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ABSTRACT

ML algorithms or models, especially deep neural networks (DNNs), have shown sig-
nificant promise in several areas. However, recently researchers have demonstrated
that ML algorithms, especially DNNs, are vulnerable to adversarial examples
(slightly perturbed samples that cause mis-classification). Existence of adversarial
examples has hindered deployment of ML algorithms in safety-critical sectors,
such as security. Several defenses for adversarial examples exist in the literature.
One of the important classes of defenses are manifold-based defenses, where a
sample is ”pulled back” into the data manifold before classifying. These defenses
rely on the manifold assumption (data lie in a manifold of lower dimension than
the input space). These defenses use a generative model to approximate the input
distribution. This paper asks the following question: do the generative models used
in manifold-based defenses need to be topology-aware? Our paper suggests the
answer is yes. We provide theoretical and empirical evidence to support our claim.

1 INTRODUCTION

Machine learning (ML) algorithms, especially deep-neural networks (DNNs), have had resounding
success in several domains. However, adversarial examples have hindered their deployment in
safety-critical domains, such as autonomous driving and malware detection. Adversarial examples are
constructed by an adversary an adding a small perturbation to a data-point so that it is misclassified.
Several algorithms for constructing adversarial examples exist in the literature (Biggio et al., 2013;
Szegedy et al., 2013; Goodfellow et al., 2014b; Kurakin et al., 2016a; Carlini & Wagner, 2017; Madry
et al., 2017; Papernot et al., 2017). Numerous defenses for adversarial examples also have been
explored (Kurakin et al., 2016b; Guo et al., 2017; Sinha et al., 2017; Song et al., 2017; Tramèr et al.,
2017; Xie et al., 2017; Dhillon et al., 2018; Raghunathan et al., 2018; Cohen et al., 2019; Dubey et al.,
2019).

In this paper we focus on ”manifold-based” defenses (Ilyas et al., 2017; Samangouei et al., 2018).
The general idea in these defenses is to ”pull back” the data point into the data manifold before
classification. These defenses leverage the fact that in several domains, natural data lies in a low-
dimensional manifold (henceforth referred to as the manifold assumptions) (Zhu & Goldberg, 2009).
The data distribution and hence actual manifold that the natural data lies in is usually unknown, so
these defenses use a generative model to ”approximate” the data distribution. Generative models
attempt to learn to generate data according to the underlying data distribution (the input to a generative
model is usually random noise from a known distribution, such as Gaussian or uniform). There
are various types of generative models in the literature, such as VAE (Kingma & Welling, 2013),
GAN (Goodfellow et al., 2014a) and reversible generative models, e.g. Real NVP (Dinh et al., 2016).

This paper addresses the following question:

Do manifold-based defenses need to be aware of the topology of the underlying
data manifold?

This paper suggests that the answer to this question is yes. We demonstrate that if the generative
model does not capture the topology of the underlying manifold, it can adversely affect these defenses.
In these cases, the underlying generative model is being used as an approximation of the underlying
manifold. We believe that this opens a rich avenue for future work on using topology-aware generative
models for defense to adversarial examples.
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Contributions and Roadmap. We begin with a brief description of related work in Section 2.
Section 3 provides the requisite mathematical background. Our main theoretical results are provided
in Section 4. Informally our result says that if the generative model is not topology-aware, it can
lead to ”topological mismatch” between the distribution induced by the generative model and the
actual distribution. Section 5 experimentally verifies our theoretical results, and investigates their
ramifications on a manifold-based defenses called Invert-and-Classify (INC) (Ilyas et al., 2017;
Samangouei et al., 2018).

2 RELATED WORK

2.1 GENERATIVE MODELS

As a method for sampling high dimensional data, generative models find applications in various
fields in applied math and engineering, e.g. image processing, reinforcement learning, etc.. Learning
data-generating distribution with neural networks includes well-known examples of Variational
Autoencoder (VAE) (Kingma & Welling, 2013) and variations of Generative Adversarial Network
(GAN) (Goodfellow et al., 2014a; Radford et al., 2015; Zhao et al., 2016).

These generative models learn how to map latent variables into generated samples. VAE is a
variational Bayesian approach, so it approximates posterior distribution over latent vectors (given
training samples) by a simpler variational distribution. As other variational Bayesian methods do,
VAE tries to minimize the KL divergence between the posterior distribution and the variational
distribution by minimizing the reconstruction error of the auto-encoder. GAN is another type of
approach to learning how to transform latent vectors into samples. Unlike other approaches, GAN
learns the target distribution by training two networks – generator and discriminator – simultaneously.

In addition to generating plausible samples, some generative models construct bijective relation be-
tween latent vector and generated samples, so that the probability density of the generated sample can
be estimated. Due to its bijective nature, such generative models are reversible. Some examples are
normalizing flow (Rezende & Mohamed, 2015), Masked Autoregressive Flow (MAF) (Papamakarios
et al., 2017), Real NVP (Dinh et al., 2016), and Glow (Kingma & Dhariwal, 2018).

2.2 APPLICATIONS OF GENERATIVE MODELS IN ADVERSARIAL MACHINE LEARNING

The DNN based classifier has been shown to be vulnerable to adversarial attacks (Szegedy et al.,
2013; Goodfellow et al., 2014b; Moosavi-Dezfooli et al., 2016; Papernot et al., 2016; Madry et al.,
2017). Several hypothesis try explaining such vulnerability (Szegedy et al., 2013; Goodfellow et al.,
2014b; Tanay & Griffin, 2016; Feinman et al., 2017), and one explanation is that the adversarial
examples lie far away from the data manifold. This idea leads to defense approaches making use of
the geometry learned from the dataset – by projecting the given input to the nearest point in the data
manifold.

To learn a manifold from a given dataset, generative models can be exploited. The main idea is to
approximate the data-generating distribution with a generative model, to facilitate searching over
data manifold by searching over the space of latent vectors. The term invert and classify (INC) was
coined to describe this type of defense (Ilyas et al., 2017), and different types of generative models
were tried to detect adversarial examples (Ilyas et al., 2017; Song et al., 2017; Samangouei et al.,
2018). Usually, the projection is done by searching the latent vector that minimizes the geometric
distance (Ilyas et al., 2017; Samangouei et al., 2018). However, despite the promising theoretical
background, it turned out that all of those methods are still vulnerable (Athalye et al., 2018), (Ilyas
et al., 2017).

3 BACKGROUND

We formally describe data generation, based on the well-known manifold assumption; data tend to
be distributed along a manifold whose dimension is lower than the underlying space. In our model
of data generation, we provide a formal definition of data-generating manifold M on which the
data-generating distribution lies so that M conforms to the manifold assumption.

3.1 REQUIREMENTS

Real-world data tends to be noisy, so they do not easily correspond to an underlying manifold. We
first focus on an ideal case where data is generated solely from the manifold M without noise.
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In the setting of classification with l labels, we consider manifoldsM1, . . . ,Ml ⊂ Rn that correspond
to the generation of data in each class i ∈ {1, . . . , l}, respectively. We assume that those manifolds
are pair-wise disjoint, i.e. Mi ∩Mj = ∅ for any i 6= j, but the resulting data distribution may contain
ambiguities that can be classified into any of i and j. We set the data-generating manifold M as the
union of those manifolds, M =M1∪ . . .∪Ml. We assume M to be a compact Riemannian manifold
with a volume measure dM induced by its Riemannian metric. When a density function p defined on
M satisfies some requirements, it is possible to compute probabilities over M via

∫
x∈M p(x)dM(x).

We call such M equipped with p an dM as a data-generating manifold. We refer to Appendix A and
Appendix D.1 for details about definitions and requirements on p.

In practice, data generation is affected by noise, so not all data lie on the data-generating manifold.
Therefore, we incorporate the noise as an artifact of data-generation and extend the density p on
M to the density pM on the entire Rn by assigning local noise densities on M . We consider a
procedure that (1) samples a point xo from M first, (2) adds a noise vector n to get an observed point
x̂ = xo+n. Here, the noise n is a random vector sampled from a probability distribution, centered
at xo, whose noise density function is νxo .

