
Under review as a conference paper at ICLR 2020

GRAPHZOOM: A MULTI-LEVEL SPECTRAL APPROACH
FOR ACCURATE AND SCALABLE GRAPH EMBEDDING

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph embedding techniques have been increasingly deployed in a multitude of
different applications that involve learning on non-Euclidean data. However, ex-
isting graph embedding models either fail to incorporate node attribute informa-
tion during training or suffer from node attribute noise, which compromises the
accuracy. Moreover, very few of them scale to large graphs due to their high com-
putational complexity and memory usage. In this paper we propose GraphZoom,
a multi-level framework for improving both accuracy and scalability of unsuper-
vised graph embedding algorithms. GraphZoom first performs graph fusion to
generate a new graph that effectively encodes the topology of the original graph
and the node attribute information. This fused graph is then repeatedly coars-
ened into a much smaller graph by merging nodes with high spectral similarities.
GraphZoom allows any existing embedding methods to be applied to the coars-
ened graph, before it progressively refine the embeddings obtained at the coarsest
level to increasingly finer graphs. We have evaluated our approach on a number of
popular graph datasets for both transductive and inductive tasks. Our experiments
show that GraphZoom increases the classification accuracy and significantly re-
duces the run time compared to state-of-the-art unsupervised embedding methods.

1 INTRODUCTION

Recent years have seen a surge of interest in graph embedding, which aims to encode nodes, edges,
or (sub)graphs into low dimensional vectors that maximally preserve graph structural information.
Graph embedding techniques have shown promising results for various applications such as ver-
tex classification, link prediction, and community detection (Zhou et al., 2018); (Cai et al., 2018);
(Goyal & Ferrara, 2018). However, current graph embedding methods have several drawbacks. On
the one hand, random-walk based embedding algorithms, such as DeepWalk (Perozzi et al., 2014)
and node2vec (Grover & Leskovec, 2016), attempt to embed a graph based on its topology without
incorporating node attribute information, which limits their embedding power. Later, graph con-
volutional networks (GCN) are developed with the basic notion that node embeddings should be
smooth over the graph (Kipf & Welling, 2016). While GCN leverages both topology and node at-
tribute information for simplified graph convolution in each layer, it may suffer from high frequency
noise in the initial node features, which compromises the embedding quality (Maehara, 2019). On
the other hand, few embedding algorithms can scale well to large graphs with millions of nodes
due to their high computation and storage cost (Zhang et al., 2018a). For example, graph neural
networks (GNNs) such as GraphSAGE (Hamilton et al., 2017) collectively aggregate feature infor-
mation from the neighborhood. When stacking multiple GNN layers, the final embedding vector of
a node involves the computation of a large number of intermediate embeddings from its neighbors.
This will not only drastically increase the number of computations among nodes but also lead to
high memory usage for storing the intermediate results.

In literature, increasing the accuracy and improving the scalability of graph embedding methods are
largely viewed as two orthogonal problems. Hence most research efforts are devoted to addressing
only one of the problems. For instance, Chen et al. (2018) and Fu et al. (2019) proposed multi-level
methods to obtain high-quality embeddings by training unsupervised models at every level; but their
techniques do not improve scalability due to the additional training overhead. Liang et al. (2018)
developed a heuristic algorithm to coarsen the graph by merging nodes with similar local structures.
They use GCN to refine the embedding results on the coarsened graphs, which not only is time-

1

Under review as a conference paper at ICLR 2020

consuming to train but may also degrade accuracy when multiple GCN layers are stacked together.
More recently, Akbas & Aktas (2019) proposed a similar strategy to coarsen the graph, where certain
properties of the graph structure are preserved. However, this work lacks proper refinement methods
to improve the embedding quality.

In this paper we propose GraphZoom, a multi-level spectral approach to enhancing the quality and
scalability of unsupervised graph embedding methods. Specifically, GraphZoom consists of four
kernels: (1) graph fusion, (2) spectral graph coarsening, (3) graph embedding, and (4) embedding
refinement. More concretely, graph fusion first converts the node feature matrix into a feature graph
and then fuses it with the original topology graph. The fused graph provides richer information to
the ensuing graph embedding step to achieve a higher accuracy. Spectral graph coarsening produces
a series of successively coarsened graphs by merging nodes based on their spectral similarities. We
show that our coarsening algorithm can efficiently and effectively retain the first few eigenvectors
of the graph Laplacian matrix, which is critical for preserving the key graph structures. During
the graph embedding step, any of the existing unsupervised graph embedding techniques can be
applied to obtain node embeddings for the graph at the coarsest level. 1 Embedding refinement is
then employed to refine the embeddings back to the original graph by applying a proper graph filter
to ensure embeddings are smoothed over the graph.

We validate the proposed GraphZoom framework on three transductive benchmarks: Cora, Citeseer
and Pubmed citation networks as well as two inductive dataset: PPI and Reddit for vertex classifi-
cation task. We further test on friendster dataset which contains 8 million nodes and 400 million
edges to show the scalability of GraphZoom. Our experiments show that GraphZoom can improve
the classification accuracy over all baseline embedding methods for both transductive and inductive
tasks. Our main technical contributions are summarized as follows:

•GraphZoom generates high-quality embeddings. We propose novel algorithms to encode graph
structures and node attribute information in a fused graph and exploit graph filtering during re-
finement to remove high frequency noise. This results in an increase of the embedding accuracy
over the prior arts by up to 19.4%.
• GraphZoom improves scalability. Our approach can significantly reduce the embedding run

time by effectively coarsening the graph without losing the key spectral properties. Experiments
show that GraphZoom can accelerate the entire embedding process by up to 40.8x while producing
a similar or better accuracy than state-of-the-art techniques.
• GraphZoom is highly composable. Our framework is agnostic to underlying graph embedding

techniques. Any of the existing unsupervised embedding methods, either transductive or inductive,
can be incorporated by GraphZoom in a plug-and-play manner.

2 RELATED WORK

GraphZoom draws inspiration from multi-level graph embedding and graph filtering to boost the
performance and speed of unsupervised embedding methods.

Multi-level graph embedding. Multi-level graph embedding attempts to coarsen the graph in a
series of levels where graph embedding techniques can be applied on those coarsened graphs with
decreasing size. Chen et al. (2018); Lin et al. (2019) coarsen the graph into several levels and
then perform embedding on the hierarchy of graphs from the coarsest to the original one. Fu et al.
(2019) adopt a similar idea by hierarchical sampling original graph into multi-level graphs whose
embedding vectors are concatenated to obtain the final node embeddings of the original graph. Both
of these works only focus on improving embedding quality without improving the scalability. Later,
Zhang et al. (2018b); Akbas & Aktas (2019) attempt to improve graph embedding scalability by
only embedding on the coarsest graph. However, their approaches lack proper refinement methods
to generate high-quality embeddings of the original graph. Liang et al. (2018) propose MILE, which
only trains the coarsest graph to obtain coarse embeddings, and leverages GCN as embeddings
refinement method to improve embedding quality. Nevertheless, MILE requires to train a GCN
model which is very time consuming for large graphs and cannot support inductive embedding
models due to the transductive property of GCN.

