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ABSTRACT

How do humans acquire a meaningful understanding of the world with little to no
supervision or semantic labels provided by the environment? Here we investigate
embodiment and a closed loop between action and perception as one key compo-
nent in this process. We take a close look at the representations learned by a deep
reinforcement learning agent that is trained with visual and vector observations
collected in a 3D environment with sparse rewards. We show that this agent learns
semantically meaningful and stable representations of its environment without re-
ceiving any semantic labels. Our results show that the agent learns to represent the
action relevant information extracted from pixel input in a wide variety of sparse
activation patterns. The quality of the representations learned shows the strength
of embodied learning and its advantages over fully supervised approaches with
regards to robustness and generalizability.

1 INTRODUCTION

When the way supervised neural networks learn is compared to the way humans learn one can easily
make out some major differences. Two of those differences are supervision and embodiment. Taking
the example of object recognition from visual observations, a neural network will be presented with
thousands of images of the object in question, each of them accompanied by a class label. A toddler
in comparison will also collect many observations of the object of interest, however, will do so
by interacting with the object, looking at it from different perspectives by moving the head or even
moving the object (Bambach et al.,2018). This law-governed change in observations conditioned on
the movements of the toddler emphasises the importance of embodied cognition (Engel et al.,[2013).
It will make it possible to recognize the object as a distinct entity, separate from its surroundings
and learn a general concept of it. This allows it to robustly recognize the object again even when
seen from new perspectives or under different lighting conditions (Smith & Slone, [2017). When the
toddler is now told the name of the object, an almost instantaneous association between label and
object can be made without the need of thousands of labeled examples (Samuelson & Smith, [2005)).
This therefore makes a very efficient strategy for learning stable representations of objects.

Fully supervised neural networks have been shown to suffer from shortcomings that humans usually
do not exhibit. [Szegedy et al.|(2013)) showed how very small perturbations to an image, undetectable
to the human eye, can drastically change the classification accuracy of a neural network. Even
simply holding such adversarial examples in front of a camera (Kurakin et al., [2016) or specific
natural images (Hendrycks et al.l 2019) can have this effect. The networks seem to possess an
over-reliance on local image features such as texture and do not consider global features such as the
overall shape and outline of an object (Baker et al., 2018). Considering the training circumstances,
this effect is unsurprising. The networks are expected to learn the concept of objects solely from
pixel values. Without being able to interact with objects or even just looking at them from slightly
different perspectives, it is very difficult to figure out basic knowledge such as object and background
relationships. We expect that an active exploration of the world would make it possible to learn a
more general and robust concept of objects.

Already in 2001 |O’Regan & No|(2001) argued that even though it is clear that action requires per-
ception, this relation also reverses. Perception and the understanding of what is perceived requires
action (Nog| 2005). According to O’Regan & Noé| (2001), “experience is not something that hap-
pens in us but is something we do” (p.99). They argue that an important part of perception is to learn
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how actions affect sensations. These sensory motor contingencies help us make sense of our per-
ceptions, predict them and efficiently sample the environment for information (Engel et al., 2013).

In humans, perception is hugely influenced by how we interact with the world (Witt, 2011). Goals
and the expected cost to perform actions to achieve a goal influence our perception of physical
entities (Proffitt, 2006). Also more abstract processes such as language comprehension are linked to
action systems in the brain (Pulvermiiller & Fadigal [2010). We therefore postulate that in order to
teach an artificial agent a true understanding of its (simulated) world it needs to be able to interact
with the world. This paper will present results from an embodied agent acting in a virtual 3D
world and learning an internal representation of its sensory input. The framework of learning by
interacting with the world produced a meaningful and action-oriented internal representation of the
agents observations, even though no semantic labels were provided.

2 RELATED WORK

There is a strong research interest in learning visual structure in an unsupervised way which can
for example be approached by using auto-encoders (Tschannen et al.,|2018)). In its simplest form,
relevant structure is supposed to change slowly(Kording & Konig, [2001; Wiskott & Sejnowski,
2002) facilitating learning of invariant representations. To further incorporate a time component
and learn visual structure and changes over time, future frame prediction is a commonly used task
(Villegas et al., |2017; |Srivastava et al.l |2015; |Patraucean et al., [2015} |Oliu et al.| 2017; [Mahjourian
et al.| [2016; |Finn et al.|, 2016} Denton & Birodkar, 2017). However, only a few of the papers dealing
with time series prediction actually investigate the learned representations in the network (Lotter
et al.,[2015}; Q1ao et al.,[2018).