(R0) The translated noise density function, νx(x̂− x), is the density of noise n = x̂− x being
chosen for a given x. Given xo = x, since adding noise n is the only way to generate x̂ by
perturbing x0, pM (x̂|xo = x) is equal to νx(n).

3.2 EXTENDING DENSITY

When M is equipped with a density function p and measure dM that we can integrate over M , we
can compute the density after random noise is added. For a fixed point x̂ ∈ Rn, there is a family of
density functions indexed by x ∈M – the conditional density function pM (x̂|xo = x). The idea is
to compute the density for compound distribution as follows.

pM (x̂) =

∫
x∈M

pM (x̂|xo = x)p(x)dM(x)

where p is the probability density function defined on M .

Due to the requirement (R0), the conditional density is equal to the translated noise density νx(x̂−x).

pM (x̂) =

∫
x∈M

νx(x̂− x)p(x)dM(x) (1)

Since νx(x̂ − x) is a function on x when x̂ is fixed, computing this integration can be viewed as
computing expectation of a real-valued function defined on M . Computing such expectation has
been explored in (Pennec, 1999). A demonstrative example is provided in Appendix B, and this
extension is further discussed in Appendix D.2.
3.3 GENERATIVE MODELS

A generative model tries to find a statistical model for joint density p(x, y) (Ng & Jordan, 2002).
We mainly discuss a specific type that learns a transform from one distribution DZ to another target
distributionDX . Commonly, a latent vector z ∼ DZ is sampled from a relatively simpler distribution,
e.g. Gaussian, then a pre-trained deterministic function G maps to a sample x = G(z).

Specifically, we focus on reversible generative models to facilitate the comparison between the
density of generated samples and the target density. In this approach, the dimensions of latent vectors
is set to be the same as that of the samples to be generated. Also, for a given x, the density of its
inverse image z = G−1(x) is computed by the change of variable formula,

pX(x) = pZ(z)

∣∣∣∣det(∂G(z)

∂ zT

)∣∣∣∣−1

(2)

where pX , pZ are the probability densities (of DX , DZ , respectively), and ∂G(z)
∂ zT

is the Jacobian of
G as a function from Rn to itself.
3.4 INVERT AND CLASSIFY (INC) APPROACH FOR ROBUST CLASSIFICATION

As the data-generating manifold M contains class-wise disjoint manifolds, there is a classifier f on
Rn separating these manifolds. If f separates the manifolds of M , any misclassified point should lie
out of M . Therefore, to change a correct classification near manifold, any adversary would pull a
sample further out of the manifold. By projecting misclassified points to the nearest manifold, we may
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expect the classification to be corrected by the projection. Invert and Classify (INC) method (Ilyas
et al., 2017; Samangouei et al., 2018) implements this using a generative model.

The main idea of INC is to invert the perturbed sample by projecting to the nearest point on data-
generating manifold. Ideally, the data-generating manifold M is accessible. For any point (x̂, y) with
f(x̂) 6= y, out-of-manifold perturbation is reduced by projecting x̂ to x∗ on M .

x∗ = arg min
x∈M

d(x, x̂) (3)

where d is a metric defined on the domain X . If perfect classification on M is assumed (model is
well-trained on M ) and x̂ is close enough to the manifold of correct label, classification f(x∗) is
likely to be correct, since x∗ is likely to lie on the correct manifold.

The manifold M is unknown in practice. However, as M is the data-generating manifold of DX , a
generative model G for DX is trained to approximate M . Then, searching over M is replaced by
searching over latent vectors of G. The optimization with this approximation is used by the INC
approach.

x∗ = G(z∗) where z∗ = arg min
z∼DZ

d(G(z), x̂) (4)

4 TOPOLOGICAL PROPERTIES OF DATA FROM GENERATIVE MODELS

In this paper, we study the significance of differences in the topological properties of the latent vector
distribution and the target distribution, in learning generative models. Initial information about the
topology of target distribution1, is crucial to the generative model performance. Specifically, if there
are fundamental topological differences between the target distribution and the distribution of the
latent vector, then any continuous generative model G cannot approximate the target distribution
properly (irrespective of the use training method). Due to the space limit, all proofs are presented in
Appendix C.
4.1 TOPOLOGY OF DISTRIBUTIONS BASED ON LEVEL SETS

The data-generating manifold is a geometric shape that corresponds to the distribution. However,
this manifold is not accessible in most cases and we only have indirect access via the distribution
extended from it. Therefore, we consider finding a shape from the extended density, so that this
“shape” successfully approximates the data-generating manifold.

λ-density level set. We use the concept of λ-density level set to capture geometric features of the
density function. Simply put, for a density function p and a threshold λ > 0, λ-density level set
Lp,λ is the inverse image p−1[λ,∞]. Our theoretical contribution is the conditional existence of a
λ-density level set reflecting the topology of the data-generating manifold, under proper conditions
on the noise density.

Assumptions on noise density. For a family of densities {νx}x∈M , we expect the noise νx to have
the following radii.
Definition 1. Let νx be a family of noise densities.

• λ is small-enough if Lνx,λ is nonempty for all x ∈M ,

• λ-bounding radius δx,λ := min{δ | Lνx,λ ⊆ Bδ(0)}
If maxx∈M δx,λ exists for some λ, we denote the maximum value as δλ.

• λ-guaranteeing radius εx,λ := max{ε | Bε(0) ⊆ Lνx,λ}
If minx∈M εx,λ exists for some λ, we simply the minimum value as ελ.

Sufficient conditions for the existence of these radii are discussed in Appendix D.3. The properties of
these radii are summarized in Lemma 1. (The proof follows from Definition 1).
Lemma 1. Let νx be a family of noise densities and let λ be small-enough. Then,

‖x̂− x ‖ > δλ =⇒ νx(x̂− x) < λ

‖x̂− x ‖ ≤ ελ =⇒ νx(x̂− x) ≥ λ
whenever δλ and ελ exist.

1The term topology of distributions, refers to the topology of shapes that correspond to the distributions.
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Figure 1: Example level setLx,λ

with λ-bounding radius δx,λ and
λ-guaranteeing radius εx,λ.

Figure 1 shows an example of level set Lx,λ of noise νx at a point
x and its λ-bounding radius δx,λ and λ-guaranteeing radius εx,λ.

Finally, we define the continuous variation of noise densities νx over
changes of x ∈ M . For the continuous variation, we require the
continuity of both radii δx,λ and εx,λ, as real-valued functions of
x ∈M for any fixed value of λ.
Definition 2 (Continuously varying radii). Noise densities νx have
continuously varying radii if, for a fixed small-enough λ, both λ-
bounding radius δx,λ and λ-guaranteeing radius εx,λ are continuous
functions of x ∈M .

When noise densities have continuously varying radii, with the compactness of M , we can apply the
extreme value theorem to guarantee the existence of both δλ = maxx∈M δx,λ and ελ = minx∈M εx,λ.

4.2 MAIN THEOREM

Our main theorem establishes, under the assumptions on noise densities from Section 4.1, the
existence of a λ such that,

• (Inclusion) The λ-density level set LpM ,λ includes the data-generating manifold M .
• (Separation) The λ-density level set LpM ,λ consists of connected components such that

each component contains at most one manifold Mi.
Definition 3. Consider a data-generating manifold M with density function p. For a radius ε > 0,
we define ωε to be the minimum (over x ∈M ) probability of sampling x′ ∈M in an ε-ball Bε(x).

ωε := min
x∈M

Pr
x′∼p

[x′ ∈ Bε(x)]

Definition 4 (Class-wise distance). Let (X, d) be a metric space and let M =
⋃l
i=1Mi be a

data-generating manifold in X . The class-wise distance dcw of M is defined as,

dcw = min
i,j∈[l]
i 6=j

min
x∈Mi

x′∈Mj

d(x,x′)

With the definitions above, we proved the following main theorem.
Theorem 1. Pick any small-enough threshold λ. Fix a value λ∗ ≤ ωελ and let δ∗ = δλ∗ be the
λ∗-bounding radius. If dcw of M is larger than 2δ∗, then the level set LpM ,λ∗ satisfies the followings.