1In this work, we do not attempt to preserve node label information in the coarsened graph. Nonetheless,
we believe that our approach can be extended to support supervised embedding models such as GAT (Gulcehre
et al., 2019) and PPNP (Klicpera et al., 2019), as briefly discussed in Section 5.

2

Under review as a conference paper at ICLR 2020

Graph filtering. Graph filters are direct analogs of classical filters in signal processing field, but
intended for signals defined on graphs. Shuman et al. (2013) defined graph filters in both vertex and
spectral domains, and applies graph filter in image denoising and reconstruction tasks. Recently,
Maehara (2019) showed the fundamental link between graph embedding and filtering by proving
that GCN model implicitly exploits graph filter to remove high frequency noise from the node feature
matrix; a filter neural network (gfNN) is then proposed to derive a stronger graph filter to improve
the embedding results. Li et al. (2019) further derived two generalized graph filters and apply them
on graph embedding models to improve their embedding quality for various classification tasks.

3 GRAPHZOOM FRAMEWORK

Figure 1 shows the proposed GraphZoom framework which consists of four key phases: Phase (1)
is graph fusion, which constructs a weighted graph that fuses the information of both the graph
topology and node attributes; In Phase (2), a spectral graph coarsening process is applied to form a
hierarchy of coarsened fused graphs with decreasing size; In Phase (3), any of the prior graph em-
bedding methods can be applied to the fused graph at the coarsest level; In Phase (4), the embedding
vectors obtained at the coarsest level are mapped onto a finer graph using the mapping operators
determined during the coarsening phase. This is followed by a refinement (smoothing) procedure;
by iteratively applying Phase (4) to increasingly finer graphs, the embedding vectors for the original
graph can be eventually obtained. In the rest of this section, we describe each of these four phases
in more detail.

GraphZoom Framework

Original
Graph Topology

1. Graph Fusion

2. Spectral Coarsening 3. Graph Embedding

4. Embedding Refinement
!"

Node
Attributes

…

!#

!$

!%

…

&" &# &% &'
Graph w/

Node Embeddings

Figure 1: Overview of the GraphZoom framework.

3.1 PHASE 1: GRAPH FUSION

Graph fusion aims to construct a weighted graph that has the same number of nodes as the original
graph but potentially different set of edges (weights) that encapsulate the original graph topology
as well as node attribute information. Specifically, given an undirected graph G = (V, E) with N
nodes, its adjacency matrix Atopo ∈ RN×N and its node attribute (feature) matrix X ∈ RN×K ,
where K corresponds to the dimension of node attribute vector, graph fusion can be interpreted as
a function f(·) that outputs a weighted graph Gfusion = (V, Efusion) represented by its adjacency
matrix Afusion ∈ RN×N , namely, Afusion = f(Atopo, X).

Graph fusion first converts the initial attribute matrix X into a weighted node attribute graph
Gfeat = (V, Efeat) by generating a k-nearest-neighbor (kNN) graph based on the l2-norm dis-
tance between the attribute vectors of each node pair. Note that a straightforward implementation
requires comparing all possible node pairs and then selecting top-k nearest neighbors. However,
such a naı̈ve approach has a worst-case time complexity of O(N2), which certainly does not scale
to large graphs. To allow constructing the attribute graph in linear time, we leverage our O(|E|)
complexity spectral graph coarsening scheme described with details in Section 3.2. More specif-
ically, our approach starts with coarsening the original graph G to obtain a substantially reduced
graph that has much fewer nodes. Note that such a procedure is very similar to spectral graph
clustering, which aims to group nodes into clusters of high conductance (Peng et al., 2015). Once

3

Under review as a conference paper at ICLR 2020

such node clusters are formed through spectral coarsening, selecting the top-k nearest neighbors
within each cluster can be accomplished in O(M2), where M is the averaged node count within
the same cluster. Since we have roughly N/M clusters, the total run time for constructing the ap-
proximate kNN graph becomes O(MN). When a proper coarsening ratio (M � N) is chosen, say
M = 50, the overall run time complexity will become almost linear. For each edge in the attribute
graph, we assign its weight wi,j according to the cosine similarity of two nodes’ attribute vectors:
wi,j = (Xi,: · Xj,:)/(‖Xi,:‖‖Xj,:‖), where Xi,: and Xj,: are the attribute vectors of node i and
j. Finally, we can construct the fused graph by combining the topological graph and the attribute
graph: Afusion = Atopo + βAfeat, where β allows us to balance the graph topological and node
attribute information in the fusion process. The fused graph will enable the underlying graph em-
bedding model to utilize both graph topological and node attribute information, and thus can be fed
into any downstream graph embedding procedures to further improve embedding quality.

3.2 PHASE 2: SPECTRAL COARSENING

Graph coarsening via global spectral embedding. To reduce the size of the original graph while
preserving important spectral properties (e.g., the first few eigenvalues and eigenvectors of the graph
Laplacian matrix 2), a straightforward way is to first embed the graph into a k-dimensional space
using the first k eigenvectors of the graph Laplacian matrix, which is also known as the spectral
graph embedding technique (Belkin & Niyogi, 2003; Peng et al., 2015). Next, the graph nodes
that are close to each other in the low-dimensional embedding space can be aggregated together to
form the coarse-level nodes and subsequently the reduced graph. However, it will be very costly to
calculate the eigenvectors of the original graph Laplacian, especially for very large graphs.

Graph coarsening via local spectral embedding. In this work, we leverage an efficient yet ef-
fective local spectral embedding scheme to identify node clusters based on emerging graph signal
processing techniques (Shuman et al., 2013). There are obvious analogies between the traditional
signal processing (Fourier analysis) and graph signal processing: (1) The signals at different time
points in classical Fourier analysis correspond to the signals at different nodes in an undirected
graph; (2) The more slowly oscillating functions in time domain correspond to the graph Laplacian
eigenvectors associated with lower eigenvalues or the more slowly varying (smoother) components
across the graph. Instead of directly using the first few eigenvectors of the original graph Laplacian,
we apply the simple smoothing (low-pass graph filtering) function to k random vectors to obtain
smoothed vectors for k-dimensional graph embedding, which can be achieved in linear time.