An alternative concept for unsupervised representation learning is the use of predictive coding (Rao
& Ballard, [1999) which can be applied to train ANNs (van den Oord et al., 2018; |[Wen et al., 2018}
Han et al.l 2018 [Lotter et al.l |2016). The idea of predicting future observations based on current
actions can also be used in a reinforcement learning setting to inject agents with some sense of
curiosity (Pathak et al.,[2017). [Ha & Schmidhuber| (2018) has shown that training a recurrent world
model using a variational auto-encoder can increase the performance of agents in several games.
Chaplot et al.| (2019) show how jointly training semantic goal navigation and embodied question
answering can improve performance on both of these tasks. Also, simply seeing a visual scene from
different angles can get a network to learn disentangled representations of individual objects (Eslami
et al.,|2018)) and get it to imagine the scene from a previously unseen viewpoint (Eslami et al.,2018;
Rosenbaum et al., 2018)).

Researchers who investigate representation learning in reinforcement learning agents often use addi-
tional regularization or losses to enforce a certain representation in the latent space (Nachum et al.,
2018 [Lesort et al., 2018; [de Bruin et al., [2018). |Shang et al.| (2019) even gets agents to explic-
itly learn world graphs. As such explicit constraints are biologically implausible, we will investigate
what kind of representations arise naturally within an embodied training setup. [Lillicrap et al.|(2015)
have already shown results from a simple deep reinforcement learning agent which indicate that per-
ceptually similar observations are mapped close to each other in the latent space. We will further
investigate this and look explicitly at the type of representation encoding that is learned as well as
the meaningfulness of the representation and the type of information that is encoded.

3 EXPERIMENTS

3.1 TRAINING A DEEP REINFORCEMENT LEARNING AGENT

The representation under investigation in this paper is the activation in the hidden layer of a deep
neural network trained in a reinforcement learning environment. Figure [T|shows the network struc-
ture of the agent. As input, it receives visual and vector observations from the simulated environment
with size 168x168x3 and size 8 respectively. The visual and vector observations are first processed
separately by two convolutional layers and one dense layer for the visual input and two dense lay-
ers for the vector input, until they are concatenated into one encoded state. This encoded state has
dimensionality 512 where 256 of its activations come from the visual encoding pathway and 256
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from the vector encoding pathway. The encoded state and its properties will be the main focus of
this paper.

Based on the encoded state, two dense layers output action probabilities and a value estimate. The
action probabilities are translated into actions and sent to the environment to obtain the next set of
observations. They are also used, together with the value estimate and the reward received from the
environment to optimize the neural network and thereby, train the agent to perform better actions.
For training of the network proximal policy optimization (PPO) is used which is an efficient policy
gradient method for deep reinforcement learning (Schulman et al.| |2017). More specifically, the
PPO implementation and reinforcement learning framework of the Unity ML-Agents toolkit is used
(Juliani et al., 2018)). The overall setup and training procedure are chosen such that a neural network
is trained in an embodied way with a closed loop between perception and action.

As setting for training, the environment proposed in the Unity obstacle tower challenge (Juliani et al.,
2019) is used. This environment was introduced as a new benchmark in reinforcement learning for
pixel-based learning in a procedurally-generated 3D environment using a sparse reward signal. The
agent needs to learn to navigate through a 3-dimensional maze environment, solving successively
harder tasks. Every level of the tower consists of several rooms, connected by doors. When reaching
the final door on a floor the agent receives a reward of one and is placed on the next, randomly
generated floor of the tower. Starting from level five the agent needs to learn picking up a key which
unlocks a key door and gives him access to further rooms that lead to the next level door. The key
can be placed in one of the rooms on the ground or on a static or moving platform. Starting from
level ten a new type of door is introduced which opens only after a puzzle is solved. The puzzle
requires the agent to push a block onto a colored spot on the ground. The randomly generated floors
can be illuminated in different color variations and the visual theme of the environment can vary. As
overfitting to specific color values in the input or floor layouts is not useful, this makes it important
for the agent to learn general and stable representations.
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Figure 1: (Left) Network structure of the deep reinforcement learning agent. The environment and
everything coming from it (Yellow). The deep neural network, optimized with gradient descent,
facilitated by PPO (Blue). Parts of the PPO algorithm used to optimize the neural network (Or-
ange). (Right) Agent observations of one frame, one can see a normal door to the right of the agent.
The agent receives visual and vector observations at each frame. Visual observations are of size
168x168x3. Vector observations are of size 8.