• LpM ,λ∗ contains the data-generating manifold M .

• Each connected component of LpM ,λ∗ contains at most one manifold Mi of class i.

4.3 APPLICATION TO THE GENERATIVE MODEL

We show an application of Theorem 1. We denote the target distribution byDX , the latent distribution
byDZ , and the distribution ofG(z) where z ∼ DZ byDG(Z). Similarly, we denote the corresponding
λ-density level sets of densities by LXλ , LZλ , and LG(Z)

λ . We assume the generative model G to be
continuous. Then, we get the following theorem regarding the difference between LXλ and LG(Z)

λ , in
the number of connected components. 2

Theorem 2. Let DZ be a mixture of nZ multivariate Gaussian distributions, and let the data-
generating manifold of DX contain nX components. Let G be a continuous generative model for
DX using latent vectors from DZ . Let λ∗ be the threshold value from the Theorem 1. If nZ < nX ,
LXλ∗ and LG(Z)

λ∗ do not agree on the number of connected component.

We can use this theorem to deduce the need for proper information about the target distribution when
training a generative model, especially if it is used for a security-critical application, e.g. INC.

Corollary 1. If Theorem 2 is satisfied, there is a point x̂ ∈ Rn such that x̂ 6∈ LXλ∗ but x̂ ∈ LG(Z)
λ∗ .

2In Appendix D.4, Theorem 2 is generalized for more topological properties.
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As a result, with density at least λ∗, G generates a point x̂ which is unlikely to be generated by
the target distribution. Since INC is based on generations of G, INC method can output an out-of-
manifold point as a solution of optimization (4).

5 EXPERIMENTAL RESULT

In this section, we empirically demonstrate the consequence of the two theorems and explore their
implication for the INC defense. Our main goals are to check (1) the correctness of Theorem 2 and
Corollary 1 for toy datasets, and (2) the improvement in INC performance using a topology-aware
generative model. Our three main questions and the corresponding answers are,

(Q1) Can we experimentally verify the results of section 4.3? Specifically, can we find cases that
the level sets of DX and DG(Z) have different numbers of connected components?

(Q2) How does INC fail when the generative model is ignorant of topology information?
(Q3) Does the topology-aware generative model improve the INC performance?

(A1) Theorem 2 and Corollary 1 can be verified by plotting λ-density level set. Especially, we
visualize the λ-density level set of DG(Z) reflecting Theorem 2 and Corollary 1.

(A2) When generative model is not trained with topology information, naive INC may fail. We
found out two possible reasons regarding INC failure: (1) choice of a bad initial point and
(2) out-of-manifold search due to non-separation of density level set.

(A3) The performance of INC is improved by training generative models with topology informa-
tion on the target distribution. We improved the average INC performance by decreasing the
error induced by projection to 30% compared to the topology-ignorant counterpart.

In the rest of this section, we provide a more detailed description of our experiments. First, we briefly
describe the experimental setup in section 5.1: datasets and latent vector distributions. Then, section
5.2-5.4 describe the experimental results regarding the findings summarized above. Additional details
are in Appendix E that includes model architecture, INC implementation, and more results about INC
improvement.

5.1 EXPERIMENTAL SETUP

Datasets. For all experiments, we use three toy datasets in R2: two-moons, spirals, and circles.
Table 1 summarizes the parameterizations3 of each data-generating manifold and Figure 2 are the
plots of the corresponding data-generating manifolds. To construct the training set, we first sampled

two-moons spirals circles

M0 :

{
(x1,x2)

∣∣∣∣ x1 = cosθ
x2 = sinθ

}
M1 :

{
(x1,x2)

∣∣∣∣ x1 = 1− cosθ
x2 = 1− sinθ+ 1

2

}
forθ ∈ [0,π]

M0 :

{
(x1,x2)

∣∣∣∣ x1 = 1
3e
t cos(t)

x2 = 1
3e
t cos(t)

}
M1 :

{
(x1,x2)

∣∣∣∣ x1 = 1
3e
t cos(t+ 2

3π)
x2 = 1

3e
t sin(t+ 2

3π)

}
M2 :

{
(x1,x2)

∣∣∣∣ x1 = 1
3e
t cos(t+ 4

3π)
x2 = 1

3e
t sin(t+ 4

3π)

}

for t ∈ [0,T]whereT = ln
(

15√
2
+1

)

M0 :

{
(x1,x2)

∣∣∣∣ x1 = cosθ
x2 = sinθ

}
M1 :

{
(x1,x2)

∣∣∣∣ x1 = 1
2 cosθ

x2 = 1
2 sinθ

}
forθ ∈ [0,2π]

Table 1: Parameterizations of dataset used in the experiments.

1000 points uniformly from each manifold Mi, then each point was perturbed by isotropic Gaussian
noise N (0, σ2I2) with σ = 0.05. Before the training, each training set was standardized by a
preprocessing of Scikit-learn package.

Latent vector distributions. For latent vector distributions DZ , we prepared three mixtures of nZ
Gaussian distributions with nZ ∈ {1, 2, 3}. For the target distribution with l = nX classes, to choose
of nZ , we use (nX − 1) for topology-ignorant training and nX for topology-aware training.

5.2 VISUAL VERIFICATION OF THEOREMS

The goal of this section is to verify the Theorem 2 and the Corollary 1, by visualizing the level set
reflecting the statements. Figure 3 shows the λ-density level sets of densities ofDG(Z) using the same

3The value T is from the reparameterization t = ln
(
s
/√

2 + 1
)

for s ∈ [0, 15] for uniform sampling.
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(a) two-moons (b) spirals (c) circles

Figure 2: Data-generating manifolds used in the experiments

threshold λ = 0.01. The first row and the second row show the results from the topology-ignorant
version and those from the topology-aware version, respectively. Each column corresponds to each
dataset. All distributions are scaled for the standardization preprocessing before the training.

(a) two-moons, topology-ignorant (b) spirals, topology-ignorant (c) circles, topology-ignorant

(d) two-moons, topology-aware (e) spirals, topology-aware (f) circles, topology-aware

Figure 3: λ-density level sets ofDG(Z) with λ= 0.01

In general, level set components are separated when the generative model is topology-aware. On
the contrary, the topology-ignorant generative models introduce connections between level set
components, as anticipated by the Corollary 1. Due to this connection, the topology-ignorant
generative models achieve less number of connected components in its level set, and this verifies the
Theorem 2 for our choice of λ∗ = 0.01.

5.3 INC FAILURE DUE TO THE LACK OF INFORMATION ON THE DISTRIBUTION TOPOLOGY

We present how the non-separation of level set components influences the performance of the INC.
We provide two possible explanations of why INC fails. First is the bad initialization causing a
suboptimal solution on a manifold not-the-nearest to the input. The second is due to an artifact,
induced by the topological difference producing an out-of-manifold solution.

Figure 4 presents three visualized examples of INC with a topology-ignorant generative model for
two-moons. In each plot, the black dot is the given point x̂, and cyan dot is the initial point from
choosing z randomly from the latent vector distribution –N (0, I2), and magenta dot is the final point
outputted by INC. All intermediate points of the optimization are plotted with dots, changing colors
gradually from cyan to magenta. The training set for two-moon used in the training procedure is
plotted in gray.
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(a) INC with an ideal initialization (b) INC with a bad initialization (c) INC searching out of manifold

Figure 4: Successful and failed cases of INC using topology-ignorant generative model of two-moon.