Consider a random vector (graph signal) x that can be expressed with a linear combination of eigen-
vectors u of the graph Laplacian. Low-pass graph filters can be adopted to quickly filter out the
“high-frequency” components of the random graph signal or the eigenvectors corresponding to high
eigenvalues of the graph Laplacian. By applying the smoothing function on x, a smoothed vector x̃
can be obtained, which can be considered as a linear combination of the first few eigenvectors:

x = ΣN
i=1αiui

smoothing
=====⇒ x̃ = Σn

i=1α̃iui , n� N (1)

More specifically, we apply a few (e.g. five to ten) Gauss-Seidel iterations for solving the linear
system of equations LGx

(i) = 0 to a set of t initial random vectors T = (x(1), . . . , x(t)) that are
orthogonal to the all-one vector 1 satisfying 1>x(i) = 0, and LG is the Laplacian matrix of graph G
or Gfusion. Based on the smoothed vectors in T , each node is embedded into a t-dimensional space
such that nodes p and q are considered spectrally similar if their low-dimensional embedding vectors
xp ∈ Rt and xq ∈ Rt are highly correlated. Here the node distance is measured by the spectral node
affinity ap,q for neighboring nodes p and q (Livne & Brandt, 2012; Chen & Safro, 2011):

ap,q =
(‖(Tp,:,Tq,:)‖)2

(Tp,:,Tp,:)(Tq,:,Tq,:)
, (Tp,:,Tq,:) = Σt

k=1(x(k)
p · x(k)

q), (2)

Once the node aggregation schemes are determined, the graph mapping operators on each level
(H1

0 , H
2
1 , · · · , Hm

m−1) can be obtained and leveraged for constructing a series of spectrally-reduced
graphs G1,G2, · · · ,Gm, where G0 (Gfusion) is the original fused graph, and V0 = N > V1 > · · · >
Vm. For example, the coarser graph Laplacian LGi+1

can be computed by

LGi+1
= Hi+1

i LGi
Hi

i+1, Hi
i+1 = (Hi+1

i)T (3)

2Laplacian matrix L is defined as L = D −A, where D is degree matrix and A is adjacency matrix.

4

Under review as a conference paper at ICLR 2020

We emphasize that the aggregation scheme based on the above spectral node affinity calculations
will have a (linear) complexity of O(|Efusion|) and thus allow preserving the spectral (global or
structural) properties of the original graph in a highly efficient and effective way. As suggested in
(Zhao & Feng, 2019; Loukas, 2019), a spectral sparsification procedure can be applied to effectively
control densities of coarse level graphs. In this work, a similarity-aware spectral sparsification tool
“GRASS” (Feng, 2018) has been adopted for achieving a desired graph sparsity at the coarsest level.

3.3 PHASE 3: GRAPH EMBEDDING

Embedding the Coarsest Graph. Once the coarsest graph Gm is constructed, node embeddingsEm

on Gm can be obtained by Em = l(Gm), where l(·) can be any unsupervised embedding methods.

3.4 PHASE 4: EMBEDDING REFINEMENT

Once the base node embedding results are available, we can easily project the node embeddings
from graph Gi+1 to the fine-grained graph Gi with the corresponding projection operator Hi

i+1:

Êi = Hi
i+1Ei+1 (4)

Due to the property of the projection operator, embedding of the node in coarse-grained graph will
be directly copied to the nodes of the same aggregation set in the fine-grained graph. In this case,
spectrally-similar nodes in the fine-grained graph will have the same embedding results if they are
aggregated into a single node during the coarsening phase.

To further improve the quality of the mapped embeddings, we apply a local refinement process
motivated by Tikhonov regularization to smooth the node embeddings over the graph by minimizing
the following objective:

min
Ei

{
∥∥∥Ei − Êi

∥∥∥2
2

+ Tr(Ei
TLiEi)}, (5)

where Li and Ei are the normalized Laplacian matrix and mapped embedding matrix of the graph
at the i-th coarsening level, respectively. The refined embedding matrix Ẽi is obtained by solving
Eq. (5), whose first term enforces the refined embeddings to agree with mapped embeddings while
the second term employs Laplacian smoothing to smooth Ẽi over the graph. By taking the derivative
of the objective function in Eq. (5) and setting it to zero, we have:

Ei = (I + Li)
−1

Êi, (6)

where I is the identity matrix. However, obtaining refined embeddings in this way is very time
consuming since it involves matrix inversion whose time complexity isO(N3). Instead, we exploit a
more efficient graph filter to smooth the embeddings. Let the term (I + L)

−1 denoted by h(L), then
its corresponding graph filter in spectral domain is h(λ) = (1 + λ)−1. To avoid the inversion term,
we approximate h(λ) by its first-order Taylor expansion, namely, h̃(λ) = 1−λ. We then generalize
h̃(λ) to h̃k(λ) = (1−λ)k, where k controls the power of graph filter. After transforming h̃k(λ) into
spatial domain, we have: h̃k(L) = (I−L)k = (D−

1
2AD−

1
2)k, whereA is the adjacency matrix and

D is the degree matrix. It can be proved that adding a proper self-loop for every node in the graph
can enable h̃k(L) to more effectively filter out high-frequency noise components (Maehara, 2019)
(more details are available in Appendix G). Thus, we modify the adjacency matrix as Ã = A+ σI ,
where σ is a small value to ensure every node has its own self-loop. Finally, the low-pass graph filter
can be utilized to smooth the mapped embedding matrix, as shown in (7).

Ei = (D̃i
− 1

2 ÃiD̃i
− 1

2)kÊi = (D̃i
− 1

2 ÃiD̃i
− 1

2)kHi
i+1Ei+1 (7)

We iteratively apply Eq. (7) to obtain the embeddings of the original graph (i.e., E0). Note that our
refinement stage does not involve training and can be simply considered as several (sparse) matrix
multiplications, which can be computed efficiently.

4 EXPERIMENTS

We have performed comparative evaluation of GraphZoom framework against several existing state-
of-the-art unsupervised graph embedding techniques and multi-level embedding frameworks on five

5

Under review as a conference paper at ICLR 2020

standard graph-based dataset (transductive as well as inductive). In addition, we evaluate the scal-
ability of GraphZoom on Friendster dataset that contains 8 million nodes and 400 million edges.
Finally, we further analyze GraphZoom kernels separately to show their effectiveness.

4.1 EXPERIMENTAL SETUP

Table 1: Statistics of datasets used in our experiments

Dataset Type Task Nodes Edges Classes Features
Cora Citation network Transductive 2,708 5,429 7 1,433
Citeseer Citation network Transductive 3,327 4,732 6 3,703
Pubmed Citation network Transductive 19,717 44,338 3 500
PPI Molecular network Inductive 14,755 222,055 121 50
Reddit Social network Inductive 232,965 57,307,946 210 5,414
Friendster Social network Transductive 7,944,949 446,673,688 5,000 N/A

Datasets. The statistics of datasets used in our experiments are demonstrated in Table 1. We use
Cora, Citeseer, Pubmed, Friendster for transductive task and PPI, Reddit for inductive task. We
choose the same training and testing size used in Kipf & Welling (2016); Hamilton et al. (2017).

