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ABSTRACT

In narrow asymptotic settings Gaussian VAE models of continuous data have been
shown to possess global optima aligned with ground-truth distributions. Even so,
it is well known that poor solutions whereby the latent posterior collapses to an
uninformative prior are sometimes obtained in practice. However, contrary to
conventional wisdom that largely assigns blame for this phenomena on the undue
influence of KL-divergence regularization, we will argue that posterior collapse
is, at least in part, a direct consequence of bad local minima inherent to the loss
surface of deep autoencoder networks. In particular, we prove that even small
nonlinear perturbations of affine VAE decoder models can produce such minima,
and in deeper models, analogous minima can force the VAE to behave like an
aggressive truncation operator, provably discarding information along all latent
dimensions in certain circumstances. Regardless, the underlying message here
is not meant to undercut valuable existing explanations of posterior collapse, but
rather, to refine the discussion and elucidate alternative risk factors that may have
been previously underappreciated.

1 INTRODUCTION

The variational autoencoder (VAE) (Kingma & Welling, 2014; Rezende et al., 2014) represents a
powerful generative model of data points that are assumed to possess some complex yet unknown
latent structure. This assumption is instantiated via the marginalized distribution

pθ(x) =
∫
pθ(x|z)p(z)dz, (1)

which forms the basis of prevailing VAE models. Here z ∈ Rκ is a collection of unobservable
latent factors of variation that, when drawn from the prior p(z), are colloquially said to generate an
observed data point x ∈ Rd through the conditional distribution pθ(x|z). The latter is controlled
by parameters θ that can, at least conceptually speaking, be optimized by maximum likelihood over
pθ(x) given available training examples.

In particular, assuming n training points X = [x(1), . . . ,x(n)], maximum likelihood estimation is
tantamount to minimizing the negative log-likelihood expression 1
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ing further, because the marginalization over z in (1) is often intractable, the VAE instead minimizes
a convenient variational upper bound given by L(θ, φ) ,
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(2)
with equality iff qφ(z|x(i)) = pθ(z|x(i)) for all i. The additional parameters φ govern the shape
of the variational distribution qφ(z|x) that is designed to approximate the true but often intractable
latent posterior pθ(z|x).

The VAE energy from (2) is composed of two terms, a data-fitting loss that borrows the basic struc-
ture of an autoencoder (AE), and a KL-divergence-based regularization factor. The former incen-
tivizes assigning high probability to latent codes z that facilitate accurate reconstructions of each
x(i). In fact, if qφ(z|x) is a Dirac delta function, this term is exactly equivalent to a deterministic
AE with data reconstruction loss defined by− log pθ (x|z). Overall, it is because of this association
that qφ(z|x) is generally referred to as the encoder distribution, while pθ (x|z) denotes the decoder
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distribution. Additionally, the KL regularizer KL [qφ(z|x)||p(z)] pushes the encoder distribution
towards the prior without violating the variational bound.

For continuous data, which will be our primary focus herein, it is typical to assume that

p(z) = N (z|0, I), pθ (x|z) = N (x|µx, γI), and qφ (z|x) = N (z|µz,Σz), (3)

where γ > 0 is a scalar variance parameter, while the Gaussian moments µx ≡ µx (z; θ), µz ≡
µz (x;φ), and Σz ≡ diag[σz (x;φ)]2 are computed via feedforward neural network layers. The
encoder network parameterized by φ takes x as an input and outputs µz and Σz . Similarly the
decoder network parameterized by θ converts a latent code z into µx. Given these assumptions, the
generic VAE objective from (2) can be refined to

L(θ, φ) = 1
n

n∑
i=1

{
Eqφ(z|x(i))

[
1
γ ‖x

(i) − µx (z; θ) ‖22
]

(4)

+ d log γ +
∥∥∥σz (x(i);φ

)∥∥∥2
2
− log

∣∣∣∣diag
[
σz

(
x(i);φ

)]2∣∣∣∣+
∥∥∥µz (x(i);φ

)∥∥∥2
2

}
.

This expression can be optimized over using SGD and a simple reparameterization strategy (Kingma
& Welling, 2014; Rezende et al., 2014) to produce parameter estimates {θ∗, φ∗}. Among other
things, new samples approximating the training data can then be generated via the ancestral process
znew ∼ N (z|0, I) and xnew ∼ pθ∗(x|znew).

Although it has been argued that global minima of (4) may correspond with the optimal recovery
of ground truth distributions in certain asymptotic settings (Dai & Wipf, 2019), it is well known
that in practice, VAE models are at risk of converging to degenerate solutions where, for example,
it may be that qφ (z|x) = p(z). This phenomena, commonly referred to as VAE posterior collapse
(He et al., 2019; Razavi et al., 2019), has been acknowledged and analyzed from a variety of dif-
ferent perspectives as we detail in Section 2. That being said, we would argue that there remains
lingering ambiguity regarding the different types and respective causes of posterior collapse. Con-
sequently, Section 3 provides a useful taxonomy that will serve to contextualize our main technical
contributions. These include the following:

• Building upon existing analysis of affine VAE decoder models, in Section 4 we prove that even
arbitrarily small nonlinear activations can introduce suboptimal local minima exhibiting posterior
collapse.

• We demonstrate in Section 5 that if the encoder/decoder networks are incapable of sufficiently
reducing the VAE reconstruction errors, even in a deterministic setting with no KL-divergence
regularizer, there will exist an implicit lower bound on the optimal value of γ. Moreover, we
prove that if this γ is sufficiently large, the VAE will behave like an aggressive thresholding
operator, enforcing exact posterior collapse, i.e., qφ (z|x) = p(z).

• Based on these observations, we present experiments in Section 6 establishing that as network
depth/capacity is increased, even for deterministic AE models with no regularization, reconstruc-
tion errors become worse. This bounds the effective VAE trade-off parameter γ such that posterior
collapse is essentially inevitable. Collectively then, we provide convincing evidence that poste-
rior collapse is, at least in certain settings, the fault of deep AE local minima, and need not be
exclusively a consequence of usual suspects such as the KL-divergence term.

We conclude in Section 7 with practical take-home messages, and motivate the search for improved
AE architectures and training regimes that might be leveraged by analogous VAE models.

2 RECENT WORK AND THE USUAL SUSPECTS FOR INSTIGATING COLLAPSE

Posterior collapse under various guises is one of the most frequently addressed topics related to
VAE performance. Depending on the context, arguably the most common and seemingly trans-
parent suspect for causing collapse is the KL regularization factor that is obviously minimized by
qφ(z|x) = p(z). This perception has inspired various countermeasures, including heuristic anneal-
ing of the KL penalty or KL warm-start (Bowman et al., 2015; Huang et al., 2018; Sønderby et al.,
2016), tighter bounds on the log-likelihood (Burda et al., 2015; Rezende & Mohamed, 2015), more
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complex priors (Bauer & Mnih, 2018; Tomczak & Welling, 2018), modified decoder architectures
(Cai et al., 2017; Dieng et al., 2018; Yeung et al., 2017), or efforts to explicitly disallow the prior
from ever equaling the variational distribution (Razavi et al., 2019). Thus far though, most published
results do not indicate success generating high-resolution images, and in the majority of cases, eval-
uations are limited to small images and/or relatively shallow networks. This suggests that there may
be more nuance involved in pinpointing the causes and potential remedies of posterior collapse. One
notable exception though is the BIVA model from (Maaløe et al., 2019), which employs a bidirec-
tional hierarchy of latent variables, in part to combat posterior collapse. While improvements in
NLL scores have been demonstrated with BIVA using relatively deep encoder/decoders, this model
is significantly more complex and difficult to analyze.

