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ABSTRACT

Meta-learning is a promising strategy for learning to efficiently learn within new
tasks, using data gathered from a distribution of tasks. However, the meta-learning
literature thus far has focused on the task segmented setting, where at train-time,
offline data is assumed to be split according to the underlying task, and at test-time,
the algorithms are optimized to learn in a single task. In this work, we enable the
application of generic meta-learning algorithms to settings where this task seg-
mentation is unavailable, such as continual online learning with a time-varying
task. We present meta-learning via online changepoint analysis (MOCA), an ap-
proach which augments a meta-learning algorithm with a differentiable Bayesian
changepoint detection scheme. The framework allows both training and testing
directly on time series data without segmenting it into discrete tasks. We demon-
strate the utility of this approach on a nonlinear meta-regression benchmark as
well as two meta-image-classification benchmarks.

1 INTRODUCTION

Meta-learning methods have recently shown promise as an effective strategy for enabling efficient
few-shot learning in complex domains from image classification to nonlinear regression (Finn et al.,
2017; Snell et al., 2017). These methods leverage an offline meta-training phase, in which they
use data from a distribution of tasks to optimize learning performance on new tasks. These algo-
rithms have focused on settings with task segmentation, where the learning agent knows when tasks
change. At meta-train time, these algorithms assume access to a meta-dataset of datasets from indi-
vidual tasks, and at meta-test time, the learner is evaluated on a single task. However, there are many
applications where task segmentation is unavailable, which have thus far been under-addressed in
the meta-learning literature. For example, consider a robot which must learn to adapt to a chang-
ing environment. The robot may switch from one environment to another during the course of
deployment, and these task switches may not be directly observed. Furthermore, using an existing
time series from interaction to craft a meta-dataset may require a difficult or expensive process of
detecting switches in task.

In this work, we aim to enable meta-learning in task-unsegmented settings, operating directly on
time series in which the latent task undergoes discrete, unobserved switches, rather than requiring
a pre-segmented meta-dataset. Equivalently, this problem can be viewed from the perspective of
continual learning, in that we apply the meta-learning approach to the standard online learning
problem statement, wherein an agent must sequentially make predictions and learn with a potentially
varying latent data generating process. To accomplish this, we integrate a Bayesian changepoint
estimation scheme with existing meta-learning approaches, allowing the algorithm to reason about
whether or not the task has changed in a time series. Thus, we enable a standard meta-learning
algorithm, which is designed for the task segmented setting, to be both trained and tested directly on
time series data without the need for task segmentation.

Contributions. The primary contribution of this work is an algorithmic framework for task unseg-
mented meta-learning which we refer to as meta-learning via online changepoint analysis (MOCA).
MOCA wraps arbitrary meta-learning algorithms in a differentiable changepoint estimation algo-
rithm, enabling application of meta-learning algorithms directly to problems in the continuous learn-
ing setting. By backpropagating through the changepoint estimation framework, MOCA learns both
a rapidly adaptive predictive model (in the form of the meta-learning model), as well as an effective
changepoint detection algorithm. MOCA is a generic framework which can be paired with many
existing meta-learning algorithms. We demonstrate the performance of MOCA on both regression
and classification settings with unobserved task switches.
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2 PROBLEM STATEMENT

Our goal is to apply meta-learning tools to the problem of task-unsegmented continual learning, in
which an agent is presented sequentially with input xt, asked to make a prediction p(ŷt | xt), and is
then given the true label yt, and can thus ideally improve its predictions by learning from the labeled
examples. Following the terminology of meta-learning, we assume that these data are drawn from
a distribution according to some latent task Tt, p(xt,yt | Tt) = p(xt | Tt)p(yt | xt, Tt). We will
write x,y ∼ Tt as shorthand for x,y ∼ p(x,y | Tt). We assume a distribution over tasks, which
we write p(T ), and that the initial task T1 ∼ p(T ). At each timestep, the task is re-sampled from
p(T ) with some probability λ, or remains the same.

Our goal is to optimize a learning agent to perform well in this setting. Let pθ(ŷt | x1:t,y1:t−1)
by the agent’s prediction for yt given input xt and the past labeled examples. We will evaluate the
learner’s performance through a negative log likelihood loss, and our objective is as follows:

min
θ

E

[ ∞∑
t=1

− log pθ(yt | x1:t,y1:t−1)

]

subject to xt,yt ∼ Tt, Tt =

{
Tt−1 w.p. 1− λ
Tt,new w.p. λ

T1 ∼ p(T ), Tt,new ∼ p(T )

(1)

We assume that we have access to a representative time series generated in the same manner from the
same distribution of tasks, and use this time series to optimize θ in an offline, meta-training phase.
Critically, however, in stark contrast to standard meta-learning approaches, we do not assume access
to task segmentation, i.e. that this offline data is pre-grouped by latent parameter T .

3 PRELIMINARIES

3.1 META-LEARNING

We begin by presenting a unified perspective on meta-learning in the task-segmented setting, which
allows straightforward presentation of the algorithms used in this work as well as generalization
to the task-unsegmented case. The core idea of meta-learning is to directly optimize the few-shot
learning performance of a machine learning model over a distribution of learning tasks, rather than
just a single task, with the goal of this learning performance generalizing to other tasks from this
distribution.

A meta-learning method consists of two phases: meta-training and online adaptation. Let θ be
the parameters of this model learned via meta-training. During online adaptation, the model uses
context data Dt = (x1:t,y1:t) from within one task to compute statistics

ηt = fθ(Dt) (2)
where f is a function parameterized by θ. For example, in MAML (Finn et al., 2017), the statistics
are the neural network weights after gradient updates computed using Dt. In neural processes (Gar-
nelo et al., 2018), the statistics are the aggregated context parameters computed via encoding and
aggregating the context data. For recurrent network-based meta-learning algorithms, these statistics
correspond to the hidden state of the network. For a simple nonparameteric model, η may sim-
ply be the context data. Then, the model performs predictions by using these statistics to define a
conditional distribution on y given new inputs x,

y | x,Dt ∼ pθ(y | x,ηt).
Adopting a Bayesian perspective, we refer to pθ(y | x,ηt) as the posterior predictive distribution.

The performance of this model on this task can be evaluated by considering how well this posterior
predictive distribution matches the true task data distribution,

L(Dt,θ) = D(p(y | x, Ti)||pθ(y | x, fθ(Dt)))
where D is a measure of the dissimilarity of the two distributions, e.g. the KL divergence, for which
this objective becomes standard negative log likelihood minimization.

Meta-learning optimizes the parameters θ such that the model performs well across a distribution of
tasks,

min
θ

ETi∼p(T ) [EDt∼Ti [L(Dt,θ)]] .
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Across most meta-learning algorithms, including all of those referenced above, both the update rule
and the prediction function are chosen to be differentiable operations, such that the parameters can
be optimized via stochastic gradient descent. Given a dataset pre-segmented into groups of data from
individual tasks, standard meta-learning algorithms operate via first sampling a group for which T is
fixed, treating part of that group as the context dataDt and sampling from the remainder to obtain test
points (x,y) from the same task. While this strategy can be very effective and produce expressive
models that are capable of few-shot learning in complex domains, it relies on task segmentation
which in many settings, especially continual learning, is not easily available.