Figure 4a is the ideal INC optimization. The initial point was chosen in the same manifold as the
manifold closest to x̂. Then, the INC optimization searches along the manifold, converging to a point
close to x̂. Figure 4b is the case that INC fails because of a bad initialization. The initial point was
chosen on the other manifold than the manifold containing the desired solution, so INC converged to a
local optimum on the wrong manifold. Our topology-aware INC performs manifold-wise initialization
to circumvent this issue. Figure 4c is the case that INC failed due to out-of-manifold search. Not
only that INC converged in a wrong manifold, but a nontrivial amount of intermediate points also lie
out of manifold, resulting in an out-of-manifold solution (see Figure 3a-c).
5.4 INC IMPROVEMENT VIA TOPOLOGY-AWARE GENERATIVE MODEL

We demonstrate that INC performance is improved by using topology-aware generative models. To
measure the performance of INC, 100 points are chosen uniformly from each manifold Mi. Then,
each point x is perturbed by nx normal to the manifold at x, generating 200 adversarial points
x̂ = x±r nx. For all datasets, r = 0.2 is used for perturbation size. We expect two types of INC to
map x̂ back to the original point x, as x is the optimal solution to (3). We define the projection error
of INC as ‖INC(x̂)− x ‖2, and collect the statistics of projection errors over all x̂.

Two-moons Spirals Circles
topology-ignorant topology-aware topology-ignorant topology-aware topology-ignorant topology-aware

0.647 (0.666) 0.148 (0.208) 1.523 (1.338) 0.443 (0.440) 0.699 (0.491) 0.180 (0.259)

Table 2: Comparison of the projection errors of INC based on the topology-awareness of the model.

Table 2 shows the projection error statistics for two types of generative model. Each pair of columns
is the results on the indicated dataset. For each pair, one column shows the performance of the
topology-ignorant INC and the other column shows that of the topology-aware counterpart. Numbers
in each cell are average and standard deviation (in parenthesis) of the projection error. For any dataset,
topology-aware INC achieves significantly lower projection errors. Histograms of the projection
errors and more experiment with INC applications are provided in Appendix F.

6 CONCLUSION

We theoretically and experimentally discussed the necessity of topology-awareness in the training
of generative models, especially in security-critical applications. A continuous generative model is
sensitive to the topological mismatch between the latent vector distribution and the target distribution.
Such mismatch leads to potential problems with manifold-based adversarial defenses utilizing
generative models such as INC. We described two cases when INC fails: the bad initialization and
the artifacts from the topological difference. We experimentally verified that topology-aware training
effectively prevents these problems, thereby improving the effectiveness of generative models in
manifold-based defense. After topology-aware training of generative models, the INC projection
errors fell down to 30% of the errors of the topology-ignorant INC.
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A MATHEMATICAL BACKGROUND

A.1 GENERAL TOPOLOGY

We introduce definitions and theorems related to general topology appeared in the paper. For more
details, all the definitions and theorems can be found in Munkres (Munkres, 2000).

Definitions in general topology. We first provide the precise definitions of the terms we brought
from the general topology.
Definition 5 (Topological space). A topology on a set X is a collection T of subsets of X having
the following properties.

1. ∅ and X are in T .

2. The union of the elements of any subcollection of T is in T .

3. The intersection of the elements of any finite subcollection of T is in T .
A set X for which a topology T has been specified is called a topological space.

For example, a collection of all open sets in Rn is a topology, thus Rn is a topological space. If a
topology can be constructed by taking arbitrary union and a finite number of intersections of a smaller
collection B of subsets of X , we call B is a basis of the topology.

Pick a metric d in Rn and consider B a set of all open balls in Rn using the metric d. The topology
of Rn can be constructed by taking B as a basis. When this construction is possible, metric d is said
to induce the topology.
Definition 6 (Metrizable space). If X is a topological space, X is said to be metrizable if there exists
a metric d on the set X that induces the topology of X . A metric space is a metrizable space X
together with a specific metric d that gives the topology of X .

Since Rn is equipped with Euclidean metric that induces its topology, Rn is metrizable.

Continuity and the extreme value theorem. Let X and Y be topological spaces In the field of
general topology, a function f : X → Y is said to be continuous, if for any subset V open in Y , its
inverse image f−1(V ) is open in X . Moreover, if f is a continuous bijection whose inverse is also
continuous, f is called a homeomorphism. The notion of homeomorphism is important as it always
preserves topological property, e.g. connectedness, compactness, etc., and this will be used in the
further generalization of Theorem 2.

Here, we only introduce the generalized statement of extreme value theorem.
Theorem 3 (Extreme value theorem). Let f : X → Y be continuous, where Y is an ordered set. If
X is compact, then there exist points x and x in X such that f(x) ≤ f(x) ≤ f(x) for every x ∈ X .

Specifically, if a manifold M is a compact subset in Rn, we may use X =M and Y = R.

Normal space and Urysohn lemma. The Urysohn lemma was used to prove the Corollary 1. We
first introduce the notion of normal space.
Definition 7 (Normal space). Let X be a topological space that one-point sets in X are closed. Then,
X is normal if for each pair A, B of disjoint closed sets of X , there exist disjoint open sets containing
A and B, respectively.

Urysohn’s lemma is another equivalent condition for a space to be normal.
Theorem 4 (Urysohn lemma). Let X be a normal topological space; let A and B be disjoint closed
subsets in X . Let [a, b] be a closed interval in the real line. Then there exists a continuous map

f : X −→ [a, b]

such that f(x) = a for every x in A, and f(x) = b for every x in B.

To apply this lemma to Rn, we only need the following theorem.
Theorem 5. Every metrizable space is normal.

Since Rn is metrizable, it is a normal space by Theorem 5. Therefore, we can apply Urysohn lemma
to any pair of disjoint subsets in Rn, to show the existence of a continuous map f : X → [0, 1].
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A.2 DIFFERENTIAL GEOMETRY

We provide the definitions from differential geometry (Lee, 2003) used in the paper.

Manifold and tangent space.
Definition 8 (Manifold). Suppose M is a topological space. We say M is a topological manifold of
dimension k if it has the following properties.

1. For any pair of distinct points x1,x2 ∈ M , there are disjoint open subsets U1, U2 ⊂ M
such that x1 ∈ U and x2 ∈ V .

2. There exists a countable basis for the topology of M .

3. Every point has a neighborhood U that is homeomorphic to an open subset Ũ of Rk.

There are different ways to define tangent space of k-dimensional manifold M . Informally, it can be
understood as geometric tangent space to M ⊂ Rn at a point x ∈M , which is a collection of pairs
(x,v) where v is a vector tangentially passing through x. Here we put a more formal definition of
tangent space. Consider a vector space C∞(M), a set of smooth functions on M .
Definition 9 (Tangent space). Let x be a point of a smooth manifold M . A linear map X :
C∞(M)→ R is called a derivation at x if it satisfies

X(fg) = f(x)Xg + g(x)Xf

for all f, g ∈ C∞(M).

The set of all derivations of C∞(M) at x forms a vector space called the tangent space to M at x,
and is denoted by Tx(M).

Riemannian metric. As tangent space Tx(M) is a vector space for each x ∈M , we can consider
a inner product gbfx defined on Tx(M).
Definition 10 (Riemannian metric). A Riemannian metric g on a smooth manifold M is a smooth
collection of inner products gx defined for each Tx(M). The condition for smoothness of g is that,
for any smooth vector fields X , Y on M, the mapping x 7→ gx(X|x,Y|x).

A manifold M equipped with a Riemannian metric g is called a Riemannian manifold.

B EXAMPLES

Computing density p over a Riemannian manifold M . This section presents example compu-
tations of the probability computations from the Section D.1 and 3.2 As a concrete example of
computing density over a manifold, we use the following simple manifolds, so called two-moons in
R2.

M0 =

{
(x1, x2)

∣∣∣∣ x1 = cos θ
x2 = sin θ

for θ ∈ [0, π]

}
M1 =

{
(x1, x2)

∣∣∣∣ x1 = 1− cos θ
x2 = 1− sin θ + 1

2

for θ ∈ [0, π]

}
We take M = M0 ∪M1 as our example manifold. Figure 5a shows the manifold of two-moons

dataset plotted in different colors: M0 in red and M1 in blue.