On the analysis side, there have been various efforts to explicitly characterize posterior collapse in
restricted settings. For example, Lucas et al. (2019) demonstrate that if γ is fixed to a sufficiently
large value, then a VAE energy function with an affine decoder mean will have minima that over-
prune latent dimensions. A related linearized approximation to the VAE objective is analyzed in
(Rolinek et al., 2019); however, collapsed latent dimensions are excluded and it remains somewhat
unclear how the surrogate objective relates to the original. Posterior collapse has also been associ-
ated with data-dependent decoder covariance networks Σx(z; θ) 6= γI (Mattei & Frellsen, 2018),
which allows for degenerate solutions assigning infinite density to a single data point and a diffuse,
collapsed density everywhere else. Finally, from the perspective of training dynamics, (He et al.,
2019) argue that a lagging inference network can also lead to posterior collapse.

3 TAXONOMY OF POSTERIOR COLLAPSE

Although there is now a vast literature on the various potential causes of posterior collapse, there
remains ambiguity as to exactly what this phenomena is referring to. In this regard, we believe that
it is critical to differentiate five subtle yet quite distinct scenarios that could reasonably fall under
the generic rubric of posterior collapse:

(i) Latent dimensions of z that are not needed for providing good reconstructions of the training
data are set to the prior, meaning qφ(zj |x) ≈ p(zj) = N (0, 1) at any superfluous dimension
j. Along other dimensions σ2

z will be near zero and µz will provide a usable predictive signal
leading to accurate reconstructions of the training data. This case can actually be viewed as
a desirable form of selective posterior collapse that, as argued in (Dai & Wipf, 2019), is a
necessary (albeit not sufficient) condition for generating good samples.

(ii) The decoder variance γ is set too large1 such that the KL term from (2) is overly dominant,
forcing most or all dimensions of z to follow the prior N (0, 1). In this scenario, the actual
global optimum of the VAE energy (assumI adding γ is fixed) will lead to deleterious posterior
collapse and the model reconstructions of the training data will be poor. In fact, even the
original marginal like-likelihood can potentially default to a trivial/useless solution if γ is
fixed too large, assigning a small marginal likelihood to the training data, provably so in the
affine case (Lucas et al., 2019).

(iii) As mentioned previously, if the Gaussian decoder covariance is learned as a separate network
structure (instead of simply Σx(z; θ) = γI), there can exist degenerate solutions that assign
infinite density to a single data point and a diffuse, isotropic Gaussian elsewhere (Mattei &
Frellsen, 2018). This implies that (4) can be unbounded from below at what amounts to a
posterior collapsed solution and bad reconstructions almost everywhere.

(iv) When powerful non-Gaussian decoders are used, and in particular those that can parameter-
ize complex distributions regardless of the value of z (e.g., PixelCNN-based (Van den Oord
et al., 2016)), it is possible for the VAE to assign high-probability to the training data even if
qφ(z|x) = p(z) (Alemi et al., 2017; Bowman et al., 2015; Chen et al., 2016). This category
of posterior collapse is quite distinct from categories (ii) and (iii) above in that, although the
reconstructions are similarly poor, the associated NLL scores can still be good.

(v) The previous fifth categories of posterior collapse can all be directly associated with emergent
properties of the VAE global minimum under various modeling conditions. In contrast, a
forth type of collapse exists that is the explicit progeny of bad VAE local minima. More

1Or equivalently, a KL scaling parameter such as used by the β-VAE (Higgins et al., 2017) is set too large.
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specifically, as we will argue shortly, when deeper encoder/decoder networks are used, the
risk of converging to bad, overregularized solutions increases.

The remainder of this paper will primarily focus on category (v), with brief mention of the other
types for comparison purposes where appropriate. Our rationale for this selection bias is that, un-
like the others, category (i) collapse is actually advantageous and hence need not be mitigated. In
contrast, while category (ii) is undesirable, it be can be avoided by learning γ. As for category (iii),
this represents an unavoidable consequence of models with flexible decoder covariances capable of
detecting outliers (Dai et al., 2018). In fact, even simpler inlier/outlier decomposition models such
as robust PCA are inevitably at risk for this phenomena (Candès et al., 2011). Regardless, when
Σz(x; θ) = γI this problem goes away. And finally, we do not address category (iv) in depth sim-
ply because it is unrelated to the canonical Gaussian VAE models of continuous data that we have
chosen to examine herein. Regardless, it is still worthwhile to explicitly differentiate these five types
and bare them in mind when considering attempts to both explain and improve VAE models.

4 INSIGHTS FROM SIMPLIFIED CASES

Because different categories of posterior collapse can be impacted by different global/local minima
structures, a useful starting point is a restricted setting whereby we can comprehensively characterize
all such minima. For this purpose, we first consider a VAE model with the decoder network set to
an affine function. As is often assumed in practice, we choose Σx = γI , where γ > 0 is a scalar
parameter within the parameter set θ. In contrast, for the mean function we choose µx = W xz+bx
for some weight matrix W x and bias vector bx. The encoder can be arbitrarily complex (although
the optimal structure can be shown to be affine as well).

Given these simplifications, and assuming the data has r ≥ κ nonzero singular values, it has been
demonstrated that at any global optima, the columns ofW x will correspond with the first κ principal
components of the training data matrix X provided that we simultaneously learn γ or set it to the
optimal value (which is available in closed form) (Dai et al., 2018; Lucas et al., 2019; Tipping &
Bishop, 1999). Additionally, it has also be shown that no spurious, suboptimal local minima will
exist. Note also that if r < κ the same basic conclusions still apply; however, W x will only have r
nonzero columns, each corresponding with a different principal component of the data. The unused
latent dimensions will satisfy qφ(z|x) = N (0, I), which represents the canonical form of the benign
category (i) posterior collapse. Collectively, these results imply that provided we converge to any
local minima of the VAE energy, we will obtain the best possible linear approximation to the data
using a minimal number of latent dimensions, and malignant posterior collapse is not an issue, i.e.,
categories (ii)-(v) will not arise.