3.2 BAYESIAN ONLINE CHANGEPOINT DETECTION

To enable meta-learning without task segmentation, we extend prior work in changepoint detection.
Specifically, we build on Bayesian Online Changepoint Detection (Adams & MacKay, 2007), an
approach for detecting change-points (i.e. task switches) originally presented in a streaming uncon-
ditional density estimation context, which we review here.

BOCPD operates by maintaining a belief distribution over run lengths, i.e. how many of the past
data points zt correspond to the current task. At time t, run length of rt = τ indicates that the task
has switched τ timesteps ago, i.e. D−τ = zt−τ :t are all drawn from a shared task T . A belief that
rt = 0 implies that there has been a task switch, and that the current datapoint zt was drawn from a
new task T ′ ∼ p(T ). We denote this belief distribution at time t as bt(rt) = p(rt | z1:t−1).

Given rt, we know the past rt data points all correspond to the same task, and thus the density
p(zt | z1:t−1, rt) corresponds to the posterior predictive density after conditioning on the past rt
data points. We can reason about the overall posterior predictive by marginalizing over the run
length rt according to bt(rt),

p(zt | z1:t−1) =

t−1∑
rt=0

p(zt | z1:t−1, rt)bt(rt).

BOCPD recursively computes posterior predictive densities for each value of rt ∈ {0, . . . , t − 1},
and then evaluates new datapoints zt+1 under these posterior predictive densities to update the belief
distribution b(rt). In this work, we extend this approach of Adams & MacKay (2007) beyond
Bayesian unconditional density estimation to apply to general meta-learning models operating in the
conditional density estimation setting, and derive these update rules in more detail for our context.

4 META-LEARNING VIA ONLINE CHANGEPOINT ANALYSIS

MOCA uses Bayesian change-point detection to enable the application of meta-learning algorithms
to settings without task segmentation, both at train and test time. Specifically, we extend BOCPD
to derive a recursive Bayesian filtering algorithm for run length in the conditional and joint density
estimation setting, and leverage a base meta-learning algorithm with parameters θ to provide a
posterior predictive when conditioned on a run length. In the following subsections, we first derive
MOCA’s Bayesian filtering updates, and then outline how the full framework can be used to both
train and evaluate meta-learning models on time series without task segmentation.

4.1 BAYESIAN RUN-LENGTH FILTERING

As in BOCPD, MOCA maintains a belief over possible run lengths rt. Throughout this paper, we
use bt to refer to the updated belief before observing data at that timestep, (xt,yt). Note that bt is a
discrete distribution with support over rt ∈ {0, ..., t− 1}.
At time t, the agent first observes the input xt, then makes a prediction p(yt | x1:t,y1:t−1), and
subsequently observes yt. Generally, the latent task can influence both the marginal distribution of
the input, p(xt | x1:t−1,y1:t−1) as well as the conditional distribution p(yt | x1:t,y1:t−1). Thus,
the agent can update its belief over run lengths once after observing the input xt, and again after
observing the label yt. We will use bt(rt | xt) = p(rt | x1:t,y1:t−1) to represent the updated belief
over run length after observing only xt, and bt(rt | xt,yt) = p(rt | x1:t,y1:t) to represent the fully
updated belief over rt after observing yt. Finally, we will propagate this forward in time according to
our assumptions on task dynamics to compute bt+1(rt+1), which is used in the subsequent timestep.
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To derive the Bayesian update rules, we start by noting that the updated posterior is proportional to
the joint density,

bt(rt | xt) = p(rt | x1:t,y1:t−1) = Z−1p(rt,xt | x1:t−1,y1:t−1)

= Z−1p(xt | x1:t−1,y1:t−1, rt)p(rt | x1:t−1,y1:t−1)

= Z−1pθ(xt | ηt−1[rt])bt(rt) (3)
where the normalization constantZ can be computed by summing over the finite support of bt−1(rt).
Importantly, this update requires pθ(xt | ηt−1[rt]), the base meta-learning algorithm’s posterior
predictive density over the inputs. Within classification, this density is available for generative
models, and thus a generative approach is favorable to a discriminative approach within MOCA.
In regression, it is uncommon to estimate the distribution of the independent variable. We take the
same approach in this work and assume that xt is independent of the task for regression problems,
in which case bt(rt | xt) = bt(rt).

Next, upon observing yt, we can similarly compute the belief over run lengths for the next timestep,
bt(rt | xt,yt) = p(rt | x1:t,y1:t) = Z−1p(rt,yt | x1:t,y1:t−1)

= Z−1p(yt | x1:t,y1:t−1, rt)p(rt | x1:t,y1:t−1)

= Z−1pθ(yt | xt,ηt−1[rt])bt(rt | xt) (4)
Again, the normalization constant can be computed via a sum over the support of rt.

Finally, we must propagate this belief forward in time to obtain bt+1(rt+1):

bt+1(rt+1) = p(rt+1 | x1:t,y1:t) =
∑
rt

p(rt+1, rt | x1:t,y1:t)

=
∑
rt

p(rt+1 | rt,x1:t,y1:t)p(rt | x1:t,y1:t) =
∑
rt

p(rt+1 | rt)bt(rt | xt,yt).

where we have exploited the assumption that the changes in task, and hence the evolution of run
length rt, happen independently of the data generation process. Recall that in our model of task
evolution, the task switches with fixed probability λ. Thus, for all rt, p(rt+1 = 0 | rt) = λ,
implying

bt+1(rt+1 = 0) =
∑
rt

λbt(rt | xt,yt) = λ. (5)

Conditioned on the task remaining the same, rt+1 = k > 0 and rt = k − 1. Thus, p(rt+1 = k |
rt) = (1− λ)1{rt = k − 1} implying

bt+1(rt+1 = k) = (1− λ)bt(rt = k − 1 | xt,yt). (6)
Equations (5) and (6) together define bt+1 over its support rt+1 ∈ {0, . . . , t}

4.2 META LEARNING WITHOUT TASK SEGMENTATION

By taking a Bayesian filtering approach to changepoint detection, we avoid hard assignments of
changepoints and instead perform a soft selection over run lengths. In this way, MOCA is able to
backpropagate through the changepoint detection and thus directly optimize the full pipeline in a
task unsupervised fashion.