First recall the following equation (equation (8) from the Section D.1).∫
x∈M

p(x)dM(x) =

∫
u∈D

p(X(u))
√∣∣det[gX(u)]

∣∣du
where [gX(u)] is the k × k matrix representation of the inner product gX(u) at X(u) ∈M .

Especially, when a manifold in Rn is of dimension 1, i.e. parameterized curve γ : [a, b]→ Rn, the
integration (8) can be written in simpler way.∫

x∈M
p(x)dM(x) =

∫ b

t=a

p(γ(t))‖γ′(t)‖dt (5)

where γ′(t) is the n-dimensional velocity vector at t ∈ [a, b].
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(a) Plot of the two-moons mani-
fold in R2

(b) Extended density function over R2 from
the two-moons dataset

Figure 5: Density extension example from two-moons manifold.

Let p be a probability density function defined on M . As M is composed of two disjoint manifolds
M0 and M1, we consider conditional densities p0, p1 as follows.

p0(x) = p(x |x ∈M0) =
p|M0(x)

Pr[x ∈M0]

p1(x) = p(x |x ∈M1) =
p|M1(x)

Pr[x ∈M1]

(6)

Here, p|M0 and p|M1 are the density function p with its domain restricted toM0 andM1, respectively.
By our definition of data-generating manifolds, Pr[x ∈Mi] corresponds to the probability of data
generation for class i, i.e. Pr[y = i]. For a concrete example of such density, uniform density for
each manifold Mi can be defined as pi(x) = 1

π for all x ∈Mi.

Note that each of manifolds are parameterized curves in R2,

γ0 : θ 7→ (cos θ, sin θ)

γ1 : θ 7→ (1− cos θ, 1− sin θ + 0.5)

with constant speed ‖γ′0(θ)‖ = ‖γ′1(θ)‖ = 1 at all θ ∈ [0, π]. Therefore, from equation (5),∫
x∈M0

p|M0(x)dM0(x) =

∫ π

θ=0

p(γ0(θ))dθ∫
x∈M0

p|M1(x)dM1(x) =

∫ π

θ=0

p(γ1(θ))dθ

(7)

For any measurable subset A ⊆M , the probability for an event that x is in A can be computed as
follows.

Pr[x ∈ A] =
∫
x∈A⊆M

p(x)dM(x)

=

∫
x∈A∩M0

p|M0(x)dM0(x) +

∫
x∈A∩M1

p|M1(x)dM1(x)

=

∫
θ∈[0,π]
γ0(θ)∈A

p|M0(γ0(θ))dθ +

∫
θ∈[0,π]
γ1(θ)∈A

p|M1(γ1(θ))dθ (∵ (7))

=Pr[x ∈M0]

∫
θ∈[0,π]
γ0(θ)∈A

p0(γ0(θ))dθ

+ Pr[x ∈M1]

∫
θ∈[0,π]
γ1(θ)∈A

p1(γ1(θ))dθ (∵ (6))

=
1

π

Pr[x ∈M0]

∫
θ∈[0,π]
γ0(θ)∈A

1dθ + Pr[x ∈M1]

∫
θ∈[0,π]
γ1(θ)∈A

1dθ


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We can briefly check all the requirements (R1), (R2), and (R3). The computation of Pr[x ∈ A] is
based on (R1), so (R1) is satisfied trivially. Also, p is a function defined only on M , thus (R2) is
clear, i.e. supp(p) = {x ∈ Rn | p(x) > 0} ⊆ M . To check (R3), when A = Mi, computing this
integration will result in the exact probability Pr[x ∈Mi] = Pr[y = i], so when A =M , computing
the integration will result in Pr[y = 0] + Pr[y = 1] = 1, as desired in the requirements.

Extending density to Rn. We extend the domain to Rn for the example of two-moon. We show an
example that under a proper noise density function, we can construct the density extended from M
satisfying the requirement (R0). For simplicity, we choose isotropic Gaussian distribution,N (0, σ2I)
with standard deviation σ for each dimension, as the noise density function νx for all x ∈M . Such
noise density νx defined in Rn can be written as follows.

νx(nx) =
1√
2πσ2

exp

(
−‖nx ‖22

2σ2

)
By putting nx = x̂− x to density equation above,

pM (x̂) =

∫
x∈M

1√
2πσ2

exp

(
−‖x̂− x ‖22

2σ2

)
p(x)dM(x)

Specifically, We assume an isotropic Gaussian distribution with σ = 0.05 as the noise density νx for
all x ∈M .

By the equation (1), we have the following computation of density on x̂.

pM (x̂) =

∫
x∈M

νx(x̂− x)p(x)dM(x)

=

∫
x∈M0

νx(x̂− x)p|M0(x)dM0(x) +

∫
x∈M1

νx(x̂− x)p|M1(x)dM1(x)

=

∫ π

θ=0

νx(x̂− x)p|M0(γ0(θ))dθ +

∫ π

θ=0

νx(x̂− x)p|M1(γ1(θ))dθ (∵ (5))

=Pr[x ∈M0]

∫ π

θ=0

νx(x̂− x)p0(γ0(θ))dθ

+ Pr[x ∈M1]

∫ π

θ=0

νx(x̂− x)p1(γ1(θ))dθ (∵ (6))

=
1

π
√
2πσ2

[
Pr[x ∈M0]

∫ π

θ=0

exp

(
−‖x̂− x ‖22

2σ2

)
dθ

+ Pr[x ∈M1]

∫ π

θ=0

exp

(
−‖x̂− x ‖22

2σ2

)
dθ

]
We can also check that the requirement (R0) is satisfied by the construction; our construction

(equation (1)) is based on (R0). The computed density is shown in Figure 5b.

C PROOFS

In this Section, we provide the proofs for statements that appeared in Section 4.

C.1 PROOF OF THEOREM 1

To begin with, pick a value λ such that the λ-density level set Lνx,λ is nonempty for all x ∈M . As
we use noise densities νx described in Section 4.1, it is safe to assume that both λ-bounding radius
δλ = maxx∈M δx,λ and λ-guaranteeing radius ελ = minx∈M εx,λ exist.

Then, we can prove that, with a proper choice of threshold λ, λ-density level set includes the
data-generating manifold.
Lemma 2. Assume that noise densities have radii in Definition 1 for all x ∈M and a small enough
λ > 0. Then, for any x ∈M , the density pM (x) is at least ωελ, i.e. pM (x) ≥ ωελ, where ε = ελ.

Proof. By Lemma 1,
x′ ∈ Bε(x) ⇐⇒ x ∈ Bε(x′) = Bελ(x

′) (∵ ε = ελ)

=⇒ νx′(x−x′) ≥ λ
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Then, we can lower bound the density pM (x) as follows.

pM (x) =

∫
x′∈M

νx′(x−x′)p(x′)dM(x′)

≥
∫
x′∈M∩Bε(x)

νx′(x−x′)p(x′)dM(x′)

≥ λ
∫
x′∈M∩Bε

p(x′)dM(x′)

= λ Pr
x′∈M

[x′ ∈ Bε(x)]

≥ ωελ

This lemma shows that the thresholding the extended density pM with threshold λ∗ ≤ ωελ guarantees
the level set to include the entire manifold M .
Corollary 1. For any threshold λ∗ ≤ ωελ, the corresponding λ∗-density level set LpM ,λ∗ of the
extended density pM includes the data-generating manifold M .

Similarly, we show that, with a proper choice of threshold λ, each connected component of λ-density
level set contains at most one manifold.
Lemma 3. Assume a family of noise densities satisfies the assumptions of Section 4.1. Let λ > 0
be a value such that the λ-density level set Lνx,λ is nonempty for any x ∈M . Also, let δ = δλ be
the maximum λ-bounding radius over M . Then, for any x̂ 6∈ Nδ(M), the extended density value is
smaller than λ, i.e. pM (x̂) < λ.