Transductive baseline models. Many existing graph embedding techniques are essentially trans-
ductive learning methods, which require all nodes in the graph be present during training, and their
embedding models have to be retrained whenever a new node is added. We compare GraphZoom
with transductive models DeepWalk and node2vec that have shown the state-of-the-art unsupervised
embedding results on the datasets used in our experiments. We further compare GraphZoom with
two multi-level frameworks: HARP (Chen et al., 2018) and MILE (Liang et al., 2018), which have
shown improvement upon DeepWalk and node2vec in either embedding quality or scalability.

Inductive baseline models. Inductive graph embedding models can be trained without seeing the
whole graph structure and their trained models can be applied on new nodes added to graph. To show
GraphZoom can also enhance inductive learning, we compare it against GraphSAGE (Hamilton
et al., 2017) using four different aggregation functions.

More details of datasets and baselines are available in Appendix A and B. We optimize hyper-
parameters of DeepWalk, node2vec and GraphSAGE on original datasets as embedding baseline,
and then we choose the same hyper-parameters to embed coarsened graph in HARP, MILE and our
GraphZoom framework. We run all the experiments on a machine running Linux with an Intel Xeon
Gold 6242 CPU (32 cores, 2.40GHz) and 384 GB of RAM.

4.2 PERFORMANCE AND SCALABILITY OF GRAPHZOOM

Since HARP and MILE only support transductive learning, we compare them with GraphZoom
for transductive task with DeepWalk and node2vec as embedding kernels. For inductive task, we
compare GraphZoom with GraphSAGE using four different aggregation functions. Results of both
transductive learning task and inductive learning task are summarized in Tables 2 and 3, respectively.

We report the mean classification accuracy for transductive task and micro-averaged F1 score for
inductive task as well as CPU time after 10 runs for all the baselines and GraphZoom. We measure
the CPU time for graph embedding as the total run time of DeepWalk, node2vec, and GraphSAGE.
We use the sum of CPU time for graph coarsening, graph embedding, and embedding refinement
as total run time of HARP and MILE. Similarly, we sum up the CPU time for graph fusion, graph
coarsening, graph embedding, and embedding refinement as total run time of GraphZoom. We also
perform fine-tuning on the hyper-parameters. For both DeepWalk and node2vec, we use 10 walks
with a walk length of 80, a window size of 10, and an embedding dimension of 128; we further set
p = 1 and q = 0.5 in node2vec. For GraphSAGE, we train a two-layer model for one epoch, with a
learning rate of 0.00001, an embedding dimension of 128, and a batch size of 256.
Comparing GraphZoom with baseline embedding methods. We show the results of GraphZoom
with coarsening level varying 1 to 3 for transductive learning and 1 to 2 for inductive learning. Re-
sults with larger coarsening level are available in Figure 3 (blue curve) and the Appendix I. Our
results demonstrate that GraphZoom is agnostic to underlying embedding methods and capable of

6

Under review as a conference paper at ICLR 2020

Table 2: Summary of results in terms of mean classification accuracy and CPU time for
transductive task, on Cora, Citeseer and Pubmed datasets — DW, N2V, and GZoom denote
DeepWalk, node2vec, and GraphZoom, respectively; l means the graph coarsening level.

Cora Citeseer Pubmed

Method Accuracy(%) Time(secs) Accuracy(%) Time(secs) Accuracy(%) Time(mins)

DeepWalk 71.4 97.8 47.0 120.0 69.9 14.1
HARP(DW) 71.3 296.7(0.3×) 43.2 272.4(0.4×) 70.6 33.9(0.4×)
MILE(DW, l=1) 71.9 68.7(1.4×) 46.5 53.7(2.2×) 69.6 7.0(2.0×)
MILE(DW, l=2) 71.3 30.9(3.2×) 47.3 22.5(5.3×) 66.7 4.4(2.3×)
MILE(DW, l=3) 70.6 15.9(6.1×) 47.1 9.9(12.1×) 64.5 2.5(5.8×)
GZoom(DW, l=1) 76.9 39.6(2.5×) 49.7 19.6(2.1×) 75.3 4.0(3.6×)
GZoom(DW, l=2) 77.3 15.6(6.3×) 50.8 6.7(6.0×) 75.9 1.7(8.3×)
GZoom(DW, l=3) 75.1 2.4(40.8×) 49.5 1.3(30.8×) 77.2 0.6(23.5×)
node2vec 71.5 119.7 45.8 126.9 71.3 15.6
HARP(N2V) 72.3 171.0(0.7×) 44.8 174.3(0.7×) 70.1 46.1(0.3×)
MILE(N2V, l=1) 72.1 57.3(2.1×) 46.1 60.9(2.1×) 70.8 7.3(2.1×)
MILE(N2V, l=2) 71.8 30.0(4.0×) 45.7 28.8(4.4×) 67.3 4.3(3.6×)
MILE(N2V, l=3) 68.5 16.5(7.2×) 45.2 15.6(8.1×) 61.8 1.8(8.0×)
GZoom(N2V, l=1) 77.3 43.5(2.8×) 54.7 38.1(3.3×) 77.0 3.0(5.2×)
GZoom(N2V, l=2) 77.0 13.5(8.9×) 51.7 15.3(8.3×) 77.8 1.5(10.4×)
GZoom(N2V, l=3) 75.3 3.0(39.9×) 50.7 4.5(28.2×) 77.4 0.4(39.0×)

Table 3: Summary of results in terms of micro-averaged
F1 score and CPU time for inductive task, on PPI and Red-
dit datasets — The baselines are GraphSAGE with four
different aggregation functions. GZoom and GSAGE de-
note GraphZoom and GraphSAGE, respectively; l means
the graph coarsening level.

PPI Reddit

Method Micro-F1 Time(mins) Micro-F1 Time(hours)

GraphSAGE-GCN 0.601 9.6 0.908 10.1
GZoom(GSAGE-GCN, l=1) 0.621 4.8(2.0×) 0.923 3.4(3.0×)
GZoom(GSAGE-GCN, l=2) 0.612 1.8(5.2×) 0.917 1.6(6.3×)

GraphSAGE-mean 0.598 11.1 0.897 8.1
GZoom(GSAGE-mean, l=1) 0.614 5.2(2.2×) 0.925 2.6(3.1×)
GZoom(GSAGE-mean, l=2) 0.617 1.8(6.2×) 0.919 1.2(6.8×)

GraphSAGE-LSTM 0.596 387.3 0.907 92.2
GZoom(GSAGE-LSTM, l=1) 0.614 151.8(2.6×) 0.920 39.8(2.3×)
GZoom(GSAGE-LSTM, l=2) 0.615 52.5(7.4×) 0.917 14.5(6.4×)

GraphSAGE-pool 0.602 144.9 0.892 84.3
GZoom(GSAGE-pool, l=1) 0.611 66.0(2.2×) 0.921 27.0(3.1×)
GZoom(GSAGE-pool, l=2) 0.614 23.4(6.2×) 0.912 12.4(6.8×)

1 2 3 4 5
Coarsening Level

0.25

0.50

0.75
M

icr
o-

F1

Friendster (Micro-F1)

1 2 3 4 5
Coarsening Level

0

100

CP
U

tim
e

Sp
ee

du
p Friendster (Speedup)

GraphZoom(DW)
MILE(DW)

DeepWalk

Figure 2: Comparisons of GraphZoom
and MILE on Friendster dataset.

boosting the accuracy and speed of state-of-the-art unsupervised embedding methods on various
datasets. More specifically, for transductive learning task, GraphZoom improves classification ac-
curacy upon all the baseline embedding methods by a margin of 8.3%, 19.4%, and 10.4% on Cora,
Citeseer, and Pubmed, respectively, while achieving up to 40.8x run time reduction. Similarly,
GraphZoom outperforms all the baselines by a margin of 3.4% and 3.3% on PPI and Reddit for
inductive learning task, respectively, with speedup up to 7.6x. Our results indicate that reducing
graph size while properly retaining the key spectral properties of graph Laplacian and smoothing
embeddings will not only boost the embedding speed but also lead to high embedding quality.