MOCA processes a time series sequentially. We initialize b1(r1 = 0) = 1, and initialize the posterior
statistics for η0[r1 = 0] as specified by the parameters θ of the meta learning algorithm. Then, at
timestep t, we first observe inputs xt and update our belief over run length accordingly, computing
bt(rt | xt) according to (3). Next, we marginalize over this belief to make a probabilistic prediction
for the label yt,

pθ(ŷt | x1:t,y1:t−1) =

t−1∑
rt=0

bt(rt | xt)pθ(ŷt | xt,ηt−1[rt]) (7)

We then observe the true label yt and incur the corresponding negative log likelihood loss. We
can then use this observation to update both the belief over run length, computing bt(rt | xt,yt)
according to (4), as well as update the posterior statistics for all the run lengths using the labeled
example. A recursive update rule for η allows these parameters to be computed efficiently using the
past values of η

ηt[r] = h(xt,yt,ηt−1[r − 1]) ∀ r = 1, . . . , t. (8)
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Algorithm 1 meta-learning via online changepoint analysis (MOCA): Training

Require: Training data x1:n,y1:n, number of training iterations N , initial model parameters θ
1: for i = 1 to N do
2: Sample training batch x1:T ,y1:T from the full timeseries.
3: Initialize belief over run length b1(r1 = 0) = 1
4: Initialize posterior statistics η0[r = 0] according to θ
5: for t = 1 to T do
6: Observe xt
7: Compute bt(rt | xt) according to (3)
8: Predict pθ(ŷt | x1:t,y1:t−1) according to (7)
9: Observe yt

10: Incur NLL loss `t = − log pθ(yt | x1:t,y1:t−1)
11: Compute updated posteriors ηt[rt] for all rt according to (8)
12: Compute bt(rt | xt,yt) according to (4)
13: Compute updated belief over run length bt+1 according to (6) and (5)
14: end for
15: Compute∇θ

∑k+T
t=k `t and perform gradient descent update to θ

16: end for

While MOCA could be used with an algorithm which didn’t admit such a recursive update rule, this
would require storing data online and running the non-recursive posterior computation (2) on D−rt
for every rt, which involves t operations using datasets of sizes from 0 to t, and thus can be anO(t2)
operation. In contrast, the recursive updates involve t operations involving just the latest datapoint,
yieldingO(t) complexity. Finally, we propagate the belief over run length forward in time according
to (5) and (6) to obtain bt(rt+1) to be ready to process the next data point.

Since all these operations are differentiable, given a training time series in which there are task
switches x1:n,y1:n, we can run this procedure, sum the NLL losses incurred at each step, and use
backpropagation within a standard deep learning framework to optimize the parameters of the base
learning algorithm θ. Algorithm 1 outlines this training procedure. In practice, we sample shorter
time-series of length T from the training data to ease computational requirements during training;
we discuss implications of this in the appendix. If available, a user can input various levels of
knowledge on task segmentation by manually updating b(rt) at any time; further details on this task
semi-segmented use case are provided in the appendix.

5 MAKING YOUR MOCA: MODEL INSTANTIATIONS

Thus far, we have presented MOCA at an abstract level, highlighting the fact that it can work with
any meta-learning algorithm which admits the probabilistic interpretation discussed in Section 3.1.
However, there are several practical considerations in the choice of meta-learning algorithm which
can influence the computational efficiency and overall performance of MOCA. For the experiments
in this paper, we leverage two meta-learning algorithms which offer a clean Bayesian learning inter-
pretation, relatively low-dimensional posterior statistics, recursive updates for these statistics, and
computationally efficient likelihood evaluation under the posterior predictive. For regression ex-
periments, we use ALPaCA (Harrison et al., 2018); for classification experiments, we use a novel
algorithm based on similar Bayesian updates which we refer to as PCOC, for probabilistic clustering
for online classification. For completeness, we offer a high level overview of these algorithms and
show how they fit into the MOCA framework in the following subsections.

5.1 ALPACA: BAYESIAN META-LEARNING FOR REGRESSION

ALPaCA (Harrison et al., 2018) is a meta-learning approach for which the base learning model is
Bayesian linear regression in a learned feature space y | x ∼ N (KTφ(x,w),Σε) whereφ(x,w) is
a feed-forward neural network with weightsw mapping inputs x to a nφ-dimensional feature space.
ALPaCA maintains a matrix-normal distribution over K, and thus, assuming Gaussian likelihood,
results in a matrix-normal posterior distribution over K. This posterior inference may be performed
exactly, and computed recursively. The matrix-normal distribution on the last layer results in a
Gaussian posterior predictive density.

We fix the prior K ∼ MN (K̄0,Σε,Λ
−1
0 ). In this matrix-normal prior, K̄0 ∈ Rnφ×ny is the prior

mean and Λ0 is a nφ × nφ precision matrix (inverse of the covariance). Given this prior and data
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model, the posterior may be recursively computed as follows. First, we define Qt = Λ−1t K̄t. Then,
the one step posterior update is

Λ−1t+1 = Λ−1t −
(Λ−1t φ(xt+1))(Λ−1t φ(xt+1))T

1 + φT (xt+1)Λ−1t φ(xt+1)
Qt+1 = yt+1φ

T (xt+1) +Qt (9)

and the posterior predictive distribution is

pθ(ŷt+1 | x1:t+1,y1:t) = N ((Λ−1t Qt)
Tφ(xt+1), (1 + φT (xt+1)Λ−1t φ(xt+1))Σε). (10)

In summary, ALPaCA is a meta learning model for which the posterior statistics are ηt =
{Qt,Λ−1t }, and the recursive update rule h(x,y,η) is given by (9). The parameters that are
meta-learned are the prior statistics, the feature network weights, and the noise covariance: θ =
{K̄0,Λ0,w,Σε}. Note that, as is typical in regression, ALPaCA only models the conditional den-
sity p(y | x), implicitly assuming that p(x) is independent of the underlying task.

5.2 PCOC: BAYESIAN META-LEARNING FOR CLASSIFICATION

In the classification setting, one can obtain a similar Bayesian meta-learning algorithm by perform-
ing Gaussian discriminant analysis in a learned feature space. This is a novel approach to meta-
learning for classification which we term probabilistic clustering for online classification (PCOC,
pronounced “peacock”). We present a concise description of this algorithm here but defer to the
appendix for a more detailed discussion.

In PCOC we process labeled input/class pairs (xt, yt) by encoding the input through an embedding
network zt = φ(xt;w), and performing Bayesian density estimation for every class. Specifically,
we assume a Categorical-Gaussian generative model in this embedding space, and impose the con-
jugate Dirichlet prior over the class probabilities and a Gaussian prior over the mean for each class,

yt ∼ q(y), q ∼ Dir(α0),

zt | yt ∼ N (z̄yt ,Σε,yt), z̄yt ∼ N (µyt,0,Λ
−1
yt,0

).

Given labeled context data (xt, yt), the algorithm updates its belief over the class means as well
as its belief over the class probabilities. As with ALPaCA, these posterior computations can be
performed through closed form recursive updates. Defining qi,t = Λi,tµi,t, we have

αt = αt−1 + 1yt qyt,t = qyt,t−1 + Σε,ytφ(xt) Λyt,t = Λyt,t−1 + Σε,yt

where 1i denotes a one-hot vector with a one at index i. Terms not related to class yt are left
unchanged in this recursive update. Given this set of posterior parameters ηt = {αt, q1:J,t,Λ1:J,t},
the posterior predictive density in the embedding space can be computed as

p(y) = αy,t/(

J∑
i=1

αi,t) p(z, y) = p(y)N (z; Λ−1y,tqy,t,Λ
−1
y,t + Σε,y)

whereN (z;µ,Σ) denotes the Gaussian pdf with mean µ and covariance Σ evaluated at z. Applying
Bayes rule, the posterior predictive on yt+1 given xt+1 is

p(yt+1 = j | x1:t+1,y1:t) =
p(z = φ(xt), y = j)∑J
i=1 p(z = φ(xt), y = i)

.