The agent observations are collected from a third person view RGB camera. Additionally, a small
vector observation is provided indicating the number of keys the agent is holding as well as the time
remaining and the current level. Rewards are very sparse as a reward (of value 1) is only received
when walking through a final level door or when picking up a key. A small reward of value 0.1
is given when walking through normal doors and when picking up small blue orbs that provide
additional time. One episode ends when the agent runs out of time, which means that the better
the agent gets the longer he can explore the tower as he can collect more time-orbs and receive
extra time by going through level doors. The actions of the agent are discrete and divided into four
action branches. One for moving forward or backwards, one to control the camera rotation, one for
jumping and one for moving left or right. The distribution of these actions in a trained agent is show
in the appendix (figure [g).
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3.2 AGENT PERFORMANCE
Inference Run - Agent Performance

After training the agent for 30 million steps us-
ing the parameters specified in the appendix
he reaches level 8 on average. As can be
expected from the network structure, the agent

10

never exceeds level ten. The network structure — Level

used here incorporates no concept of time such Value Estimate
that the agent is unable to solve the puzzles in- X — Reward
troduced at level 10 as they require some more

elaborate planning of a long action sequence. 2

Figure [2] shows the agent performance during
one inference run. This particular run lasted
4000 frames which means the agent saw 4000
observations and performed 4000 actions. As
the rewards are very sparse, he only received a
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Figure 2: Statistics of one inference run through
the tower. The agent reaches level 10 (blue curve)

reward (1 or 0.1) in 76 of these frames which is Zg?)(;};:ai:]l:sends when the time is up, here after
about 1.9% of all frames (only 15 of those are ’

the full reward of one, the other 61 frames contain a 0.1 reward). One can see how the value es-
timate, which expresses the reward the agent expects in the future, drops off significantly after the
agent reaches level ten as he does not expect to solve the puzzle and receive any more rewards. One
can also observe how the value estimate rises in the frames leading up to the agent entering a new
level. This indicates that the agent recognizes the door to the next level and already anticipates the
upcoming reward.

3.3 SPARSE ACTIVATION PATTERNS

We will take a look at how the activations in the hidden layer of the agent network look like[ﬂ Figure
[3] shows in how many of the 4000 frames each of the 512 neurons in the encoding were active. For
visualization purposes, the 512x1 vector was reshaped into a grid pattern. Except for the division of
visual and vector encoding, the location of a neuron in this grid has no further meaning.

In the visual encoding only 4.64% (mean= 11.88, min=3 max=35 var=17.891) of the neurons are
activated in each frame, making it a very sparse activation pattern. Over the investigated total time,
173 of the 256 neurons (=67.58%) are active in at least 1 frame, but only 7 of them (=2.73%) are
active in more than 40% of the frames. The most active neuron of the visual embedding is active
in 74.15% of all frames. This shows that there is a wide variety in the activation patterns. 83 of
the neurons in the visual encoding are never active (=32.42%). The agent utilizes most but not all
of the available neurons in the visual embedding at some point but only activates a small part in
each frame. In the random agent, there are on average 130 active neurons per frame in the visual
embedding (min=112 max=152 var=27.352), which is a much denser activity (50.62%). Thus, in
comparison the trained agent has learned a very sparse and selective representation of the input.

In the vector encoding of the trained agent on average 1.53% of the neurons are active, with 231
(90.23%) of the neurons being never activated. However, the two most active neurons are active
in 100% of the frames. As the vector input has a very low dimensionality (dim=8) there is no big
variety in the activation patterns of the vector embedding. However, in comparison to the random
agent we again observe a much sparse activation pattern.