Comparing GraphZoom with multi-level frameworks. As shown in Table 2, HARP only slightly
improves and sometimes even worsens the classification accuracy while significantly increasing the
CPU time. Although MILE improves both accuracy and CPU time compared to baseline embed-
ding methods in some cases, the performance of MILE becomes worse with increasing coarsening
levels (e.g., the classification accuracy of MILE drops from 0.708 to 0.618 on Pubmed dataset with
node2vec as the embedding kernel). GraphZoom achieves a better accuracy and speedup compared
to MILE with the same coarsening level across all datasets. Moreover, when increasing coarsening
levels, namely, decreasing number of nodes on the coarsened graph, GraphZoom still produces com-

7

Under review as a conference paper at ICLR 2020

parable or even a better embedding accuracy with much shorter CPU times. This further confirms
GraphZoom can retain the key graph structure information to be utilized by underlying embedding
models to generate high-quality node embeddings.

GraphZoom for large graph embedding. To show GraphZoom can significantly improve per-
formance and scalability of underlying embedding model on large graph, we test GraphZoom and
MILE on Friendster dataset, which contains 8 million nodes and 400 million edges, using DeepWalk
as the embedding kernel. As shown in Figure 2, GraphZoom drastically boosts the Micro-F1 score
up to 47.6% compared to MILE and 49.9% compared to DeepWalk with speedup up to 119.8×.
When increasing coarsening level, GraphZoom achieves a higher speedup while the embedding ac-
curacy decreases gracefully.

4.3 ANALYSIS ON GRAPHZOOM KERNELS

1 2 3 4
Coarsening Level

70

75

Ac
cu

ra
cy

Cora (Accuracy)

1 2 3 4 5
Coarsening Level

47.5

50.0

Ac
cu

ra
cy

Citeseer (Accuracy)

1 2 3 4 5
Coarsening Level

60

80

Ac
cu

ra
cy

Pubmed (Accuracy)

GZoom_F + GZoom_C + GZoom_R (DW)
GZoom_C + GZoom_R (DW)

GZoom_C + MILE_R (DW)
MILE_C + GZoom_R (DW)

MILE_C + MILE_R (DW)
DeepWalk

Figure 3: Comparisons of different kernel combinations in GraphZoom and MILE in classification
accuracy on Cora, Citeseer, and Pubmed datasets — We choose DeepWalk (DW) as the embed-
ding kernel. GZoom F, GZoom C, GZoom R denote the fusion, coarsening, and refinement kernels
proposed in GraphZoom, respectively; MILE C and MILE R denote the coarsening and refinement
kernels in MILE, respectively; The blue curve is basically GraphZoom and the yellow one is MILE.

To study the effectiveness of our proposed GraphZoom kernels separately, we compare each of them
against the corresponding kernel in MILE with other kernels fixed. As shown in Figure 3, when
fixing coarsening kernel and comparing refinement kernel of GraphZoom with that of MILE (shown
in purple curve and yellow curve), GraphZoom refinement kernel can improve embedding results
upon MILE refinement kernel, especially when the coarsening level is large, which indicates that
our proposed graph filter in refinement kernel can successfully filter out high frequency noise from
graph to improve embedding quality. Similarly, when comparing coarsening kernels in GraphZoom
and MILE with refinement kernel fixed (shown in light blue curve and yellow curve), GraphZoom
coarsening kernel can also improve embedding quality upon MILE coarsening kernel, which shows
that our spectral graph coarsening algorithm can indeed retain key graph structure for underlying
graph embedding models to exploit. When combining GraphZoom coarsening kernel and refinement
kernel (green curve), we can achieve better classification accuracy compared with the ones using any
kernel in MILE (i.e., light blue curve, purple curve and yellow curve), which means that GraphZoom
coarsening kernel and refinement kernel play different roles to boost embedding performance and
their combination can further improve embedding result. Moreover, when adding graph fusion
kernel with the combination of GraphZoom coarsening and refinement kernels (blue curve, which is
our GraphZoom framework), it improves classification accuracy by a large margin, which betokens
that graph fusion can properly incorporate both graph topology and node attribute information and
lifts the embedding quality of downstream embedding models. Results of each kernel CPU time and
speedup comparison are available in Appendix F and Appendix H.

5 CONCLUSION

In this work we propose GraphZoom, a multi-level framework to improve embedding quality and
scalability of underlying unsupervised graph embedding techniques. GraphZoom encodes graph
structure and node attribute in a single graph and exploiting spectral coarsening and refinement
methods to remove high frequency noise from the graph. Experiments show that GraphZoom im-
proves both classification accuracy and embedding speed on a number of popular datasets. An in-
teresting direction for future work is to derive a proper way to propagate node labels to the coarsest
graph, which would allow GraphZoom to support supervised graph embedding models.

8

Under review as a conference paper at ICLR 2020

REFERENCES

Esra Akbas and Mehmet Aktas. Network embedding: on compression and learning. arXiv preprint
arXiv:1907.02811, 2019.

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality reduction and data
representation. Neural computation, 15(6):1373–1396, 2003.

Hongyun Cai, Vincent W Zheng, and Kevin Chen-Chuan Chang. A comprehensive survey of graph
embedding: Problems, techniques, and applications. IEEE Transactions on Knowledge and Data
Engineering, 30(9):1616–1637, 2018.

Haochen Chen, Bryan Perozzi, Yifan Hu, and Steven Skiena. Harp: Hierarchical representation
learning for networks. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

Jie Chen and Ilya Safro. Algebraic distance on graphs. SIAM Journal on Scientific Computing, 33
(6):3468–3490, 2011.

Zhuo Feng. Similarity-aware spectral sparsification by edge filtering. In 2018 55th
ACM/ESDA/IEEE Design Automation Conference (DAC), pp. 1–6. IEEE, 2018.

Guoji Fu, Chengbin Hou, and Xin Yao. Learning topological representation for networks via hier-
archical sampling. arXiv preprint arXiv:1902.06684, 2019.