This generative modeling approach also allows computing p(zt+1 | ηt) by simply marginalizing out
y from the joint density of p(z, y),

p(zt+1 | ηt) =

J∑
y=1

p(y)N (zt+1;µt,Λ
−1
y,t + Σε,y)

As this only depends on the input x, we can use this likelihood within MOCA to update the run
length belief upon seeing xt and before predicting p(ŷt).

In summary, PCOC performs Bayesian Gaussian Discriminant Analysis for online classification,
and meta-learns the parameters θ = {α0, q1:J,0,Λ1:J,0,w,Σε,1:J} for efficient few-shot online
classification. In practice, we assume that all the covariances are diagonal to limit memory footprint
of the posterior parameters. PCOC can be thought of a Bayesian analogue of prototypical networks
(Snell et al., 2017). Further details regarding PCOC can be found in the appendix.
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6 RELATED WORK

Online Learning, Continuous Learning, and Concept Drift Adaptation. A substantial litera-
ture exists on online, continual and lifelong learning (Hazan, 2016; Chen & Liu, 2016). While these
terms are often used interchangeably and inconsistently, they all roughly correspond to the problem
of learning within a streaming series of tasks, wherein it is desirable to re-use information from pre-
vious tasks while avoiding negative transfer French (1999); Thrun & Pratt (2012). Regularization
approaches (Kirkpatrick et al., 2017; Hazan, 2016; Li & Hoiem, 2017) have been shown to be an
effective method for avoiding forgetting in continual learning. By augmenting the loss function for
a new task with a penalty for deviation from the parameters learned for previous tasks, the regu-
larizing effects of a prior are mimicked; in contrast we explicitly learn a prior over task weights
that is meta-trained to be rapidly adaptive. Thus, MOCA is capable of avoiding substantial negative
transfer by detecting task change, and rapidly adapting to new tasks.

Meta-Learning for Continuous and Online Learning. While continual learning techniques have
mitigated forgetting in changing problem settings, large learning models have been slow to adapt to
new tasks, due in part to the propensity of neural network models to overfit to small amounts of
data. In response to this, there has been substantial interest in applying ideas from meta-learning
to continual learning to enable rapid adaptation to new tasks. Indeed, some modern meta-learning
models such as MAML (Finn et al., 2017) may be interpreted as regularization methods (Grant et al.,
2018), wherein the regularization term is explicitly learned for fast adaptation. In the streaming data
setting, several works (Nagabandi et al., 2019a; He et al., 2019) use a sliding window approach,
wherein a small amount of recent data is used for conditioning. By not explicitly detecting task
change and choosing the window length in response, these models risk suffering from negative
transfer. Indeed, MOCA may be interpreted as an adaptive sliding window model, that actively
infers the optimal window length. Nagabandi et al. (2019b) and Jerfel et al. (2019) aim to detect task
changes via combining mean estimation of the dependent variable with MAML models. However,
these models are both less expressive than MOCA (which maintains a full Bayesian posterior) and
are not capable of task-unsegmented training. Instead, these models require pre-training with a
meta-dataset that is segmented by task, limiting their applicability relative to MOCA.

Empirical Bayes for Changepoint Models. The Bayesian online changepoint framework of
Adams & MacKay (2007) (which we leverage in this paper) and the similar, simultaneous work
of Fearnhead & Liu (2007) have generated a substantial body of follow-on work since their publi-
cation. Due to the simplicity of these algorithms—in particular, the ability to compute closed-form
posteriors as opposed to being forced to turn to approximate methods such as MCMC—many prac-
tical modifications and extensions have been developed. Of particular relevance are two works
that investigate empirical Bayes for the underlying predictive model, which is a similar problem
to that addressed herein. In particular, Paquet (2007) develop a forward-backward algorithm that
allows closed-form max likelihood estimation of the prior for simple distributions via EM. Turner
et al. (2009) derive general-purpose gradients for hyperparameter optimization within the BOCPD
model. This approach is similar to our work, although we use neural network meta-learning models
and rely on automatic differentiation for gradient computation.

7 EXPERIMENTAL RESULTS

We investigate the performance of MOCA in three problem settings: one in regression and two in
classification. Our primary goal is to characterize the impact on performance of using MOCA to
moving from the standard task-segmented meta-learning setting to the task-unsegmented case. To
this end, we investigate the performance of MOCA versus an “oracle” model that uses the same
base meta-learning algorithm, but has access to exact task segmentation at train and test time. We
additionally compare against baseline sliding window models of various window lengths, which
again use the same meta-learning algorithm, but always condition on the last n data points. These
baselines are a competitive approach to learning in time-varying data streams (Gama et al., 2014)
and have been used effectively for meta-learning in time-varying settings (see e.g. Nagabandi et al.
(2019a)). Finally, we compare to a “train on everything” model, which only learns a prior and does
not adapt online, corresponding to a standard supervised learning approach. Many problems that
are currently addressed with standard supervised learning in fact have underlying temporal structure
that is ignored, and thus this baseline model is a valuable point of comparison.

In addition, we investigate in isolation the effects of task-segmentation information when provided
at train-time and at test-time. To characterize the impact of test time segmentation, we train an oracle
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Figure 1: The performance of MOCA on the sinusoid regression problem. Right: The belief over run length
versus time. The intensity of each point in the plot corresponds to the belief in the associated run length at
the associated time. The red lines show the true changepoints. Left: Visualizations of the posterior predictive
density corresponding to the blue dotted lines in the figure on the right. The red line denotes the current
function, and red points denote samples from that function. Green points denote data from previous function
instantions, where more faint points are older. a) A visualization of the posterior at an arbitrary time. b) The
visualization of the posterior for a case in which MOCA did not successfully detect the changepoint. In this
case, it is because the pre- and post-change function (corresponding to figure a and b) are highly similar. c)
An instance of a multimodal posterior. d) The changepoint is initially missed due to the data generated from
the post-change function being highly likely under the previous posterior. e) After an unlikely data point, the
model increases its uncertainty as the changepoint is detected.

model and at test time, remove task segmentation and replace it with MOCA’s run length estimation.
We then compare this to the oracle model tested with segmentation, so the only difference is avail-
ability of test-time segmentation. Similarly, to characterize the impact of train time segmentation,
we provide a model trained using MOCA with task segmentation at test time and compare this to a
the same MOCA model when tested without segmentation. Finally, we investigate the performance
of MOCA under partial task segmentation. Due to space constraints, we defer this to the appendix.