The sparse representations in the trained agent match observations of sparse encodings for sensory
input in insects (Perez-Orive et al.| [2002; [Laurent, 2002) as well as in the mammalian brain (Young
& Yamanel 1992} Brecht & Sakmann, [2002). These form efficient and stable representations of
high dimensional sensory input (Olshausen & Field, 2004). The agent picks up on this strategy
to efficiently encode input without any explicit regularization being applied. Even though there is
no cost associated to using more neurons than needed to encode information, the agent learns to
use sparse activation patterns and even leaves some of the available neurons completely unused.
The trained agent seems to discover on its own that a sparse representation of the high dimensional

"You can find a frame by frame visualization of the activations as well as other interactive displays of our
results and our code here: https://embodiedlearning.github.10/ICLR-Submission-2020/
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image input is more robust and stable to noise (Ahmad & Scheinkman| |2019) which helps to make
better action decisions based on this sparse representation.
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Figure 3: Activation pattern comparison between a trained agent (left) and a random agent (right).
Random agent activations are the results of an untrained network with the same structure as the
trained network and using the same inputs. Colors indicate the percentage of frames in which the
neuron in the encoded state is active (activation>0). The 2D grid structure is arbitrary as the 1D
activation vector from the hidden layer was reshaped only for visualization purposes. Compared
to the random agent activation patterns in the hidden representation of the trained agent are much
sparser.
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3.4 DISTINCT ACTIVATION PATTERNS

To find out if we can discover a general meaningful structure in the activations of the hidden layer,
we first perform k-means clustering of their activation patterns. As we are most interested in the
encoding of the high dimensional visual input, we only use this part of the encoding layer. The time
series of 4000 data points, each a 256 dimensional vector, are clustered into six clustel%l

Ideally these clusters should group the encodings into meaningful and distinct classes. In order to
test this, we now correlate the six clusters with the six most common action combinationﬂ As
actions and the visual execution of them do not always match up exactly (i.e. after pressing the jump
button the agent is in the air for several frames and only reaches the highest point several frames
after the action was selected) we perform the correlations for a 20-frame window. The vectors which
are being correlated are both binary. For the six clusters, the binary vector encodes for each frame if
it belongs to a specific cluster and for the actions the vector encodes for each frame if it belongs to a
specific action combination or not. This means that the correlation values represent the correlation
of two binary vectors of length 4000. For the offset correlations, we shift the action vector either
to the left or the right such that the cluster assignment at frame t now matches up with action at
frame t+1 or t-1 respectively. This gives us the correlation between cluster assignments and actions
and therefore informs us if there is structure in the visual encoding that correlates with the actions
selected.

In figure [ on the top left one can see the correlations of the action Forward + Turn Right with the
encodings of the six clusters. The highest magnitude of correlation here is at zero offset. However,
also the cluster association of the observations a few frames before and after show an increase in
correlation/negative correlation. When comparing this with the encodings of a random untrained
agent one can see that there is a clear association between the learned image encoding and the
actions. The trained agent has with correlation between -0.25 and 0.58 a much bigger range than
the random agent (-0.07 - 0.06). These stronger positive and negative correlations show that frames
that are assigned to one cluster are more or less likely to be associated with a certain action. As
the clusters are created and assigned based on the activations in the visual encoding, this means that
there is a connection between distinct activation patterns and actions. Also, the activation patterns
preceding and following an action contain some information about it. The same correlation increase
of clusters in a trained agent can be seen when looking at the correlation of clusters with semantic

The choice for the number of cluster was made after comparing the inter cluster variance and silhouette
score for different numbers of cluster (see appendix, figure
3For the selection of action combinations and their distribution see appendix (ﬁgure right)



Under review as a conference paper at ICLR 2020

Correlation in 20 Frame Window Around Action for
Action = Forward + Turn Right

Trained Agent

Random Agent

Cluster
o 0.75 o 3
9} —
S 0.50 ; :
& —
@ o025
o
o -
c 0007 = — —
s W
£ -0.254
°
£ -0.501
S}
o
-0.75
-1.00 - - T -
-10 -5 0 5 10-10 -5 0 5 10
Sliding Window Offset [Frames] Sliding Window Offset [Frames]
Avg. Correlation in 10 Frame Window Around Action with Cluster
Trained Agent Random Agent
0.4 Action Combination to.a
Forward, Turn Right
Forward, Camera Left, Turn Right
Forward, Camera Left, Turn Left
c mmm Forward, Camera Right, Turn Right c
_8 0.2 mmm Backward, Camera Right, Turn Right ro.2 .S
© EEE Everything Else ©
e o
3 3
0.0 .J r ' '— ‘ - IL I.' T Ir r0.0