Proof. By Lemma 1,
x̂ 6∈ Nδ(M) ⇐⇒ x̂ 6∈ Bδ(x) = Bδλ(x) for any x ∈M (∵ δ = δλ)

=⇒ νx(x̂− x) < λ for any x ∈M
Then, we can upper bound the density pM (x̂) as follows.

pM (x̂) =

∫
x∈M

νx(x̂− x)p(x)dM(x)

< λ

∫
x∈M

p(x)dM(x) (∵ x̂ 6∈ Nδλ(M))

= λ

This lemma says that, the λ-density level set is included by the δ-neighborhood Nδ(M) of the
data-generating manifold M .

Now, we can deduce the following main result.
Theorem 1. Pick any λ∗ ≤ ωελ threshold value satisfying the Corollary 1. If the class-wise distance
of data-generating manifold is larger than 2δ∗ where δ∗ = δλ∗(the λ∗-bounding radius), then the
level set LpM ,λ∗ satisfies the followings.

• LpM ,λ∗ contains the data-generating manifold M .

• Each connected component of LpM ,λ∗ contains at most one manifold Mi of class i.

Proof. The first property is a direct application of Corollary 1 for λ∗ = ωελ.

For the Second property, since the class-wise distance of M is larger than 2δ∗, the δ∗-neighborhood
of manifolds are pairwise disjoint, i.e. Nδ∗(Mi)∩Nδ∗(Mj) = ∅ for each i 6= j. Therefore, Nδ∗(M)
has exactly k connected components Ni = Nδ∗(Mi)’s.

By Lemma 3, δ∗-neighborhood Nδ∗(M) contains the level set LpM ,λ∗ , thus each connected compo-
nent of LpM ,λ∗ is in exactly one of Ni’s. Since M is contained in LpM ,λ∗ , each Mi is contained in
some connected component C of LpM ,λ∗ which is in Ni. Then, for any j 6= i, Mj 6⊂ C ⊂ Ni, since
Mj is in Nj which is disjoint to Ni. Therefore, if a connected component C contains a manifold Mi,
then it cannot contain any other manifold.
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C.2 PROOFS FOR SECTION 4.3

Theorem 2. Let DZ be a mixture of nZ multivariate Gaussian distributions, and let DX be the target
distribution from a data-generating manifold with nX manifolds. Let G be a continuous generative
model for DX using latent vectors from DZ . Assume the Theorem 1 is satisfied, and let λ∗ be the
threshold value from the Theorem 1.

If nZ < nX , LXλ∗ and LG(Z)
λ∗ do not agree on the number of connected component.

Proof. Since LXλ∗ is the results of Theorem 1, the number of connected component of LXλ∗ is at least
nX .

However, since DZ is a mixture of Gaussians, for any value of λ (including the special case λ = λ∗),
LZλ can never have more than nZ connected components. Since G is continuous, it preserves the
number of connected components, thus LG(Z)

λ∗ = G(LZλ∗) has at most nZ connected components. As
nZ < nX , LXλ∗ and LG(Z)

λ∗ can never agree on the number of connected components.

Corollary 2. If Theorem 2 is satisfied, there is a point x̂ ∈ Rn such that x̂ 6∈ LXλ∗ but x̂ ∈ LG(Z)
λ∗ .

Proof. Since nZ < nX , there exists a connected components Ĉ of LG(Z)
λ∗ containing at least two

connected components of SXλ∗ . Without loss of generality, assume Ĉ contains exactly two connected
components C and C ′. By definition, λ-level set is a closed set, so C and C ′ are disjoint closed sets.
In Euclidean space Rn, the Urysohn lemma tells us that for any disjoint pair of closed sets A,A′
in Rn, there is a continuous function f such that f |A(x) = 0 and f |A′(x) = 1 for any x ∈ Rn.
Especially, when A = C and A′ = C ′, there exists a continuous function f such that,

• f(x) = 0 for all x in C

• f(x) = 1 for all x in C ′

Consider S = f−1( 12 ) which is a separating plane separating C and C ′. If Ĉ ∩ S = ∅, then
Ĉ ∩ S = f−1[0, 12 ) and Ĉ ∩ S = f−1( 12 , 1] will be two open set in subspace Ĉ, whose union is Ĉ.
This implies that Ĉ is disconnected, which is a contradiction. Therefore, Ĉ ∩ S should be nonempty,
and any point x in Ĉ ∩ S is not in LXλ∗ .

D FURTHER DISCUSSIONS

D.1 COMPUTING DENSITY OVER A DATA-GENERATING MANIFOLD

When M is a Riemannian manifold equipped with a Riemannian metric g, we can compute probabili-
ties over M . There are two essential components of probability computation: (a) a density function p
and (b) a measure dM over M . We assume p and dM to satisfy the followings.

(R1) For any measurable subset A ⊂M , i.e. Pr[x ∈ A] =
∫
x∈A p(x)dM(x).

(R2) p is zero everywhere out of M , i.e. supp(p) = {x ∈ Rn | p(x) > 0} ⊆M
(R3) For any (x, y), x is sampled from Mi if and only if y = i, i.e. Pr[x ∈Mi] = Pr[y = i]

When equipped with such p and dM , we call M as a data-generating manifold.

Probability over a Riemannian manifold. We show how to compute a probability of x being
generated from a Riemannian manifold M . We assume a k-dimensional manifold M equipped
with a Riemannian metric g, a family of inner products gx on tangent spaces TxM . In this case, g
induces the volume measure dM for integration over M . If M is parameterized by x = X(u) for
u ∈ D ⊆ Rk, the integration of a density function p on M is as follows.∫

x∈M
p(x)dM(x) =

∫
u∈D

p(X(u))
√∣∣det[gX(u)]

∣∣du (8)

where [gX(u)] is the k × k matrix representation of the inner product gX(u) at X(u) ∈M .

In section B, a concrete example of this computation will be provided.
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D.2 DENSITY EXTENSION OF THE SECTION 3.2

This section introduces some remaining discussions regarding our data-generating process from a
data-generating manifold.

Relation to kernel density estimation. While this extension is computing the density of compound
distribution, it can be interpreted as computing expectation over a family of locally defined densities.
Such expected value can be observed in previous approaches of density estimation. For example, if νx
is isotropic Gaussian for each x, the above integration is equivalent to the kernel density estimation,
with Gaussian kernel, over infinitely many points on M .

Observed property of the extended density. In Figure 5b in Section B, we can observe that
the extended density achieved higher values near the data-generating manifold. We formalize this
observation to discuss its implication to the INC approach.

Let d(x̂,M) to be the minimum distance from x̂ to the manifold M .

(C1) For any given x̂, let y∗ be the class label whose conditional density pM (x̂|y = y∗) dominates
pM (x̂|y = i) for i 6= y∗,

y∗ ∈ argmax
i∈[l]

pM (x̂|y = i) (9)

and let My∗ be the manifold corresponding to y∗.
(C2) For y∗ satisfying (C1), we choose y∗ such that the distance of x̂ from the manifold d(x̂,My∗)

is the smallest.

If there are multiple y∗ satisfying both of (C1) and (C2), we expect the following property to be true
for all of those y∗.

(P1) Consider the shortest line from x̂ to the manifold My∗ . As x̂ goes closer to My∗ along
this line, x̂ should be more likely to be generated as the influence of noise decreases when
moving away from the manifold. Therefore, we expect our density pM to have the following
property.

x∗ ∈ arg min
x∈My∗

d(x̂,x)

=⇒ pM (x̂) ≤ pM ((1− λ)x̂+ λx∗) for all λ ∈ [0, 1]
(10)

Actually, this provides another justification of INC. In reality, the density conditioned by the label
is not available even after running a generative model, so finding y∗ with (C1) is relatively hard. If
we only consider (C2) without filtering y∗ via (C1), we are finding a point x ∈ M achieving the
minimum distance to x̂, which is the optimization (3) above. Then projecting x̂ to the x∗, i.e. the
solution of the optimization 3, can be explained by 10; when λ = 1, pM is the highest along the
shortest line between x̂ and x∗.