7.1 SINUSOID REGRESSION

To characterize MOCA in the regression setting, we investigate the performance on a switching
sinusoid problem adapted from (Finn et al., 2017), in which a task change corresponds to a re-
sampled sinusoid phase and amplitude. Qualitative results are visualized for the sinusoid in Fig. 1,
as well as a visualization of the belief over run length at each time. Qualitatively, MOCA is capable
of accurate and calibrated posterior inference with only a handful of data points, and is capable of
identifying task change extremely rapidly. Typically, it identifies task change in one timestep, if
the generated data does not happen to have high likelihood under the previous task as in Fig. 1d.
Performance of MOCA versus baselines is presented in Fig. 2 for all problem domains. For sinusoid
(left), MOCA achieves performance close to the oracle model and substantially outperforms the
sliding window approaches for all hazard rates (note that the y-axis is log-scaled).

Fig. 3 shows the performance improvement of MOCA when augmented with task segmentation at
test time (violet), compared to unsegmented test, as well as the oracle model without test segmen-
tation compared to with test segmentation (teal). We find that as the hazard rate increases, both the
value of segmentation in training and value of segmentation at test time increases steadily. Because
our regression version of MOCA is not performing density estimation for the independent variable,
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Figure 2: Performance of MOCA versus baselines in sinusoid regression (left; lower is better), Rainbow
MNIST (center; higher is better), and miniImageNet (right; higher is better), versus hazard rate. Note that
for both problems, MOCA nearly always outperforms the baselines and the performance degrades only slightly
from the performance of the oracle. In contrast, sliding window methods may result in negative transfer.

it is not able to detect a changepoint before incurring the loss associated with an incorrect prediction.
Thus, for high changepoints, considerable loss is incurred, increasing the value of task segmentation.

7.2 RAINBOW MNIST

In the classification setting, we apply MOCA to the Rainbow MNIST dataset of Finn et al. (2019).
In this dataset, MNIST digits have been perturbed via a color transformation, rotation, and scaling,
and each task corresponds to a unique combination of these transformations. MOCA approaches
oracle performance for most hazard rates, likely due in part to the fact that task change can usually
be detected via a change in digit color. Seven colors were used, and thus with probability 6/7,
MOCA has a very strong indicator of task change. However, for a hazard of 0.2, MOCA still
exhibits some degree of negative transfer. In training, MOCA must learn to both identify individual
digits (and avoid overfitting to the training digits) as well as identify task changes, which is more
difficult in the high hazard rate setting (in part because the value of identifying the task decreases as
the agent operates within a given task for less time). Thus, we desire an algorithm that is capable
of both generalization (between digits) as well as effective meta-generalization and effective task
segmentation on new tasks. It is possible that with more training data, both digit recognition and
task segmentation may be improved. Indeed, in the sinusoid setting for which an infinite amount
of data is available, smooth and gradual performance degradation relative to the oracle is observed,
whereas training artifacts likely lead to the observed large hazard performance degradation.

In Fig. 3, we can see that the value of task segmentation information is low for both low and high
hazard rates, and highest for intermediate rates. For high hazard rates, all models perform compara-
bly to the “train on everything” model, with model adaptation having a relatively small role. Indeed,
for the highest hazard rate, each class will have fewer than one observation within the current task
in expectation. For very low hazard rates, as in the sinusoid experiment, there are relatively few task
changes in general, and thus the possible performance gain is small.

7.3 MINIIMAGENET

Finally, we investigate the performance of MOCA on the miniImageNet benchmark task (Vinyals
et al., 2016). This dataset consists of 100 ImageNet categories (Deng et al., 2009), each with 600
RGB images of resolution 84 × 84. In our continual learning setting, we associate each class with
a semantic label that is consistent between tasks. Specifically, we split the miniImageNet dataset in
to five approximately balanced high level classes, which we refer to as super-classes, as five-way
classification is standard for miniImageNet (Vinyals et al., 2016; Snell et al., 2017). For example,
one super-class is dogs, while another is food, kitchen and clothing items; details are provided in
the appendix. Then, a new task corresponds to sampling a new class within each super-class, and
the problem is to classify an image as belonging to a specific super-class. This enables knowledge
re-use between classes, and corresponds to a continual learning scenario in which each super-class
experiences distributional shift. Note that this is somewhat different from the typical task in few-shot
learning, where classes have no a priori semantic meaning.

9
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Figure 3: Performance change from augmenting a model trained with MOCA with task supervision at test time
(violet) and from using changepoint estimation at test time for a model trained with task-supervision (teal), for
sinusoid (left), Rainbow MNIST (center), and miniImageNet (right).

Fig. 2 shows that MOCA outperforms baselines for all hazard rates. However, surprisingly, MOCA
outperforms the oracle model for some hazard rates, and all baselines outperform oracle (other than
sliding window of length 5) at the highest hazard rate. There are several possible explanations for
this. First, we note that each data point corresponds to only a single trained model (due to compu-
tational limitations), and the results we present may vary by a couple percentage points of accuracy
for different model hyperparameters or even different seeds. The hyperparameters were chosen via
a coarse sweep on a low hazard rate, and it is possible that different hyperparameters are better for
the other settings. However, the results may also indicate that some degree of positive transfer is
happening between tasks, as the longer sliding window baselines perform better, and MOCA (which
infers task length) also performs well. It is possible that PCOC is not able to learn a sufficiently
representative prior (possibly due to the very broad super-classes), and thus data from previous tasks
may improve performance. Fig. 3 partially reinforces this hypothesis, as for larger hazard rates,
providing MOCA with task supervision actually decreases test performance, and removing the test
supervision from the oracle model substantially improves performance.

8 DISCUSSION AND CONCLUSIONS

Future Work. While MOCA addresses a continual learning problem setting, we have not formu-
lated MOCA as an online learning algorithm. Specifically, MOCA meta-trains on an offline time-
series, and keeps the parameters θ fixed online, whereas an online learning algorithm would not have
this train/test distinction, and would consider updating θ continuously (Hazan, 2016). However, in
order to do this with MOCA, we would need to keep a running buffer of all data observed so far
and to use as training data to update θ, which may be expensive in real-world domains where large
volumes of data (e.g. high definition video from a large collection of cameras on an autonomous
vehicle). Extending MOCA toward either strictly online training or a scheme to maintain an efficient
replay buffer (Mnih et al., 2013; Vitter, 1985), is a promising direction of future work. Indeed, it
may be possible to use MOCA’s changepoint analysis to inform which data to save.

Beyond the continual learning extension, data efficiency may be improved by re-using information
from previous tasks or modeling task evolution dynamics. Previous work (Nagabandi et al., 2019b;
Jerfel et al., 2019; Knoblauch & Damoulas, 2018) has addressed the case in which tasks reoccur
in both meta-learning and the BOCPD framework, and thus knowledge (in the form of a posterior
estimate) may be re-used. In this work, we address the case in which tasks are sampled i.i.d. from a
(typically continuous) distribution, and thus knowledge re-use is often impractical or adds marginal
value. Broadly, moving beyond the assumption of i.i.d. tasks to task having associated dynamics
(Al-Shedivat et al., 2018) represents a promising future direction.