0 1 2 3 4 5
Cluster

Figure 4: Correlation between the cluster assignment of frames and corresponding action combina-
tions. (Left) Clustering performed on the visual embedding of a trained agent. (Right) Clustering
on the visual embedding of a random agent. (Top) Example of correlations for action combination
’Forward + Turn Right” with clusters within a 20-frame window. (Bottom) Bar height represents
the average correlation in a 10-frame window around O in the top plots for all actions and cluster. It
shows distinct correlations between clusters and actions in the trained agent.

image content such as level doors (see figure[6). These results show that the learned representations
of the visual input encode semantically meaningful and action relevant information.

The bottom part of figure 4] shows the average
correlation in a 10-frame window for all six ac-
tion combinations. One can see that every clus-
ter has a unique combination of correlations or
anti-correlations with the different action com-
binations. Some action combinations such as
the one for backward movement (here shown
in brown) have a specific cluster which seems
to mostly represent this action. In the random
agent in contrast, we can not find correlations of
high magnitude or distinctive features between
the cluster.

Figure [5] makes this difference in correlation
and therefore meaningfulness of clusters more
apparent. When calculating the sum of squares
of the correlations in each cluster the trained
agent outperforms the random agent in every
cluster. The overall sum of squared correlations
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Figure 5: Sum of squares of the correlations of
action combinations for each cluster. One can see
that the trained agent has more expressive and dis-
tinct correlations with actions in the different clus-

ters than a random agent.

for the trained agent (0.413) is much higher than the one for the random agent (0.068). This shows
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that the learned encoding has a structure which correlates with the actions as well as the image
content which is impressive given the dimensionality of the observations (~84.000).

Correlation with Level Doors in the Visual Input
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Figure 6: Correlation of clusters with Doors. Comparison of trained agent (Maximum correlation:
0.421, Minimum correlation: -0.113) and random agent (Maximum correlation: 0.091, Minimum
correlation: -0.065)

3.5 CONCEPTUAL SIMILARITIES, GENERALIZATION AND ROBUSTNESS

To visualize the encodings and to investigate how conceptually similar inputs are represented, we
project the activations in the visual part of the embedding layer into a two-dimensional space using
t-SNE (Maaten & Hinton| [2008). Figure[7]shows the 4000 data points projected into this 2D space,
colored by the corresponding action combinatiorﬂ Additionally, all data points where the visual
observation contained a level door are circled in red. This makes it possible to look at the spatial
arrangement of encodings in high dimensional space with respect to semantic and action-oriented
content.

T-SNE on the Visual Embedding
Trained Agent

Action Combination
Forward, Turn Right
Forward, Camera Left, Turn Right
Forward, Camera Left, Turn Left
B Forward, Camera Right, Turn Right
B Backward, Camera Right, Turn Right
B Everything Else

Observation Content
O  Level Door
193

Figure 7: T-SNE performed on the visual embedding of a trained agent colored by action com-
bination associated with each frame. Images show example agent observations which created the
encoding activation associated with the point it is connected to. Encodings associated with frames
containing level doors are circled in red.

Even in the 2D dimensional projection of the data, one can see a very good separation between points
associated with the different actions. Also, the frames showing level doors tend to be positioned

*For an interactive visualization to explore the observations associated with each point see herel


https://embodiedlearning.github.io/ICLR-Submission-2020/

Under review as a conference paper at ICLR 2020

close to each other within their respective action cluster even though they show doors under very
different illumination conditions (see the three example pictures in the top left of figure [7). As
the network’s task is not to recognize doors or other objects, but to navigate in a 3D world, it is
important to encode the visual information in this way. A door in the right part of the frame needs
to be encoded differently than a door in the center or left part of the frame. However, two doors
in the right part of the frame under different illumination should be encoded very similarly. This
meaningful and action relevant way of encoding the input can be seen in figure It shows that
in the visual encoding of the input conceptually similar images are positioned close to each other.
This means that the network encodes the input in an action-oriented way (Clark, |1998) and is rather
invariant towards irrelevant parts of the input such as illumination or texture.

To investigate if conceptually similar input images also lay close to each other in high dimensional
space, we can calculate the inter-class distance and variance of encodings associated with the differ-
ent action combinations. Table [I]lists the distances and variances between encodings belonging to
the same action combination divided by the overall distances and variance in the data.