Even so, if instead of learning γ, we choose a fixed value that is larger than any of the significant
singular values ofXX>, then category (ii) posterior collapse can be inadvertently introduced. More
specifically, let r̃γ denote the number of such singular values that are smaller than some fixed γ
value. Then along κ− r̃γ latent dimensions qφ(z|x) = N (0, I), and the corresponding columns of
W x will be set to zero, regardless of whether or not these dimensions are necessary for accurately
reconstructing the data. The risk of this type of posterior collapse will likely be inherited by deeper
models as well as argued in (Lucas et al., 2019).

Of course when we move to more complex architectures, the risk of bad local minima or other
suboptimal stationary points becomes a new potential concern, and it is not clear that the affine
case described above contributes to reliable, predictive intuitions. To illustrate this point, we will
now demonstrate that the introduction of an arbitrarily small nonlinearity can nonetheless produce a
pernicious local minimum that exhibits category (v) posterior collapse. In particular, we now assume
the decoder mean function

µx = πα (W xz) + bx, with πα(u) , sign(u) (|u| − α)+ , α ≥ 0. (5)
The function πα is nothing more than a soft-threshold operator as is commonly used in neural net-
work architectures designed to reflect unfolded iterative algorithms for representation learning (Gre-
gor & LeCun, 2010; Sprechmann et al., 2015). In the present context though, we choose this non-
linearity largely because it allows (5) to reflect arbitrarily small perturbations away from a strictly
affine model, and indeed if α = 0 the exact affine model is recovered. Collectively, these specifi-
cations lead to the parameterization θ = {W x, bx, γ} and φ = {µ(i)

z ,σ
(i)
z }ni=1 and energy given
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by
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where µ(i)
z and σ(i)

z denote arbitrary encoder moments for data point i (this is consistent with the
assumption of an arbitrarily complex encoder as used in previous analysis of affine decoder models).
Now define γ̄ , 1

nd

∑
i ‖x(i) − x̄‖22, with x̄ , 1

n

∑
i x

(i). We then have the following result:

Proposition 4.1 For any α > 0, there will always exist data setsX such (6) has a global minimum
that perfectly reconstructs the training data, but also a bad local minimum characterized by

qφ(z|x) = N (z|0, I) and pθ(x) = N (x|x̄, γ̄I). (7)

Hence the moment we allow for nonlinear (or more precisely, non-affine) decoders there can exist a
poor local minimum that exhibits category (v) posterior collapse.2 In other words, no predictive in-
formation about x passes through the latent space, and a useless/non-informative distribution pθ(x)
emerges that is incapable of assigning high probability to the data (except obviously in the trivial de-
generate case where all the data points are equal to the empirical mean x̄). We will next investigate
the degree to which such concerns can influence behavior in arbitrarily deep architectures.

5 EXTRAPOLATING TO PRACTICAL DEEP ARCHITECTURES

Previously we have demonstrated the possibility of local minima aligned with category (v) posterior
collapse the moment we allow for decoders that deviate ever so slightly from an affine model. But
nuanced counterexamples designed for proving technical results notwithstanding, it is reasonable to
examine what realistic factors are largely responsible for leading optimization trajectories towards
such potential bad local solutions. For example, is it merely the strength of the KL regularization
term, and if so, why can we not just use KL warm-start to navigate around such points? In this section
we will elucidate a deceptively simple, alternative risk factor that will be corroborated empirically
in Section 6.

From the outset, we should mention that with deep encoder/decoder architectures commonly used
in practice, a stationary point can more-or-less always exist at solutions exhibiting posterior col-
lapse. As a representative and ubiquitous example, please see Appendix A.4. But of course without
further details, this type of stationary point could conceivably manifest as a saddle point (stable or
unstable), a local maximum, or a local minimum. For the strictly affine decoder model, there will
only be a harmless unstable saddle point at any collapsed solution (the Hessian has negative eigen-
values), while for the special case described in Section 4 we can instead have a bad local minima
if too many latent dimensions satisfy the stated conditions. We will now argue that as the depth of
common feedforward architectures increases, the risk of converging to solutions with most or all
latent dimensions stuck at bad stationary points analogous to those described can also increase.

Somewhat orthogonal to existing explanations of posterior collapse, our basis for this argument is
not directly related to the VAE KL-divergence term. Instead, we consider a deceptively simple yet
potentially influential alternative: Unregularized, deterministic deep AE models can have bad local
solutions with high reconstruction errors that directly translate to category (v) posterior collapse
when training a corresponding VAE model with a matching architecture. Moreover, to the extent
that this is true, KL warm-start or related countermeasures will be helpless to prevent it.

To make this point more concrete, consider the deterministic AE model formed by concatenating
the encoder mean µx ≡ µx (·; θ) and decoder mean µz ≡ µz (·;φ) networks from a VAE model,
i.e., reconstructions x̂ are computed via x̂ = µx [µz (x;φ) ; θ]. We then train this AE to minimize

2This result mirrors related efforts examining linear DNNs, where it has been previously demonstrated that
under certain conditions, all local minima are globally optimal (Kawaguchi, 2016), while small nonlinearities
can induce bad local optima (Yun et al., 2019). However, the loss surface of these models is completely different
from a VAE, and hence we view Proposition 4.1 as a complementary result.
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the squared-error loss 1
nd

∑n
i=1

∥∥∥x(i) − x̂(i)
∥∥∥2
2
, producing parameters {θae, φae}. Analogously, the

corresponding VAE trained to minimize (4) arrives at a parameter set denoted {θvae, φvae}. In this
scenario, it will naturally follow that

1
nd

n∑
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∥∥∥x(i) − µx
[
µz

(
x(i);φae

)
; θae

]∥∥∥2
2
≤ 1

nd

n∑
i=1

Eqφvae(z|x(i))

[
‖x(i) − µx (z; θvae) ‖22

]
,

(8)
meaning that the deterministic AE reconstruction error will generally be smaller than the stochastic
VAE version. Note that if σ2

z → 0, the VAE defaults to the same deterministic encoder as the AE
and hence will have identical representational capacity; however, the KL regularization prevents
this from happening, and any σ2

z > 0 can only make the reconstructions worse.3 Likewise, the KL
penalty factor ‖µ2

z‖22 can further restrict the effective capacity and increase the reconstruction error
of the training data.

We next define the set
Sε ,

{
θ, φ : 1

nd

n∑
i=1

∥∥∥x(i) − x̂(i)
∥∥∥2
2
≤ ε

}
(9)

for any ε > 0. Now suppose that the chosen encoder/decoder architecture is such that with
high probability, achievable optimization trajectories (e.g., via SGD or related) lead to parameters
{θAE , φAE} /∈ Sε, i.e., Prob ({θAE , φAE} ∈ Sε) ≈ 0. It then follows from (8) that the optimal
VAE γ parameter, when conditioned on practically-achievable values for other network parameters,
will have a lower bound given by

γ∗ , arg min
γ
L(θvae\γ, φvae) = 1

nd

n∑
i=1

Eqφvae(z|x(i))

[
‖x(i) − µx (z; θvae) ‖22

]
≥ ε. (10)

The equality in (10) can be confirmed by simply differentiating the VAE cost and equating to zero,
noting that θvae\γ is referencing all decoder parameters excluding γ.