Conclusions. MOCA enables the application of existing meta-learning algorithms to problems
without task segmentation, such as the problem setting of continual learning. We find that by lever-
aging a Bayesian perspective on meta-learning algorithms and augmenting these algorithms with a
Bayesian changepoint detection scheme to automatically detect task switches within time-series, we
can achieve similar predictive performance when compared to the standard task-segmented meta-
learning setting, without the often prohibitive requirement of supervised task segmentation.
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A BATCH TRAINING MOCA

In practice, we sample batches of length T from the full training time series, and train on these
components. While this artificially increases the observed hazard rate (as a result of the initial
belief over run length being 0 with probability 1), it substantially reduces computational complexity.
Because MOCA maintains a posterior for each possible run length, computational requirements
grow linearly with T . Iterating over the whole training time series without any hypothesis pruning
can be prohibitively expensive. While a variety of different pruning methods within BOCPD have
been proposed (Wilson et al., 2010; Saatci et al., 2010), we require a pruning method which does not
break model differentiability. In our experiments, we have not noticed any performance degredation
as a result of training on batches, and so we defer investigation of pruning methods to future work.
At test-time, we no longer require differentiability and so previously developed pruning methods
may be applied.

B PROBABILISTIC CLUSTERING FOR ONLINE CLASSIFICATION

In this section we present in more detail probabilistic clustering for online classification (PCOC,
pronounced “peacock”), a framework for Bayesian meta-learning for classification. PCOC extends
embedding-based meta-learning algorithms (e.g. Snell et al. (2017); Vinyals et al. (2016); Allen
et al. (2019); Ren et al. (2018)) to enable expressive posterior distributions (which are useful for use
within the MOCA framework). However, PCOC is a valuable meta-learning algorithm outside of
the MOCA framework, with many features of note for downstream applications.

PCOC maps each data point, xt, through an embedding function1 φ : Rnx → Rnφ . We choose a
neural network with weights w for the embedding function. We assume a generative model within
the embedding space. We will assume that each class is sampled from a task dependant categorical
distribution q. We will assume that for each class j, z = φ(x) (for xk with yk = j) follows
a Gaussian distribution with mean z̄j and variance Σj . This assumption is a standard generative
modelling assumption corresponding to a Gaussian mixture model (Murphy, 2012). As such, our
classification strategy will be based on Gaussian discriminant analysis (GDA, also referred to as
quadratic discriminant analysis).

Given this Categorical-Gaussian generative model, we will fix a conjugate Dirichlet prior on class
probabilities and a Gaussian prior on the class conditional mean:

q ∼ Dir(α0) z̄j ∼ N (µj,0,Λ
−1
j,0) ∀j (11)

This choice of conjugate prior and generative model means that the posterior distributions on q
and z̄j remain Dirichlet and Gaussian respectively, and that the parameters of this posterior can be
computed analytically.

The posterior parameters at time t after observing kj samples of class j are

Λj,t = Λj,0 + kjΣ
−1
ε,j , (12)

µj,t = Λ−1j,t (kjΣ
−1
ε,j φ̄j,t + Λj,0µj,0), (13)

αt =

J∑
j=1

kj1j . (14)

where φ̄j,t is the sample mean of the embedded points corresponding to class j. These can also be
computed recursively, as outlined in the main paper in equation (11).

Given these posteriors, the posterior predictive distribution for class j is Gaussian:

p(zt+1 | yt+1 = j,x1:t,y1:t) = N (zt+1;µj,t,Λ
−1
j,t + Σε,j) (15)

Given this within-class posterior predictive, we can now consider the posterior predictive over
classes. Note that, by Bayes rule,

p(yt+1 = j | xt+1,x1:t,y1:t) =
p(xt+1 | yt+1 = j,x1:t,y1:t)p(yt+1 = j | x1:t,y1:t)∑
i p(xt+1 | yt+1 = i,x1:t,y1:t)p(yt+1 = i | x1:t,y1:t)

. (16)

1We will refer to the mapped-to space as the feature space or the embedding space.
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Algorithm 2 probabilistic clustering for online classification

Require: Meta-dataset D
1: Randomly initialize weights of φ, Dirichlet priors, prior mean and variance of each class
2: while not converged do
3: for all D ∈ D do
4: Split D into conditioning data {x1:k,y1:k} and evaluation data {xk+1:T ,yk+1:T }
5: Compute µj,k,Λj,k and posterior Dirichlet concentration parameters for each class j
6: Evaluate probability of evaluation data under posterior densities (Eq. 16)
7: end for
8: Update network weights and prior terms based on maximum likelihood of evaluation data
9: end while

Because we have a finite number of classes, computing the partition function in the denominator is
tractable. The posterior Dirichlet probabilities take the form

p(yt+1 = j | x1:t,y1:t) = p(yt+1 = j | y1:t) =
αj,t∑
i αi,t

, (17)

and we choose to meta-learn the Dirichlet prior α0. In the general meta-classification setting, each
label has a task-dependent probability (the classes are not necessarily balanced, as is typically as-
sumed in e.g. 1 shot and 5 shot benchmarks). As such, online estimation of the posterior allows us
to infer the class probabilities within one task, and the Dirichlet priors allow us to meta-learn a be-
lief over label probabilities between tasks. In addition to learning priors on imbalanced classes, this
approach allows our model to encode confidence in the class probabilities. For example, for small
αj,0’s, the model will be highly sensitive to the empirical class counts within one task, whereas for
large αj,0’s, the empirical counts within one task will have a relatively small effect.

B.1 PCOC FOR EPISODIC META-CLASSIFICATION

The standard episodic meta-classification benchmarks are typically of the form of k-shot (corre-
sponding to the number of context data points observed for each class), and n-way (corresponding
to the number of classes) (Snell et al., 2017; Finn et al., 2017; Vinyals et al., 2016). This setting
is based on association between the context data and the test data; the labels do not have a pri-
ori semantic value. For example, a meta-classification problem is identical if two class labels are
exchanged. This property results in simplications for the PCOC model. Maintaining a prior over
each class individually is no longer logical, as two classes with different priors could be switched.
Therefore, in this setting, we maintain a shared prior for the mean of all classes.

This generic prior over data is useful for modified problem statements. Consider a setting in which
we do not a priori know the number of classes. In this case, in which data is being provided sequen-
tially, we wish to report if the data provided at time t corresponds to a previously unobserved class.
Replacing the Dirichlet prior with a Chinese restaurant process (as in e.g. Nagabandi et al. (2019b);
Allen et al. (2019)) would enable a few-shot meta-classification model with a potentially expandable
number of classes. Moreover, a better calibrated confidence in outputs is available, which is useful
for downstream tasks.

