs

Original image 0.0 0.2 0.4 0.6 0.8 1.0

Original image 0.0 0.2 0.4 0.6 0.8 1.0

-mouth slightly open

Original image 0.0 0.2 0.4 0.6 0.8 1.0

+bangs

Synthesized image by interpolation (with α) Synthesized image by interpolation (with α)

Figure I: Qualitative comparisons between attribute-space and feature-space interpolation.

E SEMANTIC ATTACK TRANSFERRABLITY

In Table F, we present the quantitative results of the transferability with G-FPR = 10−4, T-FPR
= 10−4. We observe that with the strict criterion (Lower T-FPR) of the verification model, the
transferability becomes lower cross different models.

Mtest /Mopt R-50-S R-101-S R-50-C R-101-C
R-50-S 1.000 0.005 0.000 0.000
R-101-S 0.000 1.000 0.000 0.000
R-50-C 0.000 0.000 1.000 0.000
R-101-C 0.000 0.000 0.000 1.000

Table F: Transferablity analysis: cell (i, j) shows attack success rate of adversarial examples generated
against j-th model and evaluate on i-th model. Results generated with G-FPR = 10−4, T-FPR = 10−4

F QUERY-FREE BLACK-BOX API ATTACK

API name Face++ AliYun
Attacker / Evaluation Metric T-FPR = 10−3 T-FPR = 10−4 T-FPR = 10−3 T-FPR = 10−4

Original x 2.04 0.51 0.50 0.00
Generated xnew 4.21 0.53 0.50 0.00
CW (G-FPR = 10−3) 16.24 3.55 4.50 0.00
SemanticAdv (G-FPR = 10−3) 27.32 9.79 7.50 2.00
CW (G-FPR = 10−4) 30.61 15.82 12.50 4.50
SemanticAdv (G-FPR = 10−4) 57.22 38.66 29.50 17.50
Dong et al. (2018) 30.77 21.03 18.00 6.50
Xie et al. (2019) 37.95 25.64 21.50 11.00
CW (G-FPR < 10−4) 41.62 24.37 19.00 12.00
SemanticAdv (G-FPR < 10−4) 64.63 42.69 35.50 22.17

Table G: Quantitative analysis on query-free black-box attack. We use ResNet-101 optimized with
softmax loss for evaluation and report the attack success rate(%).

17



Under review as a conference paper at ICLR 2020

In Table G, we present the results of SemanticAdv performing query-free black-box attack on two
online face verification platforms. SemanticAdv outperforms CW in both APIs under all FPR
thresholds. In addition, we achieve higher attack success rate on APIs using samples generated using
lower G-FPR compared to samples generated using higher G-FPR with the same T-FPR. Original
x and generated xnew are regarded as reference point of the performance of online face verification
platforms. Figure J illustrates our SemanticAdv on attacking Microsoft Azure face verification system,
which further demonstrate the effectiveness of our approach.

Figure J: Illustration of our SemanticAdv in the real world face verification platform (editing on pale
skin). Note that the confidence denotes the likelihood that two faces belong to the same person.

G MORE VISUALIZATIONS
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Figure K: Qualitative analysis on single-attribute adversarial attack (G-FPR = 10−3).
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Figure L: Qualitative analysis on single-attribute adversarial attack (G-FPR = 10−3).

20



Under review as a conference paper at ICLR 2020

Figure M: Qualitative analysis on single-attribute adversarial attack (G-FPR = 10−3).
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Semantic Adversarial Examples
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Figure N: Qualitative comparisons between our proposed SemanticAdv (G-FPR = 10−3) and pixel-
wise adversarial examples generated by CW. Along with the adversarial examples, we also provide
the corresponding perturbations (residual) on the right.
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Figure O: Qualitative analysis on single-attribute adversarial attack (SemanticAdv with G-FPR =
10−3) by each other. Along with the adversarial examples, we also provide the corresponding
perturbations (residual) on the right.
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