In the trained agent, both distance and variance reduce strongly between the first four action com-
binations (0.78 and 0.58 respectively). In the random agent, there is no change in the distance or
variance when comparing all data points to points belonging to one action combination. The last
two action combinations which represent backwards motion and all other rare action combinations
actually have an increased variance in the trained agent. This may be due to a very variable use of
backwards motion when seeing possibly confusing visual input and the accumulation of multiple
action combinations (also including jumping) in the last action category. However, we can see that
at least for the first four action combinations the encodings of conceptually similar input frames are
also closer together in the high dimensional space (256 dimensions) of the visual encoding.

Table 1: Average distance and variance within points belonging to the same action combination
divided by the overall distance or variance between all encodings respectively.

Fractions of Trained Agent Random Agent
overall dist/var | Distance | Variance | Distance | Variance
Average 0.96 0.9414 1.063 1.1435
Action 1-4 0.78 0.5825 1.028 1.0639
Action 5-6 1.319 1.6594 1.133 1.3027

4 CONCLUSION

The results presented in this paper show that a neural network, trained in an embodied framework,
can learn stable and meaningful representations of its high dimensional input. The representations
are encoded in a sparse and efficient way without any explicit regularization enforcing this way
of encoding. The information encoded in the latent representation of the network is mainly action
focused, but also contains general concepts of action relevant objects such as doors, disregarding ir-
relevant information such as illumination. Overall these results suggest deep reinforcement learning
as a promising method for investigating stable representation learning similar to what is known from
biological findings.
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A APPENDIX

A.1 TRAINING SPECIFICS

Batch Size 256
Beta 5.0e-3
Buffer Size 1024
Epsilon 0.2
Gamma 0.999
Lambd 0.9
Learning Rate 1.0e-4
Normalize True
Use Recurrency False
# Parallel Environments | 16
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A.2 ACTIONS

Distribution of Actions
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Figure 8: Distribution of actions over one inference run of 4000 frames. (Left) Distribution in the
four action branches. (Top Right) Distribution of all existing action combinations. (Bottom Right)
Distribution of all action combinations used in the paper. All actions marked in grey in the plot
above are aggregated in the last action combination.
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A.3 K-MEANS CLUSTERINGS

Mean Within Class Variance Comparison Silhouette Score Comparison
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Figure 9: (Top) Analysis used for the choice of number of clusters in section[3.4] Both mean within
class variance as well as the silhouette score for different number of clusters have their minimum at
six clusters. (Bottom) Statistics of the k-means clustering with six clusters.
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A.4 T-SNE

T-SNE on the Visual Embedding
Random Agent

Action Combination
Forward, Turn Right
Forward, Camera Left, Turn Right
Forward, Camera Left, Turn Left
Forward, Camera Right, Turn Right
Backward, Camera Right, Turn Right
Everything Else

Observation Content
O Level Door

Figure 10: T-SNE performed on the visual embedding of a random agent colored by action combi-
nation associated with each frame. Frames where the observation contained a level door are circled
red.

T-SNE on the Visual Embedding
Trained Agent

Action Combination
Forward, Turn Right
Forward, Camera Left, Turn Right
Forward, Camera Left, Turn Left
Forward, Camera Right, Turn Right
Backward, Camera Right, Turn Right
Everything Else

Observation Content
O  Level Door
O Normal Door
O Key Door
Key
O Orb

Figure 11: T-SNE performed on the visual embedding of a trained Agent colored by action combi-
nation associated with each frame. Circled dots show frames containing rewarding experiences such
as doors, keys and orbs.
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T-SNE on the Visual Embedding
Trained Agent

Image Content
Nothing
Entry Door
Normal Door
Key Door
Puzzle Door
Level Door
Key

Orb
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Figure 12: T-SNE performed on the visual embedding of a trained Agent colored by semantic con-
tent of the visual observation associated with the encoding.

A.5 ANALYSIS OF HIGH-D SPACE

Distance Within Encodings Corresponding to one Action

Variance within Encodings Corresponding to one Action
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Figure 13: Distances and variances within the encodings for individual actions in the original high
dimensions encoding space (dim=256). Data in numbers is also given in[TJaccumulated over actions.
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