Palash Goyal and Emilio Ferrara. Graph embedding techniques, applications, and performance: A
survey. Knowledge-Based Systems, 151:78–94, 2018.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings
of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining,
pp. 855–864. ACM, 2016.

Caglar Gulcehre, Misha Denil, Mateusz Malinowski, Ali Razavi, Razvan Pascanu, Karl Moritz
Hermann, Peter Battaglia, Victor Bapst, David Raposo, Adam Santoro, and Nando de Freitas.
Hyperbolic attention networks. In International Conference on Learning Representations, 2019.
URL https://openreview.net/forum?id=rJxHsjRqFQ.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In Advances in Neural Information Processing Systems, pp. 1024–1034, 2017.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Johannes Klicpera, Aleksandar Bojchevski, and Stephan Gnnemann. Combining neural networks
with personalized pagerank for classification on graphs. In International Conference on Learning
Representations, 2019. URL https://openreview.net/forum?id=H1gL-2A9Ym.

Qimai Li, Xiao-Ming Wu, Han Liu, Xiaotong Zhang, and Zhichao Guan. Label efficient semi-
supervised learning via graph filtering. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 9582–9591, 2019.

Jiongqian Liang, Saket Gurukar, and Srinivasan Parthasarathy. Mile: A multi-level framework for
scalable graph embedding. arXiv preprint arXiv:1802.09612, 2018.

Wenqing Lin, Feng He, Faqiang Zhang, Xu Cheng, and Hongyun Cai. Effective and efficient net-
work embedding initialization via graph partitioning. arXiv preprint arXiv:1908.10697, 2019.

Oren E Livne and Achi Brandt. Lean algebraic multigrid (lamg): Fast graph laplacian linear solver.
SIAM Journal on Scientific Computing, 34(4):B499–B522, 2012.

Andreas Loukas. Graph reduction with spectral and cut guarantees. Journal of Machine Learning
Research, 20(116):1–42, 2019.

Takanori Maehara. Revisiting graph neural networks: All we have is low-pass filters. arXiv preprint
arXiv:1905.09550, 2019.

9

https://openreview.net/forum?id=rJxHsjRqFQ
https://openreview.net/forum?id=H1gL-2A9Ym

Under review as a conference paper at ICLR 2020

Richard Peng, He Sun, and Luca Zanetti. Partitioning well-clustered graphs: Spectral clustering
works! In Annual Conference on Learning Theory, pp. 1423–1455, 2015.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social repre-
sentations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 701–710. ACM, 2014.

David I Shuman, Sunil K Narang, Pascal Frossard, Antonio Ortega, and Pierre Vandergheynst. The
emerging field of signal processing on graphs: Extending high-dimensional data analysis to net-
works and other irregular domains. IEEE signal processing magazine, 30(3):83–98, 2013.

Jaewon Yang and Jure Leskovec. Defining and evaluating network communities based on ground-
truth. Knowledge and Information Systems, 42(1):181–213, 2015.

Zhilin Yang, William W Cohen, and Ruslan Salakhutdinov. Revisiting semi-supervised learning
with graph embeddings. arXiv preprint arXiv:1603.08861, 2016.

Daokun Zhang, Jie Yin, Xingquan Zhu, and Chengqi Zhang. Network representation learning: A
survey. IEEE transactions on Big Data, 2018a.

Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Maosong Sun, Zhichong Fang, Bo Zhang, and Leyu
Lin. Cosine: Compressive network embedding on large-scale information networks. arXiv
preprint arXiv:1812.08972, 2018b.

Zhiqiang Zhao and Zhuo Feng. Effective-resistance preserving spectral reduction of graphs. In
Proceedings of the 56th Annual Design Automation Conference 2019, pp. 109. ACM, 2019.

Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, and Maosong Sun. Graph neural
networks: A review of methods and applications. arXiv preprint arXiv:1812.08434, 2018.

10

Under review as a conference paper at ICLR 2020

APPENDIX A DETAILS OF DATASETS

Transductive task We follow the experiments setup in Yang et al. (2016) for three standard citation
network benchmark datasets: Cora, Citeseer, and Pubmed. In all these three citation networks, nodes
represent documents and edges correspond to citations. Each node has a sparse bag-of-word feature
vector and a class label. We allow only 20 labels per class for training and 1,000 labeled nodes
for testing. In addition, we further evaluate on Friendster dataset (Yang & Leskovec, 2015), which
contains 8 million nodes and 400 million edges, with 2.5% of the nodes used for training and 0.3%
nodes for testing. In Friendster, nodes represent users and a pair of nodes are linked if they are
friends; each node has a class label but is not associated with a feature vector.

Inductive task We follow Hamilton et al. (2017) for setting up experiments on both protein-protein
interaction (PPI) and Reddit dataset. PPI dataset consists of graphs corresponding to human tissues,
where nodes are proteins and edges represent interaction effects between proteins. Reddit dataset
contains nodes corresponding to users’ posts and two nodes are connected if the same users comment
on both posts. We use 60% nodes for training, 40% for testing on PPI and 65% for training and 35%
for testing on Reddit.

APPENDIX B DETAILS OF BASELINES

DeepWalk first generates random walks based on graph structure. Then, walks are treated as sen-
tences in a language model and Skip-Gram model is exploited to obtain node embeddings.

node2vec is different from DeepWalk in terms of generating random walks by introducing the return
parameter p and the in-out parameter q, which can combine DFS-like and BFS-like neighborhood
exploration.

GraphSAGE embeds nodes in an inductive way by learning an aggregation function that aggregates
node features to obtain embeddings. GraphSAGE supports four different aggregation functions:
GraphSAGE-GCN, GraphSAGE-mean, GraphSAGE-LSTM and GraphSAGE-pool.

HARP coarsens the original graph into several coarsening levels and apply underlying embedding
model to train the coarsened graph at each coarsening level sequentially to obtain the final embed-
dings on original graph. Since coarsening level is fixed in their implementation, we run HARP in
our experiments without changing the coarsening level.

MILE is the state-of-the-art multi-level unsupervised graph embedding framework and very similar
to our GraphZoom framework since it also contains graph coarsening and embedding refinement
kernels. More specifically, MILE first uses its coarsening kernel to reduce the graph size and trains
underlying unsupervised graph embedding model on coarsest graph. Then, its refinement kernel
employs Graph Convolutional Network (GCN) to refine embeddings back to the original graph. We
compare GraphZoom with MILE on various datasets, including Friendster that contains 8 million
nodes and 4 million edges (shown in Table 2 and Figure 2). Moreover, we further compare each
kernel in GraphZoom and MILE in Figure 3.

APPENDIX C GRAPH SIZE AT DIFFERENT COARSENING LEVEL

The details of graph size at different coarsening level on all six datasets are shown in Table 4.