From these observations, it becomes clear that the potential for category (v) posterior collapse arises
when ε is large, which implies that the optimal γ∗ must also be large per (10). To make this notion
more explicit, it is helpful to introduce a slightly narrower but nonetheless representative class of
VAE models.

Specifically, let f
(
µz,σz, θ,x

(i)
)
, Eqφ(z|x(i))

[
‖x(i) − µx (z; θ) ‖22

]
, i.e., the VAE data

term evaluated at a single data point without the 1/γ scale factor. We then define a well-
behaved VAE as a model with energy function (4) designed such that ∇µzf

(
µz,σz, θ,x

(i)
)

and
∇σzf

(
µz,σz, θ,x

(i)
)

are Lipschitz continuous gradients for all i. Furthermore, we specify a non-

degenerate decoder as any µx(z; θ = θ̃) with θ set to a θ̃ value such that∇σzf
(
µz,σz, θ̃,x

(i)
)
≥

c for some constant c > 0 that can be arbitrarily small. This ensures that f is an increasing func-
tion of σz , a quite natural stipulation given that increasing the encoder variance will generally only
serve to corrupt the reconstruction, unless of course the decoder is completely blocking the signal
from the encoder. In the latter degenerate situation, it would follow that ∇µzf

(
µz,σz, θ,x

(i)
)

=

∇σzf
(
µz,σz, θ,x

(i)
)

= 0, which is more-or-less tantamount to category (v) posterior collapse.

Based on these definitions, we can now present the following:

Proposition 5.1 For any well-behaved VAE with arbitrary, non-degenerate decoder µx(z; θ = θ̃),
there will always exist a γ′ < ∞ such that the trivial solution µx(z; θ 6= θ̃) = x̄ and qφ(z|x) =
p(z) will have lower cost.

Around any evaluation point, the sufficient condition we applied to demonstrate posterior collapse
(see proof details) can also be achieved with some γ′′ < γ′ if we allow for partial collapse, i.e.,
qφ∗(zj |x) = p(zj) along some but not all latent dimensions j ∈ {1, . . . , κ}. Overall, the analysis
loosely suggests that the number of dimensions vulnerable to collapse will increase monotonically
with γ.

3Except potentially in certain highly contrived adversarial conditions that do not represent practical regimes.
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Proposition 5.1 also provides evidence that the VAE behaves like a strict thresholding operator,
completely shutting off latent dimensions using a finite value for γ. This is exactly analogous to the
distinction between using the `1 versus `2 norm for solving regularized regression problems of the
standard form minu ‖x−Au‖22 + γ η(u), whereA is a design matrix and η is a penalty function.
When η is the `1 norm, some or all elements of u can be pruned to exactly zero with a sufficiently
large but finite γ Zhao & Yu (2006). In contrast, when the `2 norm is applied, the coefficients will
be shrunk to smaller values but never pushed all the way to zero unless γ →∞.

In aggregate then, if the AE base model displays unavoidably high reconstruction errors, this implic-
itly constrains the corresponding VAE model to have a large optimal γ value, which can potentially
lead to undesirable posterior collapse per Proposition 5.1. In Section 6 we will demonstrate empiri-
cally that training unregularized AE models can become increasingly difficult and prone to bad local
minima (or at least bad stable stationary points) as the depth increases; and this difficulty can persist
even with counter-measures such as skip connections. Therefore, from this vantage point we would
argue that it is actually the AE base architecture that is effectively the guilty party when it comes to
posterior collapse.

The perspective described above also helps to explain why heuristics like KL warm-start are not
always useful for improving VAE performance. With the standard Gaussian model (4) considered
herein, KL warm-start amounts to adopting a pre-defined schedule for incrementally increasing
γ starting from a small initial value, the motivation being that a small γ will steer optimization
trajectories away from overregularized solutions and posterior collapse.

However, regardless of how arbitrarily small γ may be fixed at any point during this process, the VAE
reconstructions are not likely to be better than the analogous deterministic AE (which is roughly
equivalent to forcing γ = 0 within the present context). This implies that there can exist an implicit
γ∗ as computed by (10) that can be significantly larger such that, even if KL warm-start is used,
the optimization trajectory may well lead to a collapsed posterior stationary point that has this γ∗
as the optimal value in terms of minimizing the VAE cost with other parameters fixed. Note that if
posterior collapse does occur, the gradient from the KL term will equal zero and hence, to be at a
stationary point it must be that the data term gradient is also zero, and therefore varying γ manually
will not impact the gradient balance.

6 EMPIRICAL ASSESSMENTS

In this section we empirically demonstrate the association between bad AE local minima with high
reconstruction errors and imminent VAE posterior collapse. For this purpose, we first train fully
connected AE and VAE models with 1, 2, 4, 6, 8 and 10 hidden layers on the Fashion-MNIST
dataset (Xiao et al., 2017). Each hidden layer is 512-dimensional and followed by ReLU activations
(see Appendix A.1 for further details). The reconstruction error is shown in Figure 1(left). As the
depth of the network increases, the reconstruction error of the AE model first decreases because of
the increased capacity. However, when the network becomes too deep, the error starts to increase,
indicating convergence to a bad local minima (or at least stable stationary point/plateau) that is
unrelated to KL-divergence regularization. The reconstruction error of a VAE model is always
worse than that of the corresponding AE model as expected.

We next train AE and VAE models using a more complex convolutional network on Cifar100
data (Krizhevsky & Hinton, 2009). At each spatial scale, we use 1 to 5 convolution layers fol-
lowed by ReLU activations. We also apply 2× 2 max pooling to downsample the feature maps to a
smaller spatial scale in the encoder and use a transposed convolution layer to upscale the feature map
in the decoder. The reconstruction errors are shown in Figure 1(middle). Again, the trend is similar
to the fully-connected network results. See Appendix A.1 for an additional ImageNet example.

It has been argued in the past that skip connections can increase the mutual information between
observations x(i) and the inferred latent variables z (Dieng et al., 2018). And it is well-known that
ResNet architectures based on skip connections can improve performance on numerous recognition
tasks (He et al., 2016). To this end, we train a number of AE models using ResNet-inspired en-
coder/decoder architectures on multiple datasets including Cifar10, Cifar100, SVHN and CelebA.
Similar to the convolution network structure from above, we use 1, 2, and 4 residual blocks within
each spatial scale. Inside each block, we apply 2 to 5 convolution layers. For aggregate comparison
purposes, we normalize the reconstruction error obtained on each dataset by dividing it with the

7
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Figure 1: Reconstruction errors for various encoder/decoder models of varying complexity. Left:
Fully connected networks with different depths trained on Fashion-MNIST. Middle: Convolution
networks with increasing depth/# of spatial scales trained on Cifar100. Right: Averaged AE results
from residual networks with varying number of residual blocks and block depth trained on SVHN,
Cifar10, Cifar100 and CelebA. In all plots, once the encoder/decoder complexity is sufficiently high,
the reconstruction errors begin to increase.
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Figure 2: Histogram of σz values as VAE encoder/decoder network depth is varied. There are 2, 4
and 5 convolution layers in each spatial scale from left to right. As depth increases, the reconstruc-
tion error grows and more σz values are near 1, indicative of impending posterior collapse.

corresponding error produced by the most shallow network structure (1 residual block with 2 con-
volution layers). We then average the normalized reconstruction errors over all four datasets. The
average normalized errors are shown in Figure 1(right), where we observe that adding more con-
volution layers inside each residual block can increase the reconstruction error when the network is
too deep. Moreover, adding more residual blocks can also lead to higher reconstruction errors.