B.2 PCOC FOR STREAMING META-CLASSIFICATION

We will now discuss modifications to the PCOC framework for the streaming setting. We will
discuss two cases: the case in which the set of labels is known a priori (and labels have semantic
value—i.e. reporting class j has specific meaning beyond indicating that a data point belongs to
the same class as other data points of class j), and the set in which the set of labels is not known
in advance. In this paper we consider the first case. In this setting, we may directly apply PCOC
as described above. Importantly, this setting allows “zero-shot” classification, which is critical in
the MOCA framework, as we have distinct, semantically meaningful priors for each class mean.
In the second case, the set of labels would necessarily need to be expanded over time, for which a
non-parametric model may be used as described above. There are several versions of this problem
statement, which is more similar to a “lifelong learning” setting, and we defer them to future work.

In the streaming setting the posterior can be updated recursively using (11) for improved computa-
tional efficiency.

14



Under review as a conference paper at ICLR 2020

B.3 DISCUSSION

PCOC extends a line of work on meta-classification based on prototypical networks (Snell et al.,
2017). This framework maps the context data to an embedding space, after which it computes the
centroid for each class. For a new data point, it models the probability of belonging to each class as
the softmax of the distances between the embedded point and the class centroids, for some distance
metric. For Euclidean distances (which the authors focus on), this corresponds to performing fre-
quentist estimation of class means, under the assumption that the variance matrix for each class is the
identity matrix2. Indeed, this corresponds to the cheapest-to-evaluate simplification of PCOC. Ren
et al. (2018) propose adding a class-dependent length scale (which is a scalar), which corresponds
to meta-learning a frequentist estimate of the variance for each class. Moreover, it corresponds to
assuming a variance that takes the form of a scaled identity matrix. Indeed, assuming diagonality
of the covariance matrix results in substantial performance improvement as the matrix inverse may
be performed element-wise. This reduces the numerical complexity of this operation in the (fre-
quently high-dimensional) embedding space from cubic to linear. However, in our implementation
of MOCA, we assume diagonal covariances throughtout, resulting in comparable computational
complexity to the different flavors of prototypical networks. If one were to use dense covariances,
the computational performance decreases substantially (due to the necessity of matrix inversions),
especially in high dimensional embedding spaces.

In contrast to this previous work, PCOC has several desirable features. First, both Snell et al. (2017)
and Ren et al. (2018) make the implicit assumption that the classes are balanced, whereas we per-
form online estimation of class probabilities via Dirichlet posterior inference. Beyond this, our
approach is explicitly Bayesian, and we maintain priors over the parameters that we estimate online.
This is critical for utilization in the MOCA framework. Existence of these priors allows “zero-shot”
learning—it enables a model to classify incoming data to a certain class, even if no data belonging to
that class has been observed within the current task. Finally, because the posteriors concentrate (the
predictive variance decreases as more data is observed), we may better estimate when a change in
the task has occurred. We also note that maximum likelihood estimation of Gaussian means is dom-
inated by the James-Stein estimator (Stein, 1956), which shrinks the least squares estimator toward
some prior. Moreover, the James-Stein estimator paired with empirical Bayesian estimation of the
prior—which is the basis for Bayesian meta-learning approaches such as ALPaCA and PCOC—has
been shown to be a very effective estimator in this problem setting (Efron & Morris, 1973).

C MOCA WITH PARTIAL TASK SEGMENTATION

Since MOCA explicitly reasons about a belief over run-lengths, it can operate anywhere in the
spectrum of the task-unsegmented case as presented so far, to the fully task-segmented setting of
traditional meta learning. At every time step t, the user can override the belief bt(rt) to provide a
degree of supervision. At known changepoints, for example, the user can override bt(rt) to have
all its mass on rt = 0. If the task is known not to change at the given time, the user can set the
hazard probability to 0 when updating the belief for the next timestep. If a user applies both of
these overrides, it amounts to effectively sidestepping the Bayesian reasoning over changepoints
and revealing this information to the meta-learning algorithm. If the user only applies the former,
the user effectively indicates to the algorithm when known changepoints occur, but the algorithm
is free to propagate this belief forward in time according to the update rules, and detect further
changepoints that were not known to the user. Finally, the Bayesian framework allows a supervisor
to provide their belief over a changepoint, which may not have probability mass entirely at rt = 0.
Thus, MOCA flexibly incorporates any type of task supervision available to a system designer.

Fig. 4 shows the performance of partial task segmentation at both train and test for the sinusoid
problem, for the hazard rate 0.2. This problem was chosen as the results were highly repeatable
and thus the trend is more readily observed; however, the utility of partial segmentation may vary
for classification problems. Here, we label a changepoint with some probability, which we refer
to as the supervision rate. We do not provide supervision for any non-changepoint timesteps, and
thus a supervision rate of 1 corresponds to labeling every changepoint but is not equivalent to the
oracle. Specifically, the model may still have false positive changepoints, but is incapable of false
negatives. This figure shows that the performance monotonically improves with increasing train
supervision rate, but is largely invariant under varying train supervision. This performance improve-
ment agrees with Fig. 3, which shows that for the sinusoid problem, performance is improved by

2Snell et al. (2017) discuss this correspondence, as they outline how the choice of metric corresponds to a
different assumptions on the distributions in the embedding space.
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Figure 4: Test negative log likelihood of
MOCA on the sinusoid problem with par-
tial task segmentation. The partial segmenta-
tion during training results in negligible per-
formance increase, while partial supervision
at test time uniformly improves performance.
Note that each column corresponds to one
trained model, and thus the anomalous values
for 0.5 train supervision may be explained by
the below-average performance of one model.

full online segmentation. Indeed, these results show that training with MOCA results in models with
comparable test performance to those with supervised changepoints, and thus there is little marginal
value to task segmentation during training.

D EXPERIMENTAL DETAILS

D.1 SINUSOID

To test the performance of the MOCA framework combined with ALPaCA for the regression setting,
we investigate a switching sinusoid regression problem. The standard sinusoid regression problem,
in which randomly sampled phase and amplitude constitute a task, is a standard benchmark in meta-
learning (Finn et al., 2017). Moreover, a switching sinusoid problem is a popular benchmark in
continuous learning (He et al., 2019; Javed & White, 2019). Each task consists of a randomly
sampled phase in the range [0, π] and amplitude in [0.1, 5]. This task was investigated for varying
hazard rates. For the experiments in this paper, samples from the sinusoid had additive zero-mean
Gaussian noise of variance 0.05, which we assume was known to the model.

D.2 RAINBOW MNIST

The Rainbow MNIST dataset (introduced in Finn et al. (2019)) contains 56 different
color/scale/rotation transformations of the MNIST dataset, where one transformation constitutes
a task. We split this dataset into a train set of 49 transformations and a test set of 7. For hyperpa-
rameter optimization, we split the train set into a training set of 42 transformations and a validation
of 7. However, because the dataset represents a fairly small amount of tasks (relative to the sinusoid
problem, which has infinite), after hyperparameters were set we trained on all 49 tasks. We found
this notably improved performance. Note that the same approach was used in Snell et al. (2017).