D.3 SUFFICIENT CONDITIONS FOR THE EXISTENCE OF RADII

We discuss the sufficient conditions guaranteeing the existence of radii introduced in Definition 1.
Those sufficient conditions are derived from natural intuition about the properties of distributions in
most machine learning context.

The first intuition is that the influence of noise should diminish as observed sample x̂ moves away
from a source point xo. Therefore, we formalize the noise whose density decreases as the noise
n = x̂− xo gets bigger. We formalize boundedness of noise densities via the boundedness of their
λ-density level sets and continuity of noise density via the continuity of individual νx.
Definition 11 (Center-peaked noise density). Noise density functions νx are center-peaked, if for any
source point x ∈M and any noise vector n ∈ Rn with ‖n ‖ > 0, νx(n) < νx(λn) for all λ ∈ [0, 1)

Definition 12 (Bounded noise density). Noise density functions νx are bounded, if a λ-density level
set is nonempty, there is a radius δ by which the λ-density level set is bounded, i.e. Lνx,λ ⊆ Bδ(0)
where Bδ(0) is the closed ball of radius δ centered at 0.
Definition 13 (Continuous noise density). Noise density functions νx are continuous, if νx is
continuous in Rn, for any x ∈M
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Under the conditions above, the radii in Definition 1 always exist.

Proposition 1. If noise densities νx are center-peaked, bounded, and continuous. Then, any nonempty
λ-density level set Lνx,λ has both λ-bounding radius δx,λ and λ-guaranteeing radius εx,λ.

Proof. Let νx be a center peaked, level set bounded family of continuous noise densities. Since
νx is continuous, level set Lνx,λ = ν−1x [λ,∞) is closed as an inverse image of νx. Therefore, it’s
boundary ∂Lνx,λ is contained in Lνx,λ.

Because νx is level set bounded, level set Lνx,λ is bounded by a closed ball Bδ(0) with radius δ ≥ 0.
Since νx is center peaked, a nonempty level set Lνx,λ always contains 0 as the maximum is achieved
at 0. Moreover, there exists a closed neighborhood ball Bε(0) with radius ε ≥ 0 contained in the
level set Lνx,λ. Now it is enough to show that the minimum of δ and the maximum of ε exist.

Since Lνx,λ is bounded, its boundary ∂Lνx,λ is also bounded. ∂Lνx,λ is closed and bounded, thus
it is a compact set. Therefore, the Euclidean norm, as a continuous function, should achieve the
maximum r and the minimum r on ∂Lνx,λ by the extreme value theorem. From the choice of δ and
ε, we can get,

ε ≤ r ≤ r ≤ δ

Therefore, we can find the minimum δx,λ = r and the maximum εx,λ = r.

D.4 GENERALIZATION OF THE THEOREM 1

We try generalizing the Theorem 2 to handle more concepts in topology. The Theorem 2 mainly uses
a fact that the number of connected components of λ-density level set is preserved by a continuous
generative model G.

In algebraic topology, each connected component corresponds to a generator of 0-th homology group
H0, and continuity of a function is enough to preserve each component. In general, generators of i-th
homology group Hi for i > 0 are not preserved by a continuous map, so we need to restrict G further.
By requiring G to be a homeomorphism, we can safely guarantee that all topological properties are
preserved by G, therefore we can generalize the Theorem 2 with a homeomorphic generative model
G.

To generalize the proof of the Theorem 2, we first provide the sketch of the proof.

(1) λ∗-density level set LZλ∗ of mixture of Gaussian has at most nZ connected component.
(2) Since G is continuous, the number of connected components of LGλ∗(Z) = G(LZλ∗) is same

to the number of connected components of LZλ∗ , so it is also at most nZ .
(3) We chose λ∗ so that LXλ∗ is included in δ∗-neighborhood of M .
(4) By assumption on the class-wise distance of M , δ∗-neighborhood of M has exactly same

number of connected components to M , i.e. nX . Therefore LXλ∗ has at least nX connected
components.

(5) By (2) and (4), we conclude that LGλ∗(Z) and LXλ∗ do not agree on the number of connected
components as long as nZ < nX .

In this proof, nZ corresponds to the maximal 0-th Betti number of LZλ∗ , i.e. the number of generators
of H0(L

Z
λ∗). If we keep using a mixture of Gaussians as latent vector distribution, all components of

LZλ∗ are contractible, so we may use 0 as the maximal i-th Betti number.

Also, nX corresponds to the 0-th Betti number of M and it worked as the minimal 0-th Betti number
of LXλ∗ . The condition on the class-wise distance of M is used to ensure nX to be a lower bound.
Combining these observations, we can get the following generalized statement.

Theorem 3. Let DZ be a mixture of multivariate Gaussian distributions, and let DX be the target
distribution from data-generating manifold M . Let ni be the i-th Betti number of M .

Consider a generative model G is used to approximate DX using the latent vectors sampled from DZ .
Assume thatG is a homeomorphism from Rn to itself. Assume that data-generating manifold satisfies
the conditions of the Theorem 1, and let λ∗ be the threshold value that LXλ∗ corresponds to that level
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set. Assume that for some j > 0, the homomorphism ι∗ induced by the inclusion ι :M → Nδ∗(M)
is injective. 4

If 0 < nj , LXλ∗ and LG(Z)
λ∗ do not agree on the number of connected component.

Proof. Since LXλ∗ is the results of Theorem 1, it includes M and is included by δ∗-neighborhood
Nδ∗(M) of M . Define inclusions ι1, ι2 as,

• ι1 :M → LXλ∗

• ι2 : LXλ∗ → Nδ∗(M)

Clearly, ι = ι2 ◦ ι1.

Let ι∗1 and ι∗2 be induced homomorphisms of ι1 and ι2, resp.

By the assumption, any generator [a] in Hj(M) is injectively mapped to a nonzero generator ι∗([a])
in Hj(Nδ∗(M)). Therefore, the j-th Betti number of Nδ∗(M) is equal to that of M , i.e. nj . Note
that j-th Betti number is the rank of j-th homology group rank(Hj(Nδ∗(M))) Because ι∗2 is a
homomorphism from Hj(L

X
λ∗) to Hj(Nδ∗(M)), rank(LXλ∗) ≥ rank(Hj(Nδ∗(M))). Therefore the

j-th Betti number of LXλ∗ is at least nj .

However, since DZ is a mixture of Gaussians, for any value of λ (including the special case λ = λ∗),
LZλ does not have any generator of j-th homology group, so it has j-th Betti number 0 for all
j > 0. Since G is homeomorphic, it preserves all the Betti numbers, thus LG(Z)

λ∗ = G(LZλ∗) has the
same j-th Betti number. As 0 < nj , LXλ∗ and LG(Z)

λ∗ can never agree on the number of connected
components.

Later in Section 5.2, we will see the Figure 3f from the circles dataset, which is a remarkable
example that LGλ (Z) has the same number of connected components, but does not have any loop (non-
contractible circle). This is empirical evidence of the Theorem 3, so it is explained by mismatches
in the topology of distributions. Each concentric circle has Z as its first homology group as circle
contains exactly one generator. However, latent vector distribution always has a trivial first homology
group, as any level set of a mixture of Gaussians is a set of contractible connected components.

E DETAILS OF EXPERIMENTS IN THE SECTION 5
Latent vector distributions. For latent vector distributions DZ , we prepared three different mix-
tures of nZ Gaussian distributions with nZ ∈ {1, 2, 3}. When nZ = 1, we simply use N (0, I2).
When nZ = 2, 3, we arranged nZ Gaussian distributions along a circle of radius R = 2.5, so that
i-th Gaussian has mean at µi =

(
−R sin

(
2πi
n

)
, R cos

(
2πi
n

))
with σ = 0.5 for n = 2 and σ = 0.3

for n = 3. Then, the uniform mixtures of the arranged Gaussian were used as DZ .