11

Under review as a conference paper at ICLR 2020

Table 4: Number of nodes at different GraphZoom coarsening level. GZoom-0 means GraphZoom
with 0 coarsening level (i.e., without coarsening), GZoom-1 means GraphZoom with 1 coarsening
level and so forth.

Dataset GZoom-0 GZoom-1 GZoom-2 GZoom-3 GZoom-4 GZoom-5
Cora 2,708 1,169 519 218 100 45
Citeseer 3,327 1,488 606 282 131 58
Pubmed 19,717 7,903 3,562 1,651 726 327
PPI 14,755 5,061 1,815 685 281 120
Reddit 232,965 84,562 30,738 11,598 4,757 2,117
Friendster 7,944,949 2,734,483 1,048,288 409,613 134,956 44,670

APPENDIX D GRAPHZOOM ALGORITHM

Algorithm 1: GraphZoom algorithm
Input: Adjacency matrix Atopo ∈ RN×N ; node feature matrix X ∈ RN×K ;

base embedding function l(·); coarsening level m
Output: Node embedding matrix E ∈ RN×D

1 A0 = graph fusion(Atopo,X);
2 for i = 1...m do
3 Ai,H

i
i−1 = spectral coarsening(Ai−1);

4 end
5 EL = l(Am);
6 for i = m...1 do
7 Êi−1 = (H i

i−1)
T
Ei;

8 Ei−1 = refinement(Êi−1);
9 end

10 E = E0;

APPENDIX E SPECTRAL COARSENING

Notice that mapping operator Hi+1
i ∈ {0, 1}|Vi+1|×|Vi| is a coarsening matrix containing only 0

and 1. It has following properties:

• Row (column) index of Hi+1
i correspond to the node index in graph Gi+1 (Gi).

• It is a surjective mapping of the node set, where (Hi+1
i)p,q = 1 if node q in graph Gi is

aggregated to super-node p in graph Gi+1, and (Hi+1
i)p′,q = 0 for all nodes p′ ∈ {v ∈

Vi+1 : v 6= p}.

• It is a locality preserving operator, where the subgraph of Gi induced by the non-zero entries
of (Hi+1

i)p,: is connected for each p ∈ Vi+1.

12

Under review as a conference paper at ICLR 2020

Algorithm 2: spectral coarsening algorithm

Input: Adjacency matrix Ai ∈ R|Vi|×|Vi|

Output: Adjacency matrix Ai+1 ∈ R|Vi+1|×|Vi+1| of the reduced graph Gi+1,
mapping operator H i+1

i ∈ R|Vi+1|×|Vi|
11 n = |Vi|, nc = n;
12 [graph reduction ratio] γmax = 1.8 , δ = 0.9;
13 for each edge (p, q) ∈ Ei do
14 [spectral node affinity set] C← ap,q defined in Eq. 2 ;
15 end
16 for each node p ∈ Vi do
17 d(p) =

∣∣∣(Ai)p,:

∣∣∣, dm(p) = median
(∣∣∣(Ai)q,:

∣∣∣ for all q ∈ {q|(p, q) ∈ Ei}
)

;

18 if d(p) ≥ 8 · dm(p) then
19 [node aggregation flag] z(p) = 0;
20 else
21 [node aggregation flag] z(p) = −1;
22 end
23 end
24 γ = 1;
25 while γ < γmax do
26 S = ∅ , U = ∅ ;
27 [unaggregated node set] U← p ∈ {p|z(p) == −1 ∀p ∈ Vi};

28 S← p ∈ {p|ap,q ≥ δ ·max
s 6=p,q

(
max

(p,s)∈ Ei

(
ap,s

)
, max
(q,s)∈ Ei

(
aq,s

))
∀p ∈ Vi};

29 for each node p in S ∩ U do
30 if z(p) == −1 then

31 q = argmax
(p,q)∈ Ei

(
ap,q

)
;

32

33 if z(q) == −1 then
34 z(q) = 0, z(p) = q, q̂ = q;
35 else if z(q) == 0 then
36 z(p) = q, q̂ = q;
37 else
38 z(p) = z(q), q̂ = z(q);
39 end
40 update smoothed vectors in T with x(k)p = x

(k)
q̂ for k = 1, · · · , t

nc = nc − 1;
41 end
42 end
43 γ = n/nc, δ = 0.7 · δ ;
44 z(p) = p for node p ∈ {p|z(p) == 0}
45 end
46 form H i+1

i and Ai+1 based on z

13

Under review as a conference paper at ICLR 2020

APPENDIX F CPU TIME OF EACH GRAPHZOOM KERNEL

m=1 m=2 m=3 m=4 m=5
m-th coarsening level

10 2

10 1

100

101

102

103

Si
ng

le
 C

PU
 ti

m
e

(s
)

1.86 1.87 1.91 1.92 1.91
0.95 0.97 1.01 1.08 1.12

791.74

309.36

45.26

6.42

1.45

0.01
0.02 0.02

0.03 0.03

CPU time of GraphZoom kernels on Cora
Fusion
Coarsening
Embedding
Refinement

(a) GraphZoom with DeepWalk as embed-
ding kernel

m=1 m=2 m=3 m=4 m=5
m-th coarsening level

10 2

10 1

100

101

102

103

Si
ng

le
 C

PU
 ti

m
e

(s
)

2.19 2.25 2.22 2.21 2.26
1.21 1.26 1.28 1.38 1.42

1162.88

390.36

59.31

7.66
3.23

0.01
0.02 0.02 0.02

0.03

CPU time of GraphZoom kernels on Citeseer
Fusion
Coarsening
Embedding
Refinement

(b) GraphZoom with DeepWalk as embed-
ding kernel

m=1 m=2 m=3 m=4 m=5
m-th coarsening level

10 1

100

101

102

103

Si
ng

le
 C

PU
 ti

m
e

(s
)

6.18 6.68 6.32 6.33 6.21

1.33 1.47 1.53 1.59 1.81

4842.51
2027.82

814.81

261.38

12.59

0.08 0.11 0.14 0.14 0.18

CPU time of GraphZoom kernels on Pubmed
Fusion
Coarsening
Embedding
Refinement

(c) GraphZoom with DeepWalk as embed-
ding kernel

m=1 m=2 m=3 m=4 m=5
m-th coarsening level

102

103

104

105

Si
ng

le
 C

PU
 ti

m
e

(s
)

827.78 836.36 798.23 802.87 793.79

41.26
64.51 65.86 71.92 70.5

193605.53

88968.64

23881.05

11784.75

5821.77

51.81
70.25 76.03 82.81 78.83

CPU time of GraphZoom kernels on Reddit
Fusion
Coarsening
Embedding
Refinement

(d) GraphZoom with GraphSAGE as em-
bedding kernel

Figure 4: CPU time of GraphZoom kernels

As shown in Figure 4 (note that the y axis is in logarithmic scale), the GraphZoom embedding kernel
dominates the total CPU time, which can be effectively reduced when increaing coarsening level L.
All other kernels in GraphZoom are very efficient, especially when the coarsening level is small.
Thus, the GraphZoom framework can drastically reduce the total run time to generate final node
embeddings.