D.3 MINIIMAGENET

We use the miniImageNet dataset of Vinyals et al. (2016), a standard benchmark in few-shot learn-
ing. However, the standard few-shot learning problem does not require data points to be assigned
to a certain class label. Instead, given context data, the goal is to associated the test data with the
correct context data. We argue that this problem setting is implausible for the continual learning
setting: while observing a data stream, you are also inferring the set of possible labels. Moreover,
after a task change, there is no context data to associate a new points with. Therefore we instead
assume a known set of classes. We group the 100 classes of miniImageNet in to five super-classes,
and perform five-way classification given these. These super-classes vary in intra-class diversity
of sub-classes: for example, one super-class is entirely composed of sub-classes that are breeds of
dogs, while another corresponds to buildings, furniture, and household objects. Thus, the strength
of the prior information for each super-class varies. Moreover, the intra-class similarities are quite
weak, and thus generalization from the train set to the test set is difficult and few-shot learning is
still necessary and beneficial. The super-classes are detailed in the table below.
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Class Description Train/Val/Test Synsets

1 Non-dog
animals

Train n01532829, n01558993, n01704323, n01749939,
n01770081, n01843383, n01910747, n02074367,
n02165456, n02457408, n02606052, n04275548

Validation n01855672, n02138441, n02174001
Test n01930112, n01981276, n02129165, n02219486,

n02443484

2 Dogs, foxes,
wolves

Train n02089867, n02091831, n02101006, n02105505,
n02108089, n02108551, n02108915, n02111277,
n02113712, n02120079

Validation n02091244, n02114548
Test n02099601, n02110063, n02110341, n02116738

3
Vehicles,
musical
instruments,
nature/outdoors

Train n02687172, n02966193, n03017168, n03838899,
n03854065, n04251144, n04389033, n04509417,
n04515003, n04612504, n09246464, n13054560

Validation n02950826, n02981792, n03417042, n03584254,
n03773504, n09256479

Test n03272010, n04146614

4
Food, kitchen
equipment,
clothing

Train n02747177, n02795169, n02823428, n03047690,
n03062245, n03207743, n03337140, n03400231,
n03476684, n03527444, n03676483, n04596742,
n07584110, n07697537, n07747607, n13133613

Validation n03770439, n03980874
Test n03146219, n03775546, n04522168, n07613480

5
Building,
furniture,
household
items

Train n03220513, n03347037, n03888605, n03908618,
n03924679, n03998194, n04067472, n04243546,
n04258138, n04296562, n04435653, n04443257,
n04604644, n06794110

Validation n02971356, n03075370, n03535780
Test n02871525, n03127925, n03544143, n04149813,

n04418357

The super-classes are roughly balanced in terms of number of classes contained. Each task corre-
spond to sampling a class from within each super-class, which was fixed for the duration of that task.
Each super-class was sampled with equal probability.

D.4 BASELINES

Three baselines were used, described below:

• Train on Everything: This baseline consists of ignoring task variation and treating the
training timeseries as one dataset. Note that many datasets contain latent temporal infor-
mation that is ignored, and so this approach is effectively common practice.

• Oracle: In this baseline, the same ALPaCA and PCOC models were used as in MOCA,
but with exact knowledge of the task switch times. Note that within a regret setting, one
typically compares to the best achievable performance. The oracle actually outperforms the
best achieveable performance in this problem setting, as it takes at least one data point (and
the associated prediction, on which loss is incurred) to become aware of the task variation.

• Sliding Window: The sliding window approach is commonly used within problems that
exhibit time variation, both within meta-learning (Nagabandi et al., 2019a) and continual
learning (He et al., 2019; Gama et al., 2014). In this approach, the last n data points are used
for conditioning, under the expectation that the most recent data is the most predictive of
the observations in the near future. Typically, some form of validation is used to choose the
window length, n. As MOCA is performing a form of adaptive windowing, it should ideally
outperform any fixed window length. We compare to three window lengths (n = 5, 10, 50),
each of which are well-suited to part of the range of hazard rates that we consider.

D.5 TRAINING DETAILS

Sinusoid. A standard feedforward network consisting of two hidden layers of 128 units was used
with tanh nonlinearities. These layers were followed by a 32 units layer and another tanh nonlinear-
ity. Finally, the output layer (for which we learn a prior) was of size 32× 1. The same architecture
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was used for all baselines. This is the same architecture for sinusoid regression as was used in
Harrison et al. (2018). The following parameters were used for training:

• Optimizer: Adam (Kingma & Ba, 2015)
• Learning rate: 0.02
• Batch size: 50
• Batch length: 100
• Train iterations: 5000

Batch length here corresponds to the number of timesteps in each training batch. Note that longer
batch lengths are necessary to achieve good performance on low hazard rates, as short batch lengths
artificially increase the hazard rate as a result of the assumption that each batch begins with a new
task. The learning rate was decayed every 1000 training iterations.

Rainbow MNIST. In our experiments, we used the same architecture as was used as in Snell
et al. (2017); Vinyals et al. (2016). It is often unclear in recent work on few-shot learning whether
performance improvements are due to improvements in the meta-learning scheme or the network ar-
chitecture used (although these things are not easily disentangled). As such, the architecture we use
in this experiment provides fair comparison to previous few-shot learning work. This architecture
consists of four blocks of 64 3× 3 convolution filters, followed by a batchnorm, ReLU nonlinearity
and 2 × 2 max pool. For the 28 × 28 Rainbow MNIST dataset, this leads to a 64 dimensional em-
bedding space. For the “train on everything” baseline, we used the same architecture followed by a
fully connected layer and a softmax. This architecture is standard for image classification and has a
comparable number of parameters to our model.

We used a diagonal covariance factorization within PCOC, substantially reducing the number of
terms in the covariance matrix for each class and improving the performance of the model (due
to the necessary inversion of the posterior predictive covariance). We learned a prior mean and
variance for each class, as well as a noise covariance for each class (again, diagonal). We also fixed
the Dirichlet priors to be large, effectively imbuing the model with the knowledge that the classes
were balanced. The following parameters were used for training:

• Optimizer: Adam
• Learning rate: 0.02
• Batch size: 10
• Batch length: 100
• Train iterations: 5000

The learning rate was decayed every 1500 training iterations.

miniImageNet. Finally, for miniImageNet, we used six convolution blocks, each as previous de-
scribed. This resulted in a 64 dimensional embedding space. We initially attempted to use the
same four-conv backbone as for Rainbow MNIST, but the resulting 1600 dimensional embedding
space had unreasonable memory requirements for batches lengths of 100. Again, for the “train on
everything” baseline, we used the same architectures with one fully connected layer followed by a
softmax. The following parameters were used for training:

• Optimizer: Adam
• Learning rate: 0.002
• Batch size: 5
• Batch length: 100
• Train iterations: 6000

The learning rate was decayed every 1500 training iterations. We used the validation set to monitor
performance, and as in Chen et al. (2019), we used the highest validation accuracy iteration for test.

D.6 TEST DETAILS.

For all problems, a test horizon of 400 was used. Again, the longest possible test horizon was used
to avoid artificial distortion of the test hazard rate. Both both problems, a batch of 100 evaluations
was performed, and all confidence intervals correspond to 95%.

18