We emphasize that in all these models, as the network complexity/depth increases, the simpler mod-
els are always contained within the capacity of the larger ones. Therefore, because the reconstruction
error on the training data is becoming worse, it must be the case that the AE is becoming stuck at
bad local minima or plateaus. Again since the AE reconstruction error serves as a lower bound for
that of the VAE model, a deeper VAE model will likely suffer the same problem, only exacerbated
by the KL-divergence term in the form of posterior collapse. This implies that there will be more σz
values moving closer to 1 as the VAE model becomes deeper; similarly µz values will push towards
0. The corresponding dimensions will encode no information and become completely useless.

To help corroborate this association between bad AE local minima and VAE posterior collapse, we
plot histograms of VAE σz values as network depth is varied in Figure 2. The models are trained
on CelebA and the number of convolution layers in each spatial scale is 2, 4 and 5 from left to right.
As the depth increases, the reconstruction error becomes larger and there are more σz near 1.

7 CONCLUSIONS

In this work we have emphasized the previously-underappreciated role of bad local minima (partic-
ularly those shared by deterministic AEs and unrelated to KL-divergence regularization) in trapping
VAE models at posterior collapsed solutions. While we believe that this message is interesting in and
of itself, there are nonetheless several practically-relevant implications. For example, complex hier-
archical VAEs like BIVA notwithstanding, skip connections and KL warm-start have modest ability
to steer optimization trajectories towards good solutions; however, this limitation may not manifest
until networks are sufficiently deep as we have considered. Fortunately, any advances or insights
gleaned from developing deeper unregularized AEs, e.g., better initializations (Li & Nguyen, 2019),
could likely be adapted to reduce the risk of posterior collapse in corresponding VAE models.

8
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A APPENDIX

A.1 NETWORK STRUCTURE, EXPERIMENTAL SETTINGS, AND ADDITIONAL IMAGENET
RESULTS

Three different kinds of network structures are used in the experiments: fully connected networks,
convolution networks, and residual networks. For all these structures, we set the dimension of the
latent variable z to 64. We then describe the network details accordingly.

Fully Connected Netowrk: This experiment is only applied on the simple Fashion-MNIST dataset,
which contains 60000 28 × 28 black-and-while images. These images are first flattened to a 784
dimensional vector. Both the encoder and decoder have multiple number of 512-dimensional hidden
layers, each followed by ReLU activations.

Convolution Netowrk: The original images are either 32× 32× 3 (Cifar10, Cifar100 and SVHN)
or 64 × 64 × 3 (CelebA and ImageNet). In the encoder, we use a multiple number (denoted as t)
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of 3 × 3 convolution layers for each spatial scale. Each convolution layer is followed by a ReLU
activation. Then we use a 2 × 2 max pooling to downsample the feature map to a smaller spatial
scale. The number of channels is doubled when the spatial scale is halved. We use 64 channels when
the spatial scale is 32 × 32. When the spatial scale reaches 4 × 4 (there should be 512 channels in
this feature map), we use an average pooling to transform the feature map to a vector, which is then
transformed into the latent variable using a fully connected layer. In the decoder, the latent variable
is first transformed to a 4096-dimensional vector using a fully connected layer and then reshaped to
2×2×1024. Again in each spatial scale, we use 1 transpose convolution layer to upscale the feature
map and halve the number of channels followed by t− 1 convolution layers. Each convolution and
transpose convolution layer is followed by a ReLU activation layer. When the spatial scale reaches
that of the original image, we use a convolution layer to transofrm the feature map to 3 channels.

Residual Network: The network structure of the residual network is similar to that of a convo-
lution network described above. We simply replace the convolution layer with a residual block.
Inside the residual block, we use different numbers of convolution numbers. (The typical number of
convolution layers inside a residual block is 2 or 3. In our experiments, we try 2, 3, 4 and 5.)

Training Details: All the experiments with different network structures and datasets are trained
in the same procedure. We use the Adam optimization method and the default optimizer hyper
parameters in Tensorflow. The batch size is 64 and we train the model for 250K iterations. The
initial learning rate is 0.0002 and it is halved every 100K iterations.

Additional Results on ImageNet: We also show the reconstruction error for convolution networks
with increasing depth trained on ImageNet in Figure 3. The trend is the same as that in Figure 1.
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Figure 3: Reconstruction error for Convolution networks with increasing depth/# of spatial scales
trained on ImageNet.

A.2 PROOF OF PROPOSITION 4.1

While the following analysis could in principle be extended to more complex datasets, for our pur-
poses it is sufficient to consider the following simplified case for ease of exposition. Specifically, we
assume that n > 1, d > κ, set d = 2, n = 2, κ = 1, and x(1) = (1, 1),x(2) = (−1,−1).

Additionally, we will use the following basic facts about the Gaussian tail. Note that (12)-(13) below
follow from integration by parts; see Orjebin (2014).

Lemma A.1 Let ε ∼ N (0, 1), A > 0; φ(x),Φ(x) be the pdf and cdf of the standard normal distri-
bution, respectively. Then

1− Φ(A) ≤ e−A
2/2, (11)

E[ε1{ε>A}] = φ(A), (12)

E[ε21{ε>A}] = 1− Φ(A) +Aφ(A). (13)

11
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A.2.1 SUBOPTIMALITY OF (7)

Under the specificed conditions, the energy from (7) has a value of nd. Thus to show that it is not the
global minimum, it suffices to show that the following VAE, parameterized by δ, has energy→ −∞
as δ → 0:

µ(1)
z = 1, µ(2)

z = −1,

W x = (α+ 1, α+ 1), bx = 0,

σ(1)
z = σ(2)

z = δ,

γ = EN (ε|0,1)2(1− πα((α+ 1)(1 + δε)))2.

This follows because, given the stated parameters, we have that

L(θ, φ) =

2∑
i=1

(1 + 2 logEN (ε|0,1)2(1− πα((α+ 1)(1 + δε)))2 − 2 log δ + δ2 + 1)

=

2∑
i=1

(Θ(1) + 2 logEN (ε|0,1)(1− πα(α+ 1 + (α+ 1)δε))2 − 2 log δ)

≤(i)4 log δ + Θ(1).