Training generative models. Our experiments mostly use the Tensorflow Probability (Dillon
et al., 2017) library which contains the implementation of reversible generative models. Especially,
the Tensorflow Probability library contains an implementation of the Real NVP coupling layer
that we used as the building blocks of our models. The default template provided by Tensorflow
Probability library was used to construct each Real NVP coupling layer with two hidden layers of
128 units. Each model uses eight coupling layers that are followed by permutation exchanging two
dimensions of R2 except for the last coupling layer.

We describe the details of the training procedure of the generative models used in Section 5. In Section
5, we prepared two different types of generative models: topology-ignorant and topology-aware.

The topology-ignorant type is the usual Real NVP model. This model uses the empirical estimation
of log-likelihood as over a training batch {x1, . . . ,xm} as its training loss.

`ci =
1

m

m∑
t=1

log(pX(xt))

4Any generator of the j-th homology group Hj(M) of M is mapped to a nonzero generators of the j-th
homology group Hj(Nδ∗(M)) of δ∗-neighborhood of M .
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where pX is estimated by applying the change of variables formula – equation (2) in Section 3.3.

The topology-aware type is the Real NVP model trained with information about the number of
connected components, i.e. the number of class labels l Using the number of labels, the densities pX
and pZ can be decomposed as follows.

pX(x) =
∑

i∈{1,...,l}

Pr[y = i] pX,i(x)

pZ(z) =
∑

i∈{1,...,l}

Pr[y = i] pZ,i(z)
(11)

where pX,i(x) = pX(x |y = i) and each pZ,i is the i-th Gaussian component described in Section
5.1. Since Pr[y = i] is not generally known, the uniform distribution Pr[y = i] = 1

l is used, where l
is the number of classification labels.

The main idea is class-wise training, i.e. training each pX,i from each pZ,i. Applying the change of
variable formula for each class i,

pX,i(x) = pZ,i(z)

∣∣∣∣det(∂G(z)

∂ zT

)∣∣∣∣−1

(12)

Combining equations (11) and (12), we get the change of variable formula (2), so this approach
works as a reversible generative model allowing the density computation.

We define the class-wise loss function `i for class-wise training as follows.

`i =
1

mi

m∑
t=1

1[yt = i] log(pX,i(xt))

where mi is the number of training samples in class i. Then, we train a generative model using the
weighted sum of `i as the training loss function.

`ca =
∑

i∈{1,...,l}

Pr[y = i] `i

Each model was trained for 30000 epoch. For each epoch, a batch of 200 random samples was chosen
from two-moons and circles dataset, and a batch of 300 random samples was chosen from the spirals
dataset. For the choices of latent vector distribution, we chose the mixture of l − 1 Gaussians for
topology-ignorant type, whereas we chose the mixture of l Gaussians for topology-aware type.

INC implementation. When INC is implemented with a reversible generative model G, for any
given x̂ ∈ Rn there exist a trivial solution z∗ = G−1(x̂) to the optimization (4), achieving
d(G(z∗),x) = 0. This is even true for x̂ out of the manifold, resulting in the situation that the
output x∗ = G(z∗) = x̂ is still out of the data-generating manifold.

To manage this problem, we add another term penalizing a low density of latent vector to the objective
function. Thus, in our INC implementation, we solve the following optimization problem.

x∗ = G(z∗) where z∗ = arg min
z∼DZ

[d(G(z), x̂) + α(M − pZ(z))] (13)

where α is the regularization factor and M is the maximum possible value of the density pZ of the
latent vector distribution. For the choice of regularization factor, we used the same value α = 1
during the entire experiments.

To solve each optimization problem, we used the built-in adam optimizer (Kingma & Ba, 2014) in
Tensorflow package, 100 iteration using learning rate 0.01 with random sampling of z.

When implementing INC using a topology-aware generative model, we used the following strategy to
improve its robustness.

• As topology-aware generative model generates each manifold from each Gaussian compo-
nent, we first sample initial points from each manifold by randomly choosing latent vectors
z1, . . . , zl from each Gaussian component.
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• We run INC for i-th manifold by solving the following optimization.

x∗i = G(z∗i ) where z∗i = arg min
z∼DZ

[d(G(z), x̂) + α(Mi − pZ,i(z))]

where Mi is the maximum value of i-th Gaussian component. The regularization term is
desigend to penalize z that is unlikely to be generated by i-th Gaussian component, so we
only search in the range of i-th Gaussian component, i.e. i-th manifold.
• Choose the final solution x∗i achieving the minimum d(x∗i , x̂), breaking ties randomly.

Since each search is performed only on each submaifold, the artifact observed in 5.3 never appears
during the optimization process. Also, choosing initial points from each manifold prevents the bad
initialization problem mentioned in 5.3.

F MORE EXPERIMENTAL RESULTS

We present more experimental results about the INC performance comparing topology-aware genera-
tive model to its topology-ignorant counterpart.

Histogram for projection error distributions in 5.4. Figure 6 presents the histogram of the
projection errors distributed from 0 to the diameter of the distribution. Each row corresponds to each
dataset, whereas the first column and the second column represent the results from the topology-
ignorant model and the topology-aware model, respectively. All histograms are normalized so that
the sum of values adds up to 1. To explain, the y-axis of each histogram is the estimated probability
that INC achieves the projection error on the x-axis. Not only that we can observe the improved
mean of projection errors in the histograms, but we can also check the reduced standard deviation, i.e.
we get more consistent projection errors near the mean.

Additional experiments for the INC performance. Finally, we present experiments to demon-
strate the effect of the level set discrepancy on the INC performance. First, we begin with training
support vector machines (SVMs) performing classification tasks for our target distributions. For
training data, we randomly sampled 1000 training points from each data-generating manifold. The
baseline SVMs were intentionally ill-trained, by using high kernel coefficient γ = 100. 5 After
training SVMs, we form other classifiers by applying INC to ill-trained SVMs To explain, for each
dataset, we have four types of classifiers as follows.

(1) Ill-trained SVM: Baseline classifier
(2) Ideal INC: Classifier with INC with direct access to the data-generating manifolds
(3) topology-ignorant INC: Classifier with INC with data distribution approximated by a

topology-ignorant generative model
(4) topology-aware INC: Classifier with INC with data distribution approximated by a topology-

aware generative model

We want to emphasize that direct access to the data-generating manifold is not possible in general.
However, applying INC based on such direct access gives us an INC purely based on the geometry,
so it is an ideal form of INC that should be approximated. Also, since topology-ignorant is affected
by a bad choice of an initial point, we reduce the effect of bad initialization by sampling more initial
points and taking the best solution among the projection results. For this number of initial choices,
we chose initial points as many as the number of manifolds, which is exactly the same as the number
of initial points for the topology-aware INC model.

To demonstrate the improvement in the robustness of the model, we visualize the effect by depicting
the decision boundary of each classifier. To be specific, we form a 300 × 300 grid on the domain
of [−3, 3] × [−3, 3], then compute the result of classification. The depicted decision boundaries
are presented in Figure 7. Each row corresponds to each dataset: two moons, spirals, and circles,
respectively. Each column corresponds to classifier 1-4 described above, from the first column to the
fourth column, respectively. From Figure 7, it is visually evident that topology-aware INC models
provide more proper approximations to the ideal INC model.

5In general, choosing unnecessarily high kernel coefficient γ causes overfitting (Chaudhuri et al., 2017),
inducing decision boundary close to the training data.
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(a) Two-moons, topology-ignorant (b) Two-moons, topology-aware

(c) Spirals, topology-ignorant (d) Spirals, topology-aware

(e) Circles, topology-ignorant (f) Circles, topology-aware

Figure 6: Histograms of the projection errors of INC. Each y-axis represents the estimated probability
that INC incurs the projection error on the corresponding x-axis.
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(a) Ill-trained SVM (b) Ideal INC (c) topology-ignorant INC (d) topology-aware INC

Figure 7: Changes in the decision boundaries of ill-trained SVM after INC applications.
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