APPENDIX G GRAPH FILTERS AND LAPLACIAN EIGENVALUES

Figure 5a shows the original distribution of graph Laplacian eigenvalues, which can be interpreted
as frequencies in graph spectral domain (small eigenvalue means low frequency). Since the graph
filter, shown in Figure 5e, has large magnitude on both lateral sides and has small magnitude in
the middle, it can be considered as band-stop filter that passes all frequencies with the exception
of those within the middle stop band which are greatly attenuated. The band-stop filter is therefore
unable to filter out high frequency noise from the graph. However, if we add self-loops in the
graph by Ã = A + σI (shown in Figure 5b, 5c, 5d, where σ = 0.5, 1.0, 2.0), the distribution of
eigenvalues will be squeezed toward small values (proved in (Maehara, 2019)). In other words, the
maximum eigenvalues are effectively reduced by adding self-loop. If we properly set σ such that
large eigenvalues lie in the stop band region (e.g., σ = 1.0, 2.0 shown in Figure 5c and 5d), then
the high frequency components (corresponding to large eigenvalues) will be filtered out while low
frequency components are retained, which makes the graph filter become a low-pass filter, shown in
Figure 5f. It is worth noting that if the σ is too large, then the maximum eigenvalue will be squeezed
to 0, which makes the graph filter unable to remove high frequence components. Thus, setting an
appropriate σ is critical to make the proposed graph filter remove high frequency noise. We choose
σ = 2.0 for all our experiments.

APPENDIX H SPEEDUP OF GRAPHZOOM KERNELS COMPARED TO MILE

As shown in Figure 6, the combination of GraphZoom coarsening and refinement kernels can
achieve the largest speedup (green curve). When adding GraphZoom fusion kernel (blue curve),
it reduces the speedup by a small margin, which shows the trade-off between embedding quality and

14

Under review as a conference paper at ICLR 2020

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Eigenvalues()

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Pr
ob

ab
ilit

y

(a) Original eigenvalues with Ã = A

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Eigenvalues()

0.00

0.02

0.04

0.06

0.08

0.10

Pr
ob

ab
ilit

y

(b) Squeezed eigenvalues with Ã = A+ 0.5I

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Eigenvalues()

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Pr
ob

ab
ilit

y

(c) Squeezed eigenvalues with Ã = A+ 1.0I

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Eigenvalues()

0.00

0.02

0.04

0.06

0.08

0.10

Pr
ob

ab
ilit

y

(d) Squeezed eigenvalues with Ã = A+ 2.0I

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Eigenvalue()

0.0

0.2

0.4

0.6

0.8

1.0

h k
(

)=
|(1

)k |

k = 1
k = 2
k = 3
k = 4

(e) Filters for original laplacian eigenvalues

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Eigenvalue()

0.0

0.2

0.4

0.6

0.8

1.0

h k
(

)=
|(1

)k |

k = 1
k = 2
k = 3
k = 4

(f) Filters for squeezed laplacian eigenvalues

Figure 5: Distribution of graph laplacian eigenvalues with different self-loops on Cora

speedup: if the quality is preferred, GraphZoom fusion kernel should be used; if speedup is more
important, then fusion kernel should be skipped.

APPENDIX I MORE RESULTS ON PPI DATASETS

As shown in Figure 7, when increasing coarsenine level, the GraphZoom embedding results are
always better than GraphSAGE with different aggregation functions. It is worth noting that when

15

Under review as a conference paper at ICLR 2020

1 2 3 4
Coarsening Level

0

50

100

150

200

250

CP
U

tim
e

sp
ee

du
p

Cora (Speedup)

1 2 3 4 5
Coarsening Level

0

100

200

300

400

CP
U

tim
e

sp
ee

du
p

Citeseer (Speedup)

1 2 3 4 5
Coarsening Level

0

50

100

150

200

CP
U

tim
e

sp
ee

du
p

Pubmed (Speedup)

GZoom_F + GZoom_C + GZoom_R (DW)
GZoom_C + GZoom_R (DW)

GZoom_C + MILE_R (DW)
MILE_C + GZoom_R (DW)

MILE_C + MILE_R (DW)

Figure 6: Comparisons of different combinations of kernels in GraphZoom and MILE in terms of
CPU time speedup on Cora, Citeseer, and Pubmed datasets — We choose DeepWalk (DW) as basic
embedding method. GZoom F, GZoom C, GZoom R, MILE C and MILE R represent GraphZoom
fusion kernel, GraphZoom coarsening kernel, GraphZoom refinement kernel, MILE coarsening ker-
nel and MILE refinement kernel, respectively.

010002000300040005000
#Nodes in Coarsened Graph

0.50

0.52

0.54

0.56

0.58

0.60

0.62

0.64

M
icr

o-
F1

Comparison of GraphZoom and GraphSAGE-GCN on PPI

GraphZoom
GraphSAGE-GCN

(a) GraphSAGE with GCN as aggregation function

010002000300040005000
#Nodes in Coarsened Graph

0.50

0.52

0.54

0.56

0.58

0.60

0.62

0.64

M
icr

o-
F1

Comparison of GraphZoom and GraphSAGE-mean on PPI

GraphZoom
GraphSAGE-mean

(b) GraphSAGE with mean as aggregation function

010002000300040005000
#Nodes in Coarsened Graph

0.50

0.52

0.54

0.56

0.58

0.60

0.62

0.64

M
icr

o-
F1

Comparison of GraphZoom and GraphSAGE-lstm on PPI

GraphZoom
GraphSAGE-lstm

(c) GraphSAGE with LSTM as aggregation function

010002000300040005000
#Nodes in Coarsened Graph

0.50

0.52

0.54

0.56

0.58

0.60

0.62

0.64

M
icr

o-
F1

Comparison of GraphZoom and GraphSAGE-pool on PPI

GraphZoom
GraphSAGE-pool

(d) GraphSAGE with pool as aggregation function

Figure 7: Comparisons of GraphZoom and GraphSAGE on PPI

coarsening level is 5, the coarest graph contains only 120 nodes (shown in C), GraphZoom can still
beat the GraphSAGE baseline that trains on the original graph with 14,755 nodes.

16

	Introduction
	Related Work
	GraphZoom Framework
	Phase 1: Graph Fusion
	Phase 2: Spectral Coarsening
	Phase 3: Graph Embedding
	Phase 4: Embedding Refinement

	Experiments
	Experimental Setup
	Performance and Scalability of GraphZoom
	Analysis on GraphZoom Kernels

	Conclusion
	Details of datasets
	Details of baselines
	Graph size at different coarsening level
	GraphZoom algorithm
	Spectral coarsening
	CPU time of each GraphZoom kernel
	Graph filters and laplacian eigenvalues
	Speedup of GraphZoom kernels compared to MILE
	More results on PPI datasets