(i) holds when δ < 1
α+1 ; to see this, denote x := α+ 1 + (α+ 1)(δε). Then

EN (ε|0,1)(1− πα(x))2

=Eε[(1− πα(x))21{x≥α}] + Eε[(1− πα(x))21{|x|<α}] + Eε[(1− πα(x))21{x<−α}]

≤Eε[(1− (x− α))2]︸ ︷︷ ︸
(a)

+P(|x| < α)︸ ︷︷ ︸
(b)

+Eε((1− x− α)21{x<−α})︸ ︷︷ ︸
(c)

.

In the RHS above (a) = [(α+ 1)δ]2; using (11)-(13) we then have

(b) < P(x < α) = P
(
ε <

−1

(α+ 1)δ

)
≤ exp

(
− 1

2[(α+ 1)δ]2

)
.

(c) < Eε((2α+ (α+ 1)δε)21{x<α})

=

∫ −1
(α+1)δ

−∞
(2α+ (α+ 1)δε)2

1√
2π
e−ε

2/2dε

<

∫ −1
(α+1)δ

−∞
(4α2 + [(α+ 1)δε]2)

1√
2π
e−ε

2/2dε

<

{
4α2 + ((α+ 1)δ)2

[
1 +

1√
2π

]}
exp

(
− 1

2[(α+ 1)δ]2

)
when δ < 1

α+1 . Thus

lim
δ→0

EN (ε|0,1)(1− πα(x))2

[(α+ 1)δ]2
= 1,

and
lim
δ→0
{logEN (ε|0,1)(1− πα(x))2 − 2 log δ} = 2 log(α+ 1),

or
2 logEε(1− πα(x))2 = 4 log δ + Θ(1),

and we can see (i) holds.

A.2.2 LOCAL OPTIMALITY OF (7)

We will now show that at (7), the Hessian of the energy has structure

(W x) (bx) (σ
(i)
z , µ

(i)
z ) (γ)

(W x) 0 0 0 0
(bx) 0 2

γ I 0 0

(σ
(i)
z , µ

(i)
z ) 0 0 (p.d.) 0

(γ) 0 0 0 (p.d.)
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where p.d. means the corresponding submatrix is positive definite and independent of other param-
eters. While the Hessian is 0 in the subspace of W x, we can show that for VAEs that are only
different from (7) byW x, the gradient always points back to (7). Thus (7) is a strict local minima.

First we compute the Hessian matrix block-wise. We will identify W x ∈ R2×1 with the vector
(Wj)

2
j=1, and use the shorthand notations x(i) = (x

(i)
j )2j=1, bx = (bj)

2
j=1, z(i) = µ

(i)
z + σ

(i)
z ε,

where ε ∼ N (0, 1) (recall that z(i) is a scalar in this proof).

1. The second-order derivatives involvingW x can be expressed as

∂L
∂Wj

=
−2

γ

n∑
i=1

Eε[(π′α(Wjz
(i))z(i)) · (x(i)j − πα(Wjz

(i))− bj)], (14)

and therefore all second-order derivatives involving Wj will have the form

Eε[π′α(Wjz
(i))F1 + π′′α(Wjz

(i))F2], (15)

where F1, F2 are some arbitrary functions that are finite at (7). Since π′α(0) = π′′α(0) =
Wj = 0, the above always evaluates to 0 atW x = 0.

2. For second-order derivatives involving bx, we have

∂L
∂bx

=
−2

γ
Eε[x(i) − πα(W xz

(i))− bx]

and

∂2L
∂(bx)2

=
2

γ
I,

∂2L
∂γ∂bx

=
2

γ2
∂L
∂bx

= 0, (sinceW x = 0);

and ∂2L
∂µ

(i)
z ∂bx

and ∂2L
∂µ

(i)
z ∂σ

(i)
z

will also have the form of (15), thus both equal 0 atW x = 0.

3. Next consider second-order derivatives involving µ(i)
z or σ(i)

k . Since the KL part of the
energy,

∑n
i=1 KL(qφ(z|x(i))|p(z)), only depends on µ(i)

z and σ(i)
k , and have p.d. Hes-

sian at (7) independent of other parameters, it suffices to calculate the derivatives of the
reconstruction error part, denoted as Lrecon. Since

∂Lrecon

∂µ
(i)
z

=
−2

γ

∑
i,j

Eε
[
(x

(i)
j − πα(Wjz

(i))− bj)Wjπ
′
α(Wjz

(i))
]
,

∂Lrecon

∂σ
(i)
z

=
−2

γ

∑
i,j

Eε
[
(x

(i)
j − πα(Wjz

(i))− bj)Wjεπ
′
α(Wjz

(i))
]
,

all second-order derivatives will have the form of (15), and equal 0 atW x = 0.

4. For γ, we can calculate that ∂2L/∂γ2 = 4/γ2 > 0 at (7).

Now, consider VAE parameters that are only different from (7) in W x. Plugging bx = x̄, µ
(i)
z =

0, σ
(i)
k = 1 into (14), we have

∂L
∂Wj

=
−2

γ

n∑
i=1

Eε[(π′α(Wjε)ε) · (−πα(Wjε))].

As (π′α(Wjε)ε) · (−πα(Wjε)) ≤ 0 always holds, we can see that the gradient points back to (7).
This concludes our proof of (7) being a strict local minima. �
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A.3 PROOF OF PROPOSITION 5.1

We begin by assuming an arbitrarily complex encoder for convenience. This allows us to remove
the encoder-sponsored amortized inference and instead optimize independent parameters µ(i)

z and
σ

(i)
z separately for each data point. Later we will show that this capacity assumption can be dropped

and the main result still holds.

We next define

mz ,

[(
µ(1)
z

)>
, . . . ,

(
µ(n)
z

)>]>
∈ Rκn and sz ,

[(
σ(1)
z

)>
, . . . ,

(
σ(n)
z

)>]>
∈ Rκn, (16)

which are nothing more than the concatenation of all of the decoder means and variances from
each data point into the respective column vectors. It is also useful to decompose the assumed
non-degenerate decoder parameters via

θ ≡ [ψ,w] , ψ , θ\w, (17)

where w ∈ [0, 1] is a scalar such that µx (z; θ) ≡ µx (wz;ψ). Note that we can always repa-
rameterize an existing deep architecture to extract such a latent scaling factor which we can then
hypothetically optimize separately while holding the remaining parameters ψ fixed. Finally, with
slight abuse of notation, we may then define the function

f (wmz, wsz) , (18)
n∑
i=1

f
(
µ(i)
z ,σ(i)

z , [ψ̃, w],x(i)
)
≡

n∑
i=1

E
N
(
z|µ(i)

z ,diag
[
σ(i)
z

]2) [‖x(i) − µx
(
wz; ψ̃

)
‖22
]
.

This is basically just the original function f summed over all training points, with ψ fixed at the
corresponding values extracted from θ̃ while w serves as a free scaling parameter on the decoder.

Based on the assumption of Lipschitz continuous gradients, we can always create the upper bound

f (u,v) ≤ f (ũ, ṽ) (19)

+ (u− ũ)
> ∇uf (u,v)|u=ũ + L

2 ‖u− ũ‖
2
2 + (v − ṽ)

> ∇vf (u,v)|v=ṽ + L
2 ‖v − ṽ‖

2
2 ,

where L is the Lipschitz constant of the gradients and we have adopted u , wmz and v , wσz
to simplify notation. Equality occurs at the evaluation point {u,v} = {ũ, ṽ}. However, this bound
does not account for the fact that we know ∇vf (u,v) ≥ 0 (i.e., f (u,v) is increasing w.r.t. v) and
that v ≥ 0. Given these assumptions, we can produce the refined upper bound

fub (u,v) ≥ f (u,v) , (20)

where fub (u,v) ,

f (ũ, ṽ) + (u− ũ)
> ∇uf (u,v)|u=ũ + L

2 ‖u− ũ‖
2
2+

nd∑
j=1

g
(
vj , ṽj , ∇vjf (u,v)

∣∣
vj=ṽj

)
(21)

and the function g : R3 → R is defined as

g (v, ṽ, δ) ,


(v − ṽ) δ + L

2 (v − ṽ)
2
2 if v ≥ ṽ − δ

L and {v, ṽ, δ} ≥ 0,

−δ2
2L if v < ṽ − δ

L and {v, ṽ, δ} ≥ 0,

∞ otherwise.

(22)

Given that

ṽ − δ
L = arg min

v

[
(v − ṽ) δ + L

2 (v − ṽ)
2
2

]
and −δ2

2L = min
v

[
(v − ṽ) δ + L

2 (v − ṽ)
2
2

]
, (23)

the function g is basically just setting all values of (v − ṽ) δ + L
2 ‖v − ṽ‖

2
2 with negative slope to

the minimum −δ2
2L . This change is possible while retaining an upper bound because f (u,v) is non-

decreasing in v by stated assumption. Additionally, g is set to infinity for all v < 0 to enforce
non-negatively.
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While it may be possible to proceed further using fub, we find it useful to consider a final modifica-
tion. Specifically, we define the approximation

fappr (u,v) ≈ fub (ũ, ṽ) , (24)

where fappr (u,v) ,

f (ũ, ṽ) + (u− ũ)
> ∇uf (u,v)|u=ũ + L

2 ‖u− ũ‖
2
2 +

nd∑
j=1

gappr
(
vj , ṽj , ∇vjf (u,v)

∣∣
vj=ṽj

)
(25)

and

gappr (v, ṽ, δ) ,


−δ2
2L + δ2

2Lṽ2 v
2 if ṽ − δ

L ≥ 0 and {v, ṽ, δ} ≥ 0,(
Lṽ2

2 − δṽ
)

+
(
δ
ṽ −

L
2

)
v2 if ṽ − δ

L < 0 and {v, ṽ, δ} ≥ 0,

∞ otherwise.

(26)

While slightly cumbersome to write out, gappr has a simple interpretation. By construction, we have
that

min
v
gappr (v, ṽ, δ) = gappr (0, ṽ, δ) = min

v
g (v, ṽ, δ) = g (0, ṽ, δ) (27)

and gappr (ṽ, ṽ, δ) = g (ṽ, ṽ, δ) = 0. (28)

At other points, gappr is just a simple quadratic interpolation but without any factor that is linear
in v. And removal of this linear term, while retaining (27) and (27) will be useful for the analysis
that follows below. Note also that although fappr (u,v) is no longer a strict bound on f (u,v), it
will nonetheless still be an upper bound whenever vj ∈ {0, ṽj} for all j which will ultimately be
sufficient for our purposes.

We now consider optimizing the function

happr(mz, sz, w) , 1
γ f

appr (wmz, wsz) +

n∑
i=1

∥∥∥µ(i)
z

∥∥∥2
2

+
∥∥∥σ(i)

z

∥∥∥2
2
− log

∣∣∣∣diag
[
σ(i)
z

]2∣∣∣∣ . (29)

If we define L (mz, sz, w) as the VAE cost from (4) under the current parameterization, then by
design it follows that

happr(m̃z, s̃z, w̃) = L (m̃z, s̃z, w̃) (30)

and
happr(mz, sz, w) ≥ L (mz, sz, w) (31)

whenever wσj ∈ {0, w̃σ̃j} for all j. Therefore if we find such a solution {m′z, s′z, w′} that satisfies
this condition and has happr(m′z, s

′
z, w

′) < happr(m̃z, s̃z, w̃), it necessitates that L(m′z, s
′
z, w

′) <
L(m̃z, s̃z, w̃) as well. This then ensures that {m̃z, s̃z, w̃} cannot be a local minimum.

We now examine the function happr more closely. After a few algebraic manipulations and exclud-
ing irrelevant constants, we have that

happr(mz, sz, w) ≡
nd∑
j=1

{
1
γ

[
wmz,j ∇ujf (u,v)

∣∣
uj=w̃m̃z,j

+ L
2

(
w2m2

z,j − 2wmz,jw̃m̃z,j

)
+ cjw

2s2z,j

]
+ m2

z,j + s2z,j − log s2z,j
}
, (32)

where cj is the coefficient on the v2 term from (26). After rearranging terms, optimizing outmz and
sz , and discarding constants, we can then obtain (with slight abuse of notation) the reduced function

happr(w) ,
nd∑
j=1

yj
γ + βw2

+ log(γ + cjw
2), (33)
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where β , L
2 and yj , L

2

∥∥∥w̃m̃z,j − 1
L ∇ujf (u,v)

∣∣
uj=w̃m̃z,j

∥∥∥2
2
. Note that yj must be bounded

since L 6= 04 and w ∈ [0, 1], ∇ujf (u,v)
∣∣
uj=w̃m̃z,j

≤ L, and m̃ are all bounded. The latter is im-
plicitly bounded because the VAE KL term prevents infinite encoder mean functions. Furthermore,
cj must be strictly greater than zero per the definition of a non-degenerate decoder; this guarantees
that

gappr
(
w̃s̃j , w̃s̃j , ∇vjf (u,v)

∣∣
vj=w̃s̃j

)
> gappr

(
0, w̃s̃j , ∇vjf (u,v)

∣∣
vj=w̃s̃j

)
, (34)

which is only possible with cj > 0. Proceeding further, because

∇w2happr(w) =

nd∑
j=1

(
−βyj

(γ + βw2)
2 +

cj
γ + cjw2

)
, (35)

we observe that if γ is increased sufficiently large, the first term will always be smaller than the
second since β and all yj are bounded, and cj > 0 ∀j. So there can never be a point whereby
∇w2happr(w) = 0 when γ = γ′ sufficiently large. Therefore the minimum in this situation occurs
on the boundary where w2 = 0. And finally, if w2 = 0, then the optimal mz and sz is determined
solely by the KL term, and hence they are set according to the prior. Moreover, the decoder has no
signal from the encoder and is therefore optimized by simply setting µx

(
0; ψ̃

)
to the mean x̄ for

all i.5 Additionally, none of this analysis requires and arbitrarily complex encoder; the exact same
results hold as long as the encoder can output a 0 for means and 1 for the variances.

Note also that if we proceed through the above analysis using w ∈ Rκ as parameterizing a
separate wj scaling factor for each latent dimension j ∈ {1, . . . , κ}, then a smaller γ value would
generally force partial collapse. In other words, we could enforce nonzero gradients of happr(w)
along the indices of each latent dimension separately. This loosely criteria would then lead to
qφ∗(zj |x) = p(zj) along some but not all latent dimensions as stated in the main text below
Proposition 5.1. �

A.4 REPRESENTATIVE STATIONARY POINT EXHIBITING POSTERIOR COLLAPSE IN DEEP
VAE MODELS

Here we provide an example of a stationary point that exhibits posterior collapse with an arbitrary
deep encoder/decoder architecture. This example is representative of many other possible cases.
Assume both encoder and decoder mean functions µx and µz , as well as the diagonal encoder
covariance function Σz = diag[σ2

z], are computed by standard deep neural networks, with layers
composed of linear weights followed by element-wise nonlinear activations (the decoder covariance
satisfies Σx = γI as before). We denote the weight matrix from the first layer of the decoder mean
network as W 1

µx , while w1
µx,·j refers to the corresponding j-th column. Assuming ρ layers, we

denote W ρ
µz and W ρ

σ2
z

as weights from the last layers of the encoder networks producing µz and
logσ2

z respectively, with j-th rows defined aswρ
µz,j· andwρ

σ2
z,j·

. We then characterize the following
key stationary point:

Proposition A.2 If w1
µx,·j =

(
wρ
µz,j·

)>
=
(
wρ
σ2
z,j·

)>
= 0 for any j ∈ {1, 2, . . . , κ}, then the

gradients of (4) with respect to w1
µx,·j , w

ρ
µz,j·, and wρ

σ2
z,j·

are all equal to zero.

If the stated weights are zero along dimension j, then obviously it must be that qφ(zj |x) = p(zj),
i.e., a collapsed dimension for better or worse. The proof is straightforward; we provide the details
below for completeness.

4L = 0 would violate the stipulated conditions for a non-degenerate decoder since it would imply that no
signal from z could pass through the decoder. And of course if L = 0, we would already be at a solution
exhibiting posterior collapse.

5We are assuming here that the decoder has sufficient capacity to model any constant value, e.g., the output
layer has a bias term.
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Proof: First we remind that the variational upper bound is defined in (2). We define L(x; θ, φ) as
the loss at a data point x, i.e.

L(x; θ, φ) = −Eqφ(z|x) [log pθ(x|z)] + KL [qφ(z|x)||p(z)] . (36)

The total loss is the integration of L(x; θ, φ) over x. Further more, we denote Lkl(x; θ) and
Lgen(x; θ, φ) as the KL loss and the generation loss at x respectively, i.e.

Lkl(x;φ) = KL [qφ(z|x)||p(z)] =

κ∑
i=1

KL [qφ(zj |x)||p(zj)] ,

=
1

2

κ∑
j=1

(
µ2
z,j + σ2

z,j − log σ2
z,j − 1

)
(37)

Lgen(x;φ, θ) = −Eqφ(z|x) [log pθ(x|z)] . (38)

The second equality in (37) holds because the covariance of qφ(z|x) and p(z) are both diagonal. The
last encoder layer and the first decoder layer are denoted as hρe and h1

d. If wρ
µz,j· = 0,wρ

σ2
z,j·

= 0,
then we have

µz,j = wρ
µz,j·h

ρ
e = 0, σ2

z,j = exp (wσ2
z,j·) = 1, q(zj |x) = N (0, 1). (39)

The gradient of µz,j and σz,j from Lkl(x;φ) becomes

∂Lkl(x;φ)

∂µz,j
= µz,j = 0,

∂Lkl(x;φ)

∂σz,j
= 1− σ−1z,j = 0. (40)

So the gradient of wρ
µz,j· and wρ

σ2
z,j·

from Lkl is

∂Lkl(x;φ)

∂wρ
µz,j·

=
∂Lkl(x;φ)

∂µz,j
hρe
>

= 0, (41)

∂Lkl(x;φ)

∂wρ
σ2
z,j·

=
∂Lkl(x;φ)

2σz,j · ∂σz,j
hρe
>

= 0. (42)

Now we consider the gradient from Lgen(x; θ, φ). We have

−∂ log pθ(x|z)

∂zj
=
−∂ log pθ(x|z)

∂h1
d

∂h1
d

∂zj
. (43)

Since

h1
d = act

 κ∑
j=1

w1
µx,·jzj

 , (44)

where act(·) is the activation function, we can obtain

∂h1
d

∂zj
= act′

 κ∑
j=1

w1
µx,·jzj

w1
µx,·j = 0. (45)

Plugging this back into (43) gives

−∂ log pθ(x|z)

∂zj
= 0. (46)

According to the chain rule, we have

∂Lgen(x; θ, φ)

∂wρ
µz,j·

= Ez∼qφ(z|x)

[
−∂ log pθ(x|z)

∂zj

∂zj
∂wρ

µz,j·

]
= 0, (47)

∂Lgen(x; θ, φ)

∂wρ
σ2
z,j·

= Ez∼qφ(z|x)

[
−∂ log pθ(x|z)

∂zj

∂zj
∂wρ

σ2
z,j·

]
= 0. (48)
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After combining these two equations with (41) and (42) and then integrating over x, we have

∂L(θ, φ)

∂wρ
µz,j·

= 0, (49)

∂L(θ, φ)

∂wρ
σ2
z,j·

= 0. (50)

Then we consider the gradient with respect to w1
µx,·j . Since wµx,·j is part of θ, it only receives

gradient from Lgen(x; θ, φ). So we do not need to consider the KL loss. If w1
µx,·j = 0, h1

d =∑κ
j=1w

1
µx,·jzj is not related to zj . So pθ(x|z) = pθ(x|z¬j), where z¬j represents z without the

j-th dimension. The gradient of w1
µx,·j is

∂Lgen(x; θ, φ)

∂w1
µx,·j

= Ez∼q(z|x)

[
−∂ log pθ(x|z)

∂w1
µx,·j

]
= Ez∼q(z|x)

[
−∂ log pθ(x|z)

∂h1
d

zj

]
(51)

= Ez¬j∼q(z¬j|x)

[
Ezj∼N (0,1)

[
−∂ log pθ(x|z¬j)

∂h1
d

zj

]]
= Ez¬i∼q(z¬i|x)

[
−∂ log pθ(x|z¬j)

∂h1
d

Ezj∼N (0,1)[zj ]

]
= 0.

The integration over x should also be 0. So we obtain

∂L(θ;φ)

∂w1
µx,·j

= 0. (52)

